当前位置:文档之家› 高活性TiSnO2-Sb电极对2,4-二氯苯酚水溶液的电化学降解

高活性TiSnO2-Sb电极对2,4-二氯苯酚水溶液的电化学降解

高活性TiSnO2-Sb电极对2,4-二氯苯酚水溶液的电化学降解
高活性TiSnO2-Sb电极对2,4-二氯苯酚水溶液的电化学降解

高活性Ti/SnO2-Sb电极对2,4-二氯苯酚水溶液的电化学降解摘要:研究2,4-二氯苯酚(2,4-DCP)水溶液的电化学降解,阳极为Ti/SnO2-Sb

电极。考察所施加的电流密度(2-40mA/cm2),pH(3-11)和初始浓度(5-200mg/L)对降解速率的影响。2,4-DCP的降解遵循动力学准一级反应。在初始浓度为5-200 mg/L,恒电流密度为30mA/cm2,电解质溶液Na2SO4为10mmol/L的条件下,使用Ti/SnO2-Sb电极作为阳极电解20分钟,降解率可达到>99.9%。结果表明,在最佳条件下电解30分钟,2,4-DCP(100mg/L)的降解率和总有机碳(TOC)的去除率分别达99.9%和92.8%。在此条件下,降解速率常数(k)和降解半衰期(t1/2)分别为0.21min-1和(2.8±0.2)min。检测发现主要羧酸(丙酸,马来酸,丙二酸,乙酸和草酸)为中间产物。用Ti/SnO2-Sb电极作为阳极降解2,4-DCP(5-200mg/L),其能量效率介于0.672到1.602g/kWh之间。该高活性Ti/SnO2-Sb阳极能加速有机物氧化,可用于降解污水中的氯酚,尤其是2,4-DCP。

关键词:2,4-二氯苯酚;Ti/SnO2-Sb电极;电化学降解;总有机碳

前言

氯酚是一类有毒有机化合物,被用于木材防腐剂,防锈剂和杀虫剂,美国环境保护局(US EPA)将其列为优先污染物。二氯苯酚(2,4-DCP)作为有机氯杀虫剂的中间产物具有极强的毒性,并且对人类和动物的内分泌系统具有极大的破坏。近些年,各种类型的方法被用于去除污水中的2,4-DCP,如物理法、化学法、和微生物法。然而,由于其高毒性和低持久性浓度,所以很难将2,4-DCP完全去除,达到环境标准。最近,高级氧化法(AOPs),因为它产生的羟基自由基(·OH)能氧化有机污染物,达到较高的降解效果,所以被认为是污水处理中的领军方法。AOPs,如光电催化法、UV(紫外)/Fenton,光催化法和臭氧催化法等都是基于氧化反应的方法。这些方法在污水处理方面得到了显著的认识。

在众多的AOPs中,电化学技术具有强大的氧化能力,易于自动化和环境相容性,以及在降解有毒或难生物降解有机物方面的低成本效益,因此在过去几十年中,电化学技术被证明具有更大的优势。电化学处理法中,电极的高稳定性、高活性,和低成本在成功氧化有机物的过程中起着重要作用。电极表面涂层的组分和结构是影响电催化性能和电极稳定性的主要因素。一些实验已经进行了有关电化学降解酚类化合物特别是对2,4-DCP降解效率方面的研究。先前的报告指出BDD-TiO2、Ti/IrO2、Ti/RuO2、Pt和Ti/SnO2-Sb电极能降解酚类化合物。反应机理应该是电子从2,4-DCP转移到BDD-TiO2和Ti/SnO2-Sb阳极。而其他阳极

Ti/IrO2、Ti/RuO2和Pt不能将2,4-DCP从水溶液中去除。尽管BDD-TiO2有更好

的化学性能和电化学稳定性,寿命长和较高的析氧电位,但是主要的困难是难以找到一种合适的基质能涂覆金刚石,再加上其高成本制约BDD大规模的应用。近年来,维度相同的电极,典型的就是不同涂层的钛电极,取得了不同程度上的成功。然而像石墨电极和镍电极这样的传统电极在有机物降解方面表现出了很低的电流效率。掺Sb的钛基二氧化锡电极,SnO2-Sb有许多的优势,如成本效益、易制备、寿命长和高析氧过电位,因此它被用于工业和制药行业。

本研究考察初始浓度、电流密度、初始pH对2,4-DCP水溶液降解的影响。电化学降解过程决定了总有机碳(TOC)的去除和中间产物的降解。在2,4-DCP 过程中,也会考察能量利用率和电极模型(Ti/SnO2-Sb)的活性。

1.材料和方法

1.1.试剂

分析纯2,4-DCP从SigmaAldrich购买,氢氧化钠(NaOH)、乙酸铵(CH3COONH4)、高氯酸(HClO4)从国药(中国北京)购买。硫酸钠(Na2SO4)用于增加电解质。在实验中使用的水为超纯水。通过使用稀盐酸(HCL)或NaOH 调节pH到理想范围。

1.2.Ti/SnO2-Sb电极的制备和表征特性

准备厚度1.0mm,尺寸12cm×5cm的正品钛板。该板用NaOH溶液(5%,m/m)处理,再用草酸(10%,m/m)处理使得电极表面层均匀的粗糙度。根据先前的文献,Ti/SnO2-Sb电极通过稍微修改的溶胶凝胶技术制备。乙二醇和柠檬酸在60℃下混合搅拌,直至完全溶解,然后该溶液持续搅拌加热至90℃。SnCl4·4H2O和SbCl3以合适的比例加入该溶液,使得溶液中柠檬酸:乙二醇:SnCl4·4H2O:SbCl3=140:30:9:1。上述溶液维持在90℃30分钟以获得凝胶。然后将该溶液均匀的涂覆在钛板表面,然后再采用浸没涂覆的方法。再放入140℃的烘箱烘干,然后烧结涂层,即放入500℃的马弗炉热分解10min。重复上述步骤24次,最后将电极膜放在500℃下煅烧2hr后退火。为了表征我们实验中的电极,采用电子显微镜对电极进行扫描。

1.3.电化学实验

用CHI660D电化学工作站和传统三电极电池测定电极的电化学性能。将电极放入0.5mol/L H2SO4溶液中,用线性扫描伏安法(LSV)测定电极的可观电势。

本研究所使用的电化学电池由有机玻璃组成,阳极为Ti/SnO2-Sb,阴极为钛电极(尺寸为12cm×5cm;厚度为1mm)。阴极和阳极的表面积均为60cm2。为考察各影响因素,该电化学实验均使用25mL2,4-DCP溶液进行实验,要考察的影响因素包括:pH、电流密度、不同浓度下的2,4-DCP。但是这些参数会根据实验条件做出相应的改变。考察pH的影响时,将溶液的pH调节到3.0到11.0的范围内。使用微处理器pH计测定溶液的pH值。电流由带有恒电流控制模式的DC电源所提供。首先用该装置考察2,4-DCP初始浓度(5,10,50,100和200mg/L)的影响。为了能更好的分析试验,所有实验均在石英反应器内进行,极板间距均采用0.5cm,每个水样均为25mL的2,4-DCP,Na2SO4浓度均为10mmol/L。

1.4.分析技术

2,4-DCP的浓度由高效液相色谱(HPLC)测定。分离在流量为1mL/min,柱温为(30±2)℃的反相色谱柱(C18色谱柱)内进行。根据800℃燃烧催化氧化法,使用多功能N/C UV分析仪测定水溶液中的TOC。TOC去除率(R)根

据以下公式计算:

R=(1-C TOC/C0

)×100%(1)

TOC

为2,4-DCP溶液中TOC的初始其中,C TOC是水溶液中TOC的浓度,C0

TOC

浓度。

2,4-DCP的降解中间产物用气相色谱-质谱联用仪(GC-MS)测定,该仪器的色谱柱为DB-5色谱柱(30m×0.25mm ID,柱厚为0.25μm)。离子源温度为230℃。注样器温度为280℃.载气为氦气(He,99.999%),流量恒定为

1.0mL/min。

2.结果与讨论

2.1.特征描述

Ti/SnO2-Sb电极用扫描电子显微镜(SEM)观察。图1为相关SEM照片。

图1SEM照片和Ti/SnO2-Sb电极的颗粒形态

结果表明Ti/SnO2-Sb电极表面存在由溶胶-凝胶方法涂覆的光滑球形物质并随机分布。该颗粒的粒径在5微米的范围内。图1的结果也表明,极板表面形态的一致性会影响2,4-DCP的均匀降解。

2.2.2,4-DCP初始浓度的影响

如图2所示,经过20min的电解,初始浓度为5-200mg/L的2,4-DCP溶液降解率可达>99.9%,这表明Ti/SnO2-Sb电极对不同溶度范围内的2,4-DCP溶液进行电解均能达到很强的效果。但是,对于初始浓度为100和200mg/L的2,4-DCP 溶液,它们的降解率常数(k)分别为0.21和0.26min-1,降解半衰期(t1/2)分别

为(2.8±0.2)和(2.3±0.1)min(表1)。

时间(min)时间(min)

图22,4-DCP初始浓度为5,10,50,100和200mg/L时,2,4-DCP的浓度变化与电解时间的函数。反应条件:初始pH为6;恒电流密度为30mA/cm2;板间距为0.5cm;在室温下NaSO4的浓度为10mmol/L。n=3,误差可忽略不计。

表1不同实验参数下Ti/SnO2-Sb电极对2,4-DCP溶液的电化学降解

参数

反应时间

(t,min)

去除率(%)

反应初始—末期

pH

降解率常数

(k,min-1)

降解半衰期

(t

1/2,

min)

R2

初始浓度(C

0,mg/L)

51>99.9% 6.0-4.6---

105>99.9% 6.0-4.3---

5010>99.9% 6.0-3.6---

10020>99.9% 6.0-4.10.21 2.8±0.20.990

20020>99.9% 6.0-3.40.26 2.3±0.10.971

pH(C

0=100mg/L;30mA/cm2)

3.020>99.9% 3.0-2.60.31 1.9±0.10.978

5.020>99.9% 5.0-2.80.24 2.5±0.10.978

7.030>99.9%7.0-3.00.087.2±0.20.997

9.020>99.9%9.0-3.40.20 2.9±0.10.997

11.020>99.9%11.0-10.30.18 3.3±0.10.966

电流密度(mA/cm2)

(C

0=100mg/L)

230>99.9% 5.8-3.30.15 4.0±0.10.915

520>99.9% 5.8-3.00.16 3.6±0.10.993

1020>99.9% 5.8-2.90.22 2.6±0.10.987

3020>99.9% 5.8-3.10.31 1.9±0.10.945

4020>99.9% 5.8-3.00.31 1.9±0.10.914 2

,

4

-

D

C

P

m

g

/

L

2

,

4

-

D

C

P

m

g

/

L

表1所示,电解后pH 值显著下降。先前文献指出pH 急剧下降显然是由于酚类在降解过程中有酸性物质形成。但是,我们的研究表明2,4-DCP 在降解过程中产生的酸性物质对溶液的pH 值所造成的影响很小。

2.3.初始pH 的影响

图3表示初始pH 对2.4-DCP 降解的影响,初始pH 的范围为3-11。电解20min 后,在所有的pH 条件下,都达到了高降解率(99.9%)。pH=3时的k 值(k ,0.31min -1)是pH=11时(k ,0.18min -1)的2倍,它们的t 1/2值分别为(1.9±0.1)和(3.3±0.1)min ,这表明降解过程更适合在酸性溶液中进行,也表明下降的pH 值增加了析氧过电位。因此,在pH =3时,低pH 值抑制了析氧反应,在一定程度上加强了2,4-DCP 的降解效率。

时间(min )

图3初始pH 为3,5,7,9和12时2,4-DCP 浓度(100mg/L )变化值与电解时间的函数关系。反应条件:板间距为0.5cm ;恒电流密度为30mA/cm 2;常温下Na 2SO 4的浓度为10mmol/L 。n =3,误差可忽略不计。

2.4.电流密度的影响

电子转移电位和羟基自由基的生成也许影响2,4-DCP 的降解效率。然而,上述的这些能力,尤其是羟基自由基的生成仅仅依赖所施加的电流密度。本实验考察使用Ti/SnO 2-Sb 电极电解时,所施加的电流密度(2-40mA/cm 2)对2,4-DCP (100mg/L )降解率的影响。从图4可以看出2,4-DCP 的降解率随着电流密度的

增加而上升。在电流密度为5,10,30和40mA/cm 2时,电解20min 后,

2,4-DCP 的降解效率可达>99.9%。该反应遵循动力学准一级反应。从表1可以看出,电流密度从2mA/cm 2升至40mA/cm 2时,2,4-DCP 的降解率常数由0.15min -1升至0.31min -1,而t 1/2值也相应地由(4.0±0.1)变化到(1.9±0.1)。在电流密度为30mA/cm 2时,TOC 的去除率可达92.8%,能量效率达0.744g/kWh ,因此可以看出Ti/SnO 2-Sb 电极对2,4-DCP 的降解可以达到相当高的降解效率。

2,4-D C P 浓度(m g /L )

时间(min)

图4恒电流密度为2,5,10,30和40mA/cm 2时,2,4-DCP 浓度(100mg/L )变化值与电解时间的函数关系。反应条件:板间距为0.5cm ;初始pH 为5.8;常温下Na 2SO 4的浓度为10mmol/L 。n =3,误差可忽略不计。

2.5.能量效率

表2反映的是Ti/SnO 2-Sb 电极电化学降解2,4-DCP (5-200mg/L )时的能量效率和相应的电解时间。电化学降解过程中2,4-DCP 的初始浓度为5-200mg/L 时,其能量效率分别从0.672变化到1.602g/kWh 。

表2不同电压下降解2,4-DCP 的能量效率和电解时间

2.6.电化学降解2,4-DCP 的机制

使用Ti/SnO 2-Sb 电极作为阳极,恒电流密度为30mA/cm 2的条件下电解20min ,能快速去除水溶液中的2,4-DCP 。也有其他研究发现,用Pt 作为阳极需要电解18hr 才能将酚类全部降解完,如果用Ti/RuO 2作为阳极需要电解36hr 。先前的研究表明,使用Ti/SnO 2-Sb 电极作为阳极,恒电流密度为30mA/cm 2的条件下电解30min ,TOC 的去除率可达92.5%。因此,用电化学技术降解2,4-DCP 和去除出TOC 方面,Ti/SnO 2-Sb 电极有很大优势,并且有很可观的能量效率(0.744g/kWh )。

完全电解完(99.9%)2,4-DCP 后,依然有少量的TOC 残留在水溶液中,这表明在水溶液中生成和积累了由Ti/SnO 2-Sb 电极所产生的中间产物。然而,在

电流浓度(mg/L)

体积(L)电解时间(min)电压(V)能量效率(g/kWh)

1.850.0251 6.20.6721.8100.025560.2771.8500.02510 5.60.7441.81000.02520 5.60.7441.8

200

0.025

20

5.2

1.602

2,4-D C P 浓度(m g /L )

电解过程中pH发生了轻微的变化(表1)。2,4-DCP降解过程中可能有酸性物质形成导致pH小幅度下降。结合TOC的结果,有机酸可能是电解酚类过程中所产生的主要中间产物。

用GC-MS联用分析仪检测2,4-DCP电化学降解过程中所生成的中间产物,主要的中间产物是草酸,其次是马来酸、丙酸、丙二酸和乙酸。当TOC和2,4-DCP 都被去除时,用Ti/SnO2-Sb电极电解使得上述有机酸都被去除,但是依然有不知名的酸类在电化学反应过程中得到积累。不同电极会以不同程度朝着有机物降解和中间产物生成的方向反应。2,4-DCP降解中,阳极表面确切的催化机能依然处于研究当中。现在普遍认为,通过阳极的直接电子转移和间接氧原子转移,能够氧化水溶液中的有机化合物。在直接电子转移过程中,有机物会吸附在阳极表面,然后向阳极释放电子。然而,在间接氧原子转移过程中,具有氧化性的自由基主要是·OH,·OH是电解水的过程中生成的,它在电化学法中起着重要作用。羟基自由基会与吸附在阳极表面的有机物分子反应,从而强化了氧化效果,而·OH之间也会深度反应生成氧分子从而完成水分子的电解过程。完整的反应如下:

M+H2O→M[·OH]+H++e-(2)

M[·OH]+有机污染物→产物(3)

2M[·OH]→2M+O2+2H++2e-(4)

此处M代表阳极。

在上述条件下,降解有机物的过程中阳极所产生的高析氧率可能是降低电流效率的主要原因。·OH能有效氧化有机物,阳极Ti/SnO2-Sb较高的过电位(1.5)会使得自由基相互反应(反应(4))得到抑制。Ti/SnO2-Sb电极上的过电位能有效地延长阳极上·OH的寿命,因此使得更多的氧从自由基转移到有机物上实现氧化过程。电流的研究表明马来酸也许会被直接氧化成草酸,而草酸能被阳极Ti/SnO2-Sb所生成的·OH氧化成CO2。

3.结论

将Ti/SnO2-Sb作为阳极的电极模型实现了对2,4-DCP的高效电化学降解。在更高的初始浓度下,即100和200mg/L,经过20min的电解,2,4-DCP的降解率可达99.9%,降解率常数(k)分别为0.21和0.26min-1。该反应动力学遵循准一级反应,2,4-DCP的k会随着电流密度和pH值的增长而增长。在恒电流密度30mA/cm2的条件下电解30min,可实现更高的TOC去除率(92.8%)和2,4-DCP降解率(99.9%)。电解7min后,脂肪族有机酸(如:丙酸、马来酸、丙二酸、乙酸和草酸)是主要的中间产物。然而,由于Ti/SnO2-Sb电极的高活性和对2,4-DCP 的高降解率,使得没有明显发现其他降解产物。结果表明,Ti/SnO2-Sb电极法是一种能在温和条件下卓有成效地降解2,4-DCP并且能源效率高的电化学技术。

实验一 苯酚降解菌的分离及降解性测定

实验一苯酚降解菌的分离及降解性测定 实验原理:在污染环境中,大部分微生物由于受到毒害而死亡,少数微生物具有较强的降解能力或通过诱变改变其基因型或诱导产生某些酶而能在污染的环境中存活,成为有机污染物的高效降解菌或耐性菌株。 从污染环境中取样,通过在选择性培养基上培养,可筛选出目的性微生物。本实验取青年湖水样作为菌种的来源,在以苯酚为唯一碳源的无机盐培养基进行培养,分离苯酚降解菌。实验步骤: 1. 从污染地区取样品(污水,污泥或受污染的土壤)。 2. 配制无碳源的无机盐培养基,加入苯酚储备液,使培养基中苯酚浓度达100 mg/L。 121℃灭菌20 min。 3. 吸取1 ml活性污泥,加入灭菌培养基,同时做空白对照,28℃恒温摇床培养24 h(160 rmp/min). 4. 测定苯酚降解率。 苯酚降解率的测定方法: a.标准曲线的绘制分别吸取0、1、2、3、4、5mL 酚标准溶液(100 mg/L) 于50mL容量瓶中,加蒸馏水稀释成20 mL。加入2 mL pH9.8缓冲溶液,4 mL 4%4-氨基安替比林溶液,摇匀后加入4 mL 8%铁氰化钾溶液,显色10min 后,加蒸馏水稀释至刻度。用722型分光光度计460nm波长处比色测定。 b.以不加酚的试剂作空白对照,以浓度为横坐标,以光密度为纵坐标绘制标准 曲线。 c.培养液中苯酚降解率的测定吸取培养液2mL于50mL容量瓶中,加蒸馏水 稀释成20 mL。加入2 mL pH9.8缓冲溶液,4 mL 4%4-氨基安替比林溶液, 摇匀后加入4 mL 8%铁氰化钾溶液,显色10min后,加蒸馏水稀释至刻度。 用722型分光光度计460 nm波长处比色测定。 d.根据标准曲线求出苯酚含量以分解苯酚的百分数表示酚分解作用强弱。

苯酚降解菌的筛选、鉴定及其降解特性的研究

上海师范大学 硕士学位论文 苯酚降解菌的筛选、鉴定及其降解特性的研究 姓名:何小丽 申请学位级别:硕士 专业:微生物学 指导教师:肖明 20090501

上海师范大学硕士学位论文摘要论文题目:苯酚降解菌的筛选、鉴定及其降解特性的研究 学校专业:微生物学 学位申请人:何小丽 指导教师:肖明 摘要 酚类化合物为细胞原浆毒物,属高毒性物质。这类物质来源广泛,通常污染水源,毒死鱼虾,危害农作物,并严重威胁人类的健康。含酚有机物的毒性还在于其只能被少数的微生物分解。从自然界中筛选分离出能够降解特定污染物的高效菌种,有针对性的投加到已有的污水处理系统中的生物强化技术,能够快速提供大量具有特殊作用的微生物,在有毒有害污染物治理中显示出巨大的潜力。 1、本研究从胜利油田河口采油厂的飞雁滩油田土壤样品中分离得到10株能够利用并降解苯酚的菌株P1-P4、P7、P9-P13。该10株苯酚降解菌能够在以苯酚为唯一碳源和能源的培养基上生长,经16S rDNA分子鉴定和生理生化检测,该10株降酚菌分别被鉴定到属或种。其中降酚菌株P1、P3和P4这3株菌株分别属于劳尔氏菌属(Ralstonia)、贪噬菌属(Variovorax)和节杆菌属(Arthrobacter)里的种。其它7株降酚菌株P 2、P7、P9-P13都属于假单胞菌属(Pseudomonas)里的种。这4个属里的细菌在国内外都已被报道有降解苯酚的特性,其中有关假单胞菌降解环境有机物的报道较多。 2、培养液中的苯酚含量通过4-氨基安替比啉分光光度法测定,通过苯酚降解效率的比较,菌株P2降解苯酚的能力较其它9株菌株要强。于是将菌株P2作为本研究中进一步研究的对象,研究了不同的环境条件下该菌株降解苯酚和菌体生长的情况。 3、通过苯酚羟化酶特异性引物的设计,从菌株P2扩增出苯酚羟化酶大亚基基因,该基因片段编码对苯酚有催化活性的多肽,催化苯酚代谢的第一步反应;表明菌株P2能降解苯酚是由于细胞具有降解苯酚的遗传基础。 I

苯酚类废水处理办法

苯酚类废水处理办法集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

一、物理法 1、萃取法 由于酚类化合物是有机物,在水相与有机相的溶解度有较大差异,因此可以利用与水不互溶的有机萃取剂与含酚类污染物的废水混合,从而使酚类物质从水相转移至有机相中,以此实现酚类物质从水相中的脱除[8]。目前萃取法的发展除了选取混合强度更高的反应器之外[9],选择、优化萃取剂也是一个重要方向,其中使用超临界流体进行反应萃取分离是目前萃取法研究的重要方向[1()]。由于萃取剂一般都相对昂贵,因此萃取剂一般都需要回收利用。但由于萃取过程中存在一些副反应、操作过程中也有一定的损失、溶剂会一定程度地溶解于水中,因此萃取法一般只用来处理回收较高浓度的苯酚废水,从而限制了其广泛应用。 2、蒸汽法 蒸汽法用来脱除挥发酚也一种使用时间比较长的方法,主要是利用挥发酚能够与水蒸汽组成一种共沸物的物理特点,当两种物质的总蒸汽压大于外部的压力时,废液就会沸腾,同时挥发酚便会转变为气体。在传统的蒸汽脱酚塔中,含酚废液喷淋塔顶端向下喷淋,而水蒸气则从下往上流动,两者进行逆流接触,从而使废液中的挥发酚转入气相中,达到脱除挥发酚的目标。 蒸汽法的优点是不使用昂贵的萃取剂、操作比较简便、处理量大、无后续污染,适合处理含挥发酚含量较高的酚类废水[li】,但其也存在蒸汽消耗大、设备体积大、废水处理不彻底的缺点。 3、吸附法 比表面积大、具有多孔结构等特征的物质常常能吸附水体中的污染物。科研人员使用具有以上特征的吸附剂处理酚类废水,在达到一定吸附量之后,再利用其他手段进行脱附,

实验三高效苯酚降解菌的筛选及其性能测定课件.doc

实验三高效苯酚降解菌的筛选及其性能测定 一、实验目的 1、掌握微生物分离纯化的基本操作; 2、掌握用选择性培养基从环境中分离苯酚降解菌的原理和方法; 3、掌握微生物对酚降解能力的测定方法; 4、掌握4-氨基安替比林法测定苯酚含量的方法。 二、实验原理 在工业废水的生物处理中,对污染成分单一的有毒废水,可以选育特定的高效菌株进行处理。这些高效菌株以有机污染物作为其生长所需的能源、碳源或氮源,从而使有机污染物得以降解,具有处理效率高、耐受毒性强等优点。 苯酚是一种在自然条件下难降解的有机物,其长期残留于空气、水体、土壤中,会造成严重的环境污染,对人体、动物有较高毒性。本实验通过筛选苯酚降 解菌来处理含酚废水,将苯酚降解为为二氧化碳和水,消除对环境的污染。 + COOHCH2CH2COOH CH3COOH C O2+H2O 从环境中采样后,在以苯酚为唯一碳源的培养基中,经富集培养、分离纯化、降解实验和性能测定,可筛选出高效酚降解菌。 三、实验器材与试剂 1、样品 实验土样采自校园污水处理厂。 2、器材 恒温培养箱、恒温摇床、分光光度计、比色皿、试管、250mL三角瓶、100mL 容量瓶、培养皿、涂布玻棒、量筒、天平、灭菌锅、酒精灯、接种环、棉花、棉 线、牛皮纸、pH 试纸。 3、试剂 葡萄糖、牛肉膏、蛋白胨、苯酚、四硼酸钠(Na2B4O7)、4-氨基安替比林、过硫酸铵((NH4)2S2O8)、K2HPO4、KH2PO4、MgSO4、琼脂。

苯酚标准溶液:称取分析纯苯酚 1.0g,溶于蒸馏水中,稀释至1000mL,摇 匀。此溶液溶度为1000mg/L。测定标准曲线时将苯酚浓度稀释至100mg/L。 Na2B4O7 饱和溶液:称取N a2B4O7 40g,溶于1L 蒸馏水中,冷却后使用,此 溶液的pH值为10.1。 3% 4-氨基安替比林溶液:称取分析纯4-氨基安替比林3g,溶于蒸馏水中, 并稀释至100mL,置于棕色瓶中,冰箱保存,可用两周。 2% (NH4)2S2O8 溶液:称取分析出(NH4)2S2O8 2g,溶于蒸馏水中,并稀 释至100mL,置于棕色瓶中,冰箱保存,可用两周。 4、培养基 富集培养基:蛋白胨0.5g,K2HPO4 0.1g,MgSO4 0.05g,水1000mL,调节pH 7.2-7.4,高压蒸汽灭菌,冷却后视需要添加适量的苯酚。 基础培养基:K2HPO4 0.6g,KH2PO4 0.4g,NH4NO3 0.5g,MgSO4 0.2g,CaC2l 0.025g,水1000mL,调节pH 7.0-7.5,高压蒸汽灭菌,冷却后视需要添加适量的苯酚。 四、实验步骤 (一)富集培养和驯化 采集活性污泥或土样,接种于装有100mL 富集培养基和玻璃珠并加有适量 苯酚(50mg/L)的三角瓶中,30℃振荡培养。待菌生长后,用无菌移液管吸取 1mL 转至另一个装有100mL 富集培养基和玻璃珠并加有适量苯酚的三角瓶中, 如此连续转接2-3 次,每次所加的苯酚量适当增加,最后可得酚降解菌占绝对优 势的混合培养物。 (二)平板分离和纯化 1、用无菌移液管吸取经富集培养的混合液10mL,注入90mL无菌水中,充 分混匀,并继续稀释到适当浓度。 2、取适当浓度的稀释菌液,加一滴于固体平板(由富集培养基加入2%的琼 脂组成,倒平板时添加适量的苯酚,浓度达到200 mg/L。)中央,用无菌玻璃涂 棒把滴加在平板上的菌液涂平,盖好皿盖,每个稀释度做2-3 个重复。 3、室温放置一段时间,待接种菌液被培养基吸收后,倒置于30℃恒温箱中 培养2-3d。 4、挑选不同菌落形态,在含适量苯酚的固体平板上划线纯化。平板倒置于

含酚废水处理方法

含酚废水处理方法 一、含酚废水的危害 含酚废水主要来自石油化工厂、树脂厂、塑料厂、合成纤维厂、炼油厂和焦化厂等化工企业。它是水体的重要污染物之一。由于工业门类、产品种类和工艺条件不同,其废水组成及含酚浓度差别较大,一般分为酸性、碱性、中性含酚废水和挥发、非挥发性含酚废水。 酚类化合物是一种原型质毒物,所有生物活性体均能产生毒性,可通过与皮肤、粘膜的接触不经肝脏解毒直接进入血液循环,致使细胞破坏并失去活力,也可通过口腔侵入人体,造成细胞损伤。高浓度的酚液能使蛋白质凝固,并能继续向体内渗透,引起深部组织损伤,坏死乃至全身中毒,即使是低浓度的酚液也可使蛋白质变性。人如果长期饮用被酚污染的水能引起慢性中毒,出现贫血、头昏、记忆力衰退以及各种神经系统的疾病,严重的会引起死亡。酚口服致死量为530mg/kg(体重)左右,而且甲基酚和硝基酚对人体的毒性更大。据有关报道,酚和其它有害物质相互作用产生协同效应,变得更加有害,促进致癌化。 含酚废水不仅对人类健康带来严重威胁,也对动植物产生危害。 水中含酚含量达到10-6—2×10-6时,鱼类就会出现中毒症状,超过4×10-6—1.5×10-5时会引起鱼类大量死亡,甚至绝迹。如果使用含酚废水灌溉农田,则会使农作物减产或枯死。含酚废水的毒性还可抑制水体中其它生物的自然生长速度,破坏生态平衡。毫无疑问,含酚废水排入水体或用于灌溉均需经过治理处理,使之符合达到国家要求的排放标准(见附表)。 附表:中华人民共和国水体中含酚浓度及含酚废水排放最高允许标准(单位:mg/人) 海水地面水渔业水农田灌溉水生活饮用水工业含酚水0.005(一类) 0.001(一级) 0.010(二类) 0.005(二级)0.005 1.0~3.0 0.002 0.500 0.050(三类)0.010(三级) 二、含酚废水处理方法 由于含酚废水的组成、酸碱性以及浓度的不同,处理方法也不一样,目前工业上处理含酚废水的方法一般分为物化法、化学法、生化法等三大类。主要介绍最常见的方法。

高效苯酚降解菌的分离及降解性能的研究

高效苯酚降解菌的分离及降解性能的研究 引言 石油、化工、煤气、焦化及酚类等生产厂排放的废水当中含有大量的苯酚[1]。未经净化的含酚废水可导致水源被污染,致使鱼类死亡,危害农作物,最终威胁人类的健康。许多国家将苯酚列为重要的污染物之一。目前,国内外处理含酚废水的方法主要有物理法、化学法、微生物法及各种结合法[2]。其中微生物法主要利用微生物的代谢活动去除废水中的有毒物,处理方法无2次污染且安全、经济。目前,已鉴定具有降解苯酚能力的微生物主要有假单胞菌(Pseudonomonas.sp)[3]、芽孢杆菌(Bacillus.sp)[4]、酵母菌(Yeast trichosporon)[5]、根瘤菌(Rhizobia)[6]、醋酸钙不动杆菌(A. calcoaceticus)[7]等,降酚菌株多存在于酚类污染物企业排放的废水、污泥和被废水污染的土壤中[8]。本课题拟从被苯酚废水污染的污泥中进行菌株筛选,得到耐酚菌后在以苯酚为唯一碳源的无机盐培养上筛选降酚菌株,进一步测定苯酚降解的影响因素。对特定菌株降解含酚废水的应用价值进行研究。 1 实验材料和方法 1.1 菌株来源 采集原黑龙江省佳木斯东郊黑龙农药化工集团废弃排污口

处污泥进行菌株筛选。 1.2 培养基 基础培养基:NaCl 5.0g/L,蛋白胨10g/L,琼脂15~20g/L,酵母浸膏5.0g/L,调节pH为7.0。 以苯酚为唯一碳源的无机盐培养基:CaCl2 0.1 g/L ,FeSO4.7H2O 0.01 g/L,K2HPO4 0.5g/L,MnSO4.7H2O 0.05 g/L,NaCl 0.2 g/L,KH2PO4 0.5g/L,MgSO4.H2O 0.01 g/L,NH4NO3 1.0 g/L苯酚按实验需要量添加,调节pH为7.0 [8]。 富集培养基:葡萄糖10.0g/L,营养琼脂33.0g/L,酵母浸粉10.0g/L,调节pH为7.5。 1.3 研究内容与方法 1.3.1 菌株和的驯化和分离 在超净工作台中,将10mL含0.1g/L苯酚的基础培养基倒入培养皿,取10 g污泥加90mL蒸馏水搅拌15min,静置5min后取上层清液为菌原液[8]。取1mL菌原液加入无菌水中分别制成100、10- 1、10- 2、10- 3、10-4等梯度的菌液,然后分别从各菌液试管中取1mL用涂布法接种于基础培养基平板上。在pH 值为7、25℃情况下培养24~48h。挑取单一菌落于富集培养基平板上划线、扩繁。编号,将平板置于25℃的恒温培养箱中培养24~48h后放于4℃冰箱保存。依据革兰氏染色进行微生物鉴定。 1.3.2 降酚菌的筛选

苯酚降解菌的分离和鉴定

目录 目录 (1) 摘要 (2) Abstract (3) 第一章绪论 (4) 1.1 苯酚降解菌的定义及分类 (4) 1.2苯酚降解菌的性质及其用途 (4) 1.3苯酚降解的研究现状 (5) 1.4苯酚降解菌生产菌的筛选 (6) 1.5本课题的研究思路及意义 (6) 第二章材料与方法 (7) 2.1试验材料 (7) 2.2试验方法 (8) 2.2.2苯酚降解菌的驯化 (8) 2.2.3菌种在不同条件下的降解能力 (9) 2.2.4最优菌种的鉴定 (9) 3.1苯酚降解菌筛选结果及性状初步研究 (11) 3.11筛选结果 (11) 3.1.1.1初步筛选的结果 (11) 3.1.1.2 菌种驯化中的结果 (11) 3.1.2 H-1菌株的性状初步结果 (13) 3.2 H-1菌株分类鉴定结果 (13) 第四章结论 (14) 4.1菌种的筛选结果 (14) 4.2菌种的鉴定 (14) 参考文献 (15) 致谢.......................................................................................... 错误!未定义书签。

一株苯酚降解菌的分离和鉴定 摘要 为了寻找能高效降解苯酚的微生物, 从土壤中筛选得到了一株苯酚降解菌,通过逐渐增加苯酚的浓度,然后驯化出一株高效降解苯酚的细菌H-1. 当在30 ℃培养48h 时其降解率高达92.11%. 经理化特征测定及外观鉴定,将其初步鉴定为假单胞菌属.再经过对比实验测各种因素(碳源、温度、pH、通气) 对该菌生长及降解苯酚能力的影响,得知该菌能以苯酚作为唯一碳源,最适生长温度为32 ℃,最适pH 为7.0. 该菌为好氧菌,在空气充足的条件下可提高降解能力. 该菌菌落较小,菌落呈微黄色。菌体呈直或微弯的杆装,没有菌柄也没有鞘。不产芽孢。对该菌做生化鉴定,可知该菌革兰氏染色为阴性,可水解苯酚,生长温度为32℃,生长pH为pH 6.5~7.5。参照东秀珠,蔡妙英的《常见细菌系统鉴定手册》等文献方法,以形态和培养特征为主,生理生化特性及生态特性为辅,经初步鉴定为假单胞菌属,命名为H-1,具体确定到种则需要进一步的研究。 【关键词】:筛选苯酚降解鉴定

苯酚类废水处理方法

苯酚类废水处理方法 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

一、物理法 1、萃取法 由于酚类化合物是有机物,在水相与有机相的溶解度有较大差异,因此可以利用与水不互溶的有机萃取剂与含酚类污染物的废水混合,从而使酚类物质从水相转移至有机相中,以此实现酚类物质从水相中的脱除[8]。目前萃取法的发展除了选取混合强度更高的反应器之外[9],选择、优化萃取剂也是一个重要方向,其中使用超临界流体进行反应萃取分离是目前萃取法研究的重要方向[1()]。由于萃取剂一般都相对昂贵,因此萃取剂一般都需要回收利用。但由于萃取过程中存在一些副反应、操作过程中也有一定的损失、溶剂会一定程度地溶解于水中,因此萃取法一般只用来处理回收较高浓度的苯酚废水,从而限制了其广泛应用。 2、蒸汽法 蒸汽法用来脱除挥发酚也一种使用时间比较长的方法,主要是利用挥发酚能够与水蒸汽组成一种共沸物的物理特点,当两种物质的总蒸汽压大于外部的压力时,废液就会沸腾,同时挥发酚便会转变为气体。在传统的蒸汽脱酚塔中,含酚废液喷淋塔顶端向下喷淋,而水蒸气则从下往上流动,两者进行逆流接触,从而使废液中的挥发酚转入气相中,达到脱除挥发酚的目标。 蒸汽法的优点是不使用昂贵的萃取剂、操作比较简便、处理量大、无后续污染,适合处理含挥发酚含量较高的酚类废水[li】,但其也存在蒸汽消耗大、设备体积大、废水处理不彻底的缺点。 3、吸附法 比表面积大、具有多孔结构等特征的物质常常能吸附水体中的污染物。科研人员使用具有以上特征的吸附剂处理酚类废水,在达到一定吸附量之后,再利用其他手段进行脱

苯酚类废水处理方法

苯酚类废水处理方法(总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

一、物理法 1、萃取法 由于酚类化合物是有机物,在水相与有机相的溶解度有较大差异,因此可以利用与水不互溶的有机萃取剂与含酚类污染物的废水混合,从而使酚类物质从水相转移至有机相中,以此实现酚类物质从水相中的脱除[8]。目前萃取法的发展除了选取混合强度更高的反应器之外[9],选择、优化萃取剂也是一个重要方向,其中使用超临界流体进行反应萃取分离是目前萃取法研究的重要方向 [1()]。由于萃取剂一般都相对昂贵,因此萃取剂一般都需要回收利用。但由于萃取过程中存在一些副反应、操作过程中也有一定的损失、溶剂会一定程度地溶解于水中,因此萃取法一般只用来处理回收较高浓度的苯酚废水,从而限制了其广泛应用。 2、蒸汽法 蒸汽法用来脱除挥发酚也一种使用时间比较长的方法,主要是利用挥发酚能够与水蒸汽组成一种共沸物的物理特点,当两种物质的总蒸汽压大于外部的压力时,废液就会沸腾,同时挥发酚便会转变为气体。在传统的蒸汽脱酚塔中,含酚废液喷淋塔顶端向下喷淋,而水蒸气则从下往上流动,两者进行逆流接触,从而使废液中的挥发酚转入气相中,达到脱除挥发酚的目标。 蒸汽法的优点是不使用昂贵的萃取剂、操作比较简便、处理量大、无后续污染,适合处理含挥发酚含量较高的酚类废水[li】,但其也存在蒸汽消耗大、设备体积大、废水处理不彻底的缺点。 3、吸附法 比表面积大、具有多孔结构等特征的物质常常能吸附水体中的污染物。科研人员使用具有以上特征的吸附剂处理酚类废水,在达到一定吸附量之后,再利用其他手段进行脱附,如通过加热脱附、溶剂脱附、蒸汽脱附等等。目前使用最为广泛的吸附剂是活性炭吸附剂,其具有吸附总量大的特点,对高含酚量和低含酚量的酚类废水都有很好的吸附效果,但活性炭吸附法也存在着脱附能耗高、脱附产物难以利用等缺点[12]。也有科研工作者探索使用其他更为廉价吸附剂进行吸附,如焦木素等[13]。焦木素吸附污染物的能力与活性炭接近,生产原料来源广泛、成本低,可以实现废物再利用,是一种有前途的替代吸附剂。 二、生物法 1、活性污泥法 生物法中最为常用的处理方法为活性污泥法,活性污泥法是通过在水中生存、利用氧气进行有氧化呼吸的细菌和其他水生生物对污水中的污染物进行栏截及分解,从而将有毒性的污染物转化为对环境无害的物质。活性污泥法处理污水的过程既包括物理过程、化学过程也包括生物化学过程,一方面活性污泥具有较强的吸附和容纳污染物的能力,通过吸附作用将水体中的酚类等有害物质进行拦截,使其从水体中分离;另一方面,好氧细菌在氧气充足的情况下进行有氧呼吸,通过一系列生物化学过程对有机污染物进行利用,分解转化为对环境无害的物质。

苯酚类废水处理方法

一、物理法 1、萃取法 由于酚类化合物是有机物,在水相与有机相的溶解度有较大差异,因此可 以利用与水不互溶的有机萃取剂与含酚类污染物的废水混合,从而使酚类物质从水相转移至有机相中,以此实现酚类物质从水相中的脱除[8]。目前萃取法的发展除了选取混合强度更高的反应器之外[9],选择、优化萃取剂也是一个重要方向,其中使用超临界流体进行反应萃取分离是目前萃取法研究的重要方向[1()]。由于萃取剂一般都相对昂贵,因此萃取剂一般都需要回收利用。但由于萃取过程中存在一些副反应、操作过程中也有一定的损失、溶剂会一定程度地溶解于水中,因此萃取法一般只用来处理回收较高浓度的苯酚废水,从而限制了其广泛应用。 2、蒸汽法 蒸汽法用来脱除挥发酚也一种使用时间比较长的方法,主要是利用挥发酚能够与水蒸汽组成一种共沸物的物理特点,当两种物质的总蒸汽压大于外部的压力时,废液就会沸腾,同时挥发酚便会转变为气体。在传统的蒸汽脱酚塔中,含酚废液喷淋塔顶端向下喷淋,而水蒸气则从下往上流动,两者进行逆流接触,从而使废液中的挥发酚转入气相中,达到脱除挥发酚的目标。蒸汽法的优点是不使用昂贵的萃取剂、操作比较简便、处理量大、无后续污染,适合处理含挥发酚含量较高的酚类废水[li】,但其也存在蒸汽消耗大、设备体积大、废水处理不彻底的缺点。 3、吸附法

比表面积大、具有多孔结构等特征的物质常常能吸附水体中的污染物。科研. 人员使用具有以上特征的吸附剂处理酚类废水,在达到一定吸附量之后, 再利用其他手段进行脱附,如通过加热脱附、溶剂脱附、蒸汽脱附等等。目前使用最为广泛的吸附剂是活性炭吸附剂,其具有吸附总量大的特点, 对高含酚量和低含酚量的酚类废水都有很好的吸附效果,但活性炭吸附法也存在着脱附能耗高、脱附产物难以利用等缺点[12]。也有科研工作者探索使用其他更为廉价吸附剂进行吸附,如焦木素等[13]。焦木素吸附污染物的能力与活性炭接近,生产原料来源广泛、成本低,可以实现废物再利用,是一种有前途的替代吸附剂。 二、生物法 1、活性污泥法 生物法中最为常用的处理方法为活性污泥法,活性污泥法是通过在水中生存、利用氧气进行有氧化呼吸的细菌和其他水生生物对污水中的污染物进行栏截及分解,从而将有毒性的污染物转化为对环境无害的物质。活性污泥法处理污水的过程既包括物理过程、化学过程也包括生物化学过程,一方面活性污泥具有较强的吸附和容纳污染物的能力,通过吸附作用将水体中的酚类等有害物质进行拦截,使其从水体中分离;另一方面,好氧细菌在氧气充足的情况下进行有氧呼吸,通过一系列生物化学过程对有机污染物进行利用,分解转化为对环境无害的物质。 酚类可以被很多水处理微生物所利用,是其生长时的碳源,所以活性污泥 法也被广泛用于中低浓度酚类废水的处理[14-17]。由于酚类物质对于微

紫外光降解苯酚废水实验-07

实验名称 紫外光降解苯酚废水实验 一、实验目地 了解光催化氧化降解有机废水地机理; 了解紫外光催化装置,熟悉光催化处理废水地工艺流程; 了解光催化动力学参数测定地意义,并探讨不同实验条件下光催化降解地效果. 二、实验原理 光催化氧化法氧化能力强,要求地反应条件温和,是目前处理含低浓度难降解有机物废水地一种高级氧化法. 光催化氧化法,是以型半导体地能带理论为基础.当能量大于带阵能量(地为)地光照射半导体催化剂时,价带( )上电子被激发,跃过禁带进入导带( ),形成高活性电子(-),并在价带上产生带正电荷地空穴(+),从而引发反应.以为例说明:文档来自于网络搜索 + ν + - 水溶液中地光催化氧化反应,在半导体表面失去地电子主要是水分子,水分子经一系列变化后产生氧化能力极强地羟氧自由基(·),可以氧化各种有机物,并使之矿化为.文档来自于网络搜索是常用地光催化剂 ,主要有锐钛型和金红石型两种晶型.二氧化钛地化学性质和光化学性质十分稳定,无毒价廉,货源充足.是一种半导体氧化物,它有充满电子地价带和缺电子地导带,在光照下价电子上留下地空穴有氧化性,导带上地电子具有还原性,降解物在表面发生氧化还原后,价带又得到电子,光再次照射时,价带上电子又同样发生跃迁,故将使用过地通过过滤收集起来,在阴暗处自然晾干,重复使用,不影响其催化活性.文档来自于网络搜索影响二氧化钛光催化氧化过程地因素有很多,主要有:光催化剂地性质和结构、光催化剂地投加量、废水地值和浓度等.文档来自于网络搜索研究表明,为催化剂地光催化氧化反应速率可用描述: KC kKC r += 1 () k C kK r o 1111+= () 式中:-反应物浓度,; -表观吸附平衡常数,; -表面反应速率常数,. 取不同浓度地废水进行光催化降解实验,由此得到不同地初始反应速率,并绘制出 o r 1~C 1关系图,图中直线地斜率为 kK 1值,截距为k 1 值.就可以得到值和值.文档来自于网络搜索三、实验仪器、设备与药品 型紫外光催化实验装置(武汉科林环保技术有限公司)、分光光度计 模拟有机废水(苯酚废水)、苯酚浓度用表征. 四、实验步骤 将浓度为地有机废水放入水箱至一定体积,废水量必须大于照射反应器地有效容积; 容器废水中定量加入光催化剂(),投加量为3.0g ,并搅拌均匀,使催化剂悬浮在容器中;

降解苯酚微生物的选育

降解苯酚微生物的选育 一、实验目的 1. 学习从含酚工业污水、活性污泥中筛选苯酚降解菌。 2. 学习通过活性污泥驯化分离耐酚菌。 二、实验原理 酚类化合物是化工、造纸、钢铁等工业废水的主要有害成分,含酚污水的排放,污染水源、毒死鱼虾、危害庄稼、严重危害人类健康,是各国研究关注的污染物之一。 含酚废水中分离出的生物降解酚能力强的菌为:假单胞菌、白乳杆菌、假丝酵母和野丝膜菌等。含酚废水生物处理目前主要采用活性污泥法。 三、实验材料 1.菌源含酚工业废水或含酚废水曝气池中的活性污泥。 2.培养基耐酚真菌培养基(固体、液体和斜面),耐酚细菌培养基(固体、液体和斜面) ,碳源对照培养液a,苯酚培养液b。 3.试剂2% 4-氨基安替比林溶液,8%铁氰化钾溶液,氯仿,氨性氯化铵缓冲液,溴酸钾-溴化钾溶液,硫代硫酸钠溶液, 1%淀粉溶液。 4.其他稀释分离所用的无菌水,无菌培养皿,无菌移液管,测定酚所用的移液管,容量瓶,试剂瓶,酸式滴定管等。 四、实验方法 1.采样 自焦化厂、钢铁公司化工厂、造纸厂处理含酚工业污水的曝气池中取活性污泥和含酚污水,装于无菌瓶中,带回实验室,记录采样日期、地点,曝气池的水质分析包括:挥发酚、可溴化物、BOD5五日生化需氧量、COD化学需氧量、焦油、硫化物、氰化物、总氮、氨态氮、磷、pH、水温等。采集的样品应迅速稀释分离。 2.分离纯化 一般微生物在含酚培养基上不能生长。苯酚耐受菌株的筛选,可采用药物抗性菌株一样的梯度平板法。即在培养基中加入一定量的药物,使大量细胞中的少数抗性细胞在平板上的一定剂量药品的部位长成菌落,从而判定该菌耐受酚的能力。

1、梯度平板制备:在无菌培养皿中,先倾倒7~l0mL不含苯酚的无菌细菌或真菌固体培养基,将培养皿一侧置于木条上,使皿中培养基倾斜成斜面,且刚好完全盖住培养皿底部,待培养基凝固后,将培养皿放平,再倒入无菌7~l0mL(刚好完全盖住下层斜面)含70mL/l00mL苯酚的无菌耐酚细菌或耐酚真菌固体培养基,刚好完全盖住下层斜面,放置过夜。由于苯酚的扩散作用,造成上层培养基由厚到薄的药物浓度递减的梯度。 2、涂布法分离:将采集的样品作10倍梯度稀释,按涂布法分离,30℃培养2 天后,平板上生长的菌落也形成密度梯度,苯酚低浓度区形成菌苔,苯酚高浓度区出现稀少菌落,将此菌落在含耐酚细菌或真菌培养基平板上连续划线分离,最后挑取单菌落接种到耐酚斜面培养基上,30℃培养2天。 3、耐酚菌驯化 先将从含酚废水采集的活性污泥放入苯酚无机培养液中(苯酚终浓度25mg/L,MgSO4.7H2O终浓度0.3%, KH2PO4终浓度0.3%),30℃振荡培养6~7天,使苯酚降解菌大量增殖,淘汰对酚不适应的微生物;再添加苯酚无机培养液(苯酚终浓度增加至100mg/L)30℃振荡培养4~6天;再流加苯酚无机培养液(苯酚终浓度增加至200mg/L)30℃振荡培养4~6天,再提高到流加250mg/L苯酚无机培养液,30℃培养4天,从中选出对酚耐受力强的菌株。 4、性能测定。 初筛:制备不同含酚浓度的耐酚平板培养基,苯酚浓度为0.025%、0.045%、0.060%、0.075%,将选出的耐酚力强的菌株在以上平板培养基上划线分离,自高酚浓度平板上长出的菌落,即为酚降解力高的菌株。 复筛:将初筛纯化的菌种分别接入碳源对照培养液a和苯酚培养液b中,30℃振荡培养48h,0、12、24、36、48h取样测A600光密度值,绘制生长曲线,以不含酚的碳源(葡萄糖)培养液为对照。若与对照相比,在250mg/L苯酚浓度培养液中生长速度下降不明显,同时,用4-氨基安替比林法检测发酵初时发酵液和发酵终止时发酵液苯酚浓度,计算降解率,若苯酚降解率达>80%,表明确系分离到有效苯酚降解菌。 五、实验报告 1.记录分离得到的苯酚降解菌情况于表4-1。 2.根据复筛耐酚试验,绘制对照组与试验组生长曲线。 3.记录在平板上和显微镜下观察的苯酚降解菌的菌落特征和镜检特征。

苯酚类废水处理方法

StandardiZation OfSany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

一、物理法 1、萃取法 由于酚类化合物是有机物,在水相与有机相的溶解度有较大差异.因此可以利用与水不互溶的有机萃取剂与含酚类污染物的废水混合,从而使酚类物质从水相转移至有机相中? 以此实现酚类物质从水相中的脱除[8]。目前萃取法的发展除了选取混合强度更高的反应器之外[9],选择、优化萃取剂也是一个重要方向,其中使用超临界流体进行反应萃取分离是目前萃取法研究的重要方向[1()]。由于萃取剂一般都相对昂贵,因此萃取剂一般都需要回收利用。但由于萃取过程中存在一些副反应、操作过程中也有一定的损失、溶剂会一定程度地溶解于水中?因此萃取法一般只用来处理回收较高浓度的苯酚废水,从而限制了其广泛应用。 2、蒸汽法 蒸汽法用来脱除挥发酚也一种使用时间比较长的方法,主要是利用挥发酚能够与水蒸汽组成一种共沸物的物理特点,当两种物质的总蒸汽压大于外部的压力时,废液就会沸腾,同时挥发酚便会转变为气体。在传统的蒸汽脱酚塔中,含酚废液喷淋塔顶端向下喷淋,而水蒸气则从下往上流动?两者进行逆流接触?从而使废液中的挥发酚转入气相中?达到脱除挥发酚的目标。 蒸汽法的优点是不使用昂贵的萃取剂、操作比较简便、处理量大、无后续污染,适合处理含挥发酚含量较高的酚类废水[li】,但其也存在蒸汽消耗大、设备体积大、废水处理不彻底的缺点。 3、吸附法 比表面积大、具有多孔结构等特征的物质常常能吸附水体中的污染物。科研人员使用具有以上特征的吸附剂处理酚类废水,在达到一定吸附量之后?再利用其他手段进行脱附,如通

苯酚降解菌

苯酚降解菌2,3-邻苯二酚双加氧酶基因克隆和序列分析 一.摘要: 环境中的酚污染主要指酚类化合物对水体的污染,通常含酚废水中又以苯酚和甲酚的含量最高。目前环境监测常以苯酚和甲酚等挥发性酚作为污染指标。苯酚广泛存在于石油、化工、煤气、焦化、钢铁及酚类生产厂排放的废水中。含酚废水的排放导致水源污染,毒死鱼虾,危害农作物,并严重威胁人类的健康,在我国水污染控制中已被列为重点解决的有害废水之一。含酚有机物的毒性还在于其只能被少数微生物所分解。在油田地层水中分离出苯酚降解菌BF80,并且从BF80中克隆出编码2,3-邻苯二酚双加氧酶(参与苯酚降解所必须的一种酶)的基因序列;采用基因克隆的策略是通过PCR进行片段克隆,并用UNIQ-10柱形DNA 回收试剂盒回收产物,采用NCBI BLAST序列分析表明该基因片段长1207bp,序列比较分析表明该基因片段与2-苯酚羟化酶A相似度达88%,氨基酸序列分析表明其与2,3-邻苯二酚双加氧酶相似度达96%。本实验研究编码降解苯酚的2,3-邻苯二酚双加氧酶的基因克隆及序列分析,为构建高效降解苯酚的基因工程菌奠定了基础。 Phenol degrading bacteria 2 - phenol hydroxylase gene sequence analysis Abstract: Phenol pollution in the environment mainly refers to phenolic compounds on water pollution, waste water containing phenol is usually turned around the highest levels of phenol and cresol. Often present environmental monitoring such as phenol and cresol Phenol as pollution indicators. Phenol widespread in the petroleum, chemical, gas, coke, steel and phenolic wastewater plant emissions. Phenolic wastewater emissions of water pollution, poisoned fish, damage crops, and a serious threat to human health, water pollution control in China has been a key to solve one of the harmful waste. The toxicity of phenol organics still only a small number of micro-organisms, their decomposition. In oilfield water of phenol degrading bacteria isolated from BF80, and BF80 was cloned from the 2,3 - catechol dioxygenase (involved in phenol degradation of an enzyme necessary) of the gene sequence; using gene cloning strategy were cloned by PCR, with UNIQ-10 column DNA extraction kit recycling products, using NCBI BLAST sequence analysis showed that the gene fragment was 1207bp, Sequence analysis showed that the gene fragment and 2 - A similarity to phenol hydroxylase 88% amino acid sequence analysis showed that with 2,3 - catechol dioxygenase similarity of 96%. This study coded degradation of phenol 2,3 Catechol Dioxygenase Gene Cloning and sequence analysis, in order to build efficient genetic engineering of bacteria degrading phenol basis 关键词:苯酚苯酚降解菌基因克隆基因序列分析

苯酚废水技术研究

苯酚废水技术研究 1引言(Introduction) 随着我国化工行业的快速发展,天然气化工、石油化工和煤化工规模日益扩大,化工污水量大幅增加,因此如何对大量的化工污水进行处理已经成为我国亟需解决的环境问题.苯酚由于其毒性高、有很强的难闻气味,并且是化工过程中高分子量的芳香类化合物氧化的中间产物,因此常被用作高级废水处理的模型化合物.近些年,先进氧化技术(AOPs)由于对含有难降解有机物废水的高效处理而受到了人们的关注.在AOPs中,湿式氧化技术(WAO)已经被广泛用于含酚废水的处理.然而,WAO的反应条件苛刻,不但能耗高而且对设备材质要求也高,因此,WAO在实际应用中往往只做预处理技术使用.而利用过渡金属作为催化剂的催化湿式氧化法(CWAO)可以在较低的温度和压力下分解难降解的污染物,由此降低了反应成本和操作费用.其中由于固体催化剂容易从被处理污水中分离,而受到了人们的广泛关注. 目前,用于催化湿式氧化法处理苯酚废水的固体催化剂主要包括:贵金属催化剂,金属氧化物催化剂和混合氧化物催化剂.Ru、Pd、Pt等贵金属催化剂在催化湿式氧化处理苯酚废水过程中表现出了良好的催化活性.研究表明不同贵金属催化湿式氧化苯酚废水的活性顺序为Ru/CeO2>Pd/CeO2>Pt/CeO2.在160℃,20bar氧分压的条件下,Ru/CeO2催化剂上苯酚被完全降解.但贵金属催化剂存在价格昂贵,并且在含卤素、硫、氮化合物的污水中极其容易失活的缺点.因此,金属氧化物和混合氧化物催化剂被广泛用作贵金属催化剂的替代品.在金属氧化物催化剂和混合氧化物催化剂中,铜基催化剂表现出较好的氧化活性而被广泛应用于CWAO过程中研究了不同过渡金属(Cu、Ni、Co、Fe、Mn)氧化物的催化湿式氧化苯酚废水活性,结果表明CuO/γ-Al2O3催化剂表现了最佳的催化性能.在铜基催化剂中,目前以CuO/ZnO/Al2O3催化剂的应用最为普遍,ZnO能够提高铜的分散度和氧化还原能力,Al2O3能够增加表面积防止铜的烧结.与传统的Al2O3载体相比,MCM-41分子筛、CeO2、CeO2-ZrO2复合氧化物等载体表现出了更好的催化性能研究了介孔材料在催化湿式氧化苯酚废水过程中的作用,结果表明由于MCM-41分子筛具有均匀的孔道和较大的比表面积而起到了较好的催化效果.Keav等(2014)研究表明CeO2载体的储放氧能力加速了表面物种的吸附速率,从而改善了催化性能.在CeO2中掺杂Zr4+形成的CeO2-ZrO2复合氧化物固溶体,可进一步改善CeO2的体相特性,从而具有更高的储放氧能力和更好的热稳定性.但CeO2、ZrO2和CeO2-ZrO2载体在苯酚废水氧化过程中所起到的作用还亟需进一步深入研究.因此,本论文着重探索了CeO2、ZrO2和CeO2-ZrO2载体的结构和特性,并将其与催化苯酚氧化反应性能相关联,建立催化剂的构效关系. 2实验部分(Experimental) 2.1催化剂的制备 不同载体铜基催化剂采用共沉淀法制备.按CuO/ZnO/support(CeO2,ZrO2、CeO2-ZrO2)质量比为45:20:35配制0.1mol·L-1含Cu、Zn、Ce、Zr的硝酸盐水溶液(中国医药集团上海化学试剂公司,均为AR)和1.2倍当量0.5mol·L-1的Na2CO3水溶液(天津市科密欧化学试剂开发中心,AR),在60℃强烈搅拌下,将碳酸钠滴入硝酸盐混合溶液中,当pH值达到8时,停止滴入碳酸钠溶液,并继续搅拌2h,搅拌后在室温下静置12h.将沉淀抽滤,用去离子水洗涤,110℃下干燥12h后在400℃下焙烧2h,研磨至120目,压片成型,粉

浅析微生物降解含酚废水

浅析微生物降解含酚废水 摘要:微生物降解法处理含酚废水作为一种简便、高效的处理方法,具有传统方法所无法比拟的优点。文中从降酚菌的来源、苯酚的生物降解途径以及固定化微生物技术在处理含酚废水中的应用等方面介绍了微生物降解法处理含酚废水的过程。预期该领域具有十分广阔的应用前景。 关键词:微生物降解苯酚代谢途径固定化微生物 苯酚及其衍生物是被广泛应用于染料、农药、医药合成等行业生产中的原料或中间体,是工业排放废水中主要的有害污物组成成份,是最常见的水体污染物。水中含酚量>l0mg/L时,鱼类等水生生物不能生存;含酚量>l00mg/L的水若用于灌溉,必将导致农作物的减产和枯死。据国家环保总局统计2003年我国酚类物质排放量约为3000吨。由于苯酚是“三致”(致癌、致畸、致突变)污染物,未经处理直接排放不仅会使受纳水体BOD5值增大,还会毒害水生生物的生存,破坏水生生态系统,因此苯酚被列入国家环保总局1989年通过的“水中优先控制污染物黑名单”中。对于含苯酚废水的处理,传统多采用化学法和物化法,如溶剂萃取法、活性炭吸附,大孔聚苯乙烯树脂吸附脱酚,化学氧化等,但对于高浓度含酚废水的处理,虽然萃取法对酚类物质去除率很高,但有机溶剂会造成对环境的二次污染,吸附法由于活性炭需再生因而增加了处理成本,与萃取法和活性炭吸附法相比,微生物降解法不仅经济、安全,而且处理的污染物阈值低、残留少、无二次污染,其应用前景广阔,为此国内外学者对如何利用微生物处理废水中的酚及其衍生物进行了大量的研究。根据国内外最新研究报道,下面就降酚菌的来源、微生物降解苯酚的代谢途径以及固定化微生物技术在处理含酚废水中的应用等方面作一介绍。 一.降酚菌的来源 1.降酚菌的筛选、驯化与保存 近几十年的研究表明,许多微生物经长时间的驯化后具有降解苯酚的能力。如某些细菌、藻类、酵母菌、真菌等。从自然界中筛选具有降酚能力的菌株大多采用富集培养技术,其大致方法是:首先将收集到的标本如活性污泥予富集培养

水中苯酚处理1

苯酚是造纸、炼焦、炼油、塑料、农药、医药合成等行业生产的原料和中间体。含酚废水对人类的危害非常严重,因此,研究水中苯酚的去除非常必要。为进一步提高对苯酚废水的处理效率,近年来,国内外学者苯酚废水的处理做了大量的研究工作,并开发出多种处理方法。本文详细介绍一种含苯酚废水处理方法——二氧化氯对苯酚废水的处理。 二氧化氯的氧化能力强,是广谱性杀菌消毒剂和优良的漂白剂,可用于工业废水处理[1]。笔者就二氧化氯对苯酚的氧化性能进行初步探讨,利用稳定的二氧化氯水溶液对苯酚废水进行处理,并确定适宜的处理条件。 1 材料与方法 1.1 仪器和试剂 仪器:722型可见分光光度计、恒温水浴锅。试剂:重铬酸钾标准溶液(0.100 0 mol/L)、Na2S2Os溶液(0.101 4mol/L)、20%碘化钾溶液、(1+5)硫酸、二氧化氯储备液(48o.6 mg /L)、苯酚标准储备液(1.002 9 mg/L)、4一氨基安替比林溶液、缓冲溶液、铁氰化钾溶液、 so4(纯)、蒸馏水。 1.2 试验方法配置 苯酚溶液100 mL,反应温度为(25±0.5)℃,加入二氧化氯,在反应不同时间后取样进行分析。苯酚浓度采用4一氨基安替比林直接光度法测定[2];二氧化氯浓度的测定采用连续碘量法[3]。 2 结果与讨论 2.1 反应时间和初始浓度对苯酚去除率的影响 配置不同苯酚初始浓度的水溶液,反应温度为(25±0.5)℃,加入二氧化氯(10 mg/L),在反应不同时间后取样进行分析,结果如图1所示。 在苯酚初始浓度为4,6 mg/L时,在开始2—3 min,苯酚浓度下降很快,苯酚去除率达到82%左右,而苯酚浓度达到8mg/L时,则在反应6 min时才达到相同驱除率,水溶液中苯酚浓度高时,反应生成中间产物,并且消耗掉一定量的二氧化氯,影响了苯酚的去除。初始浓度为8 mg/L的苯酚溶液,在反应20 min后,去除率达到93%,这说明二氧化氯用量是决定苯酚去除率的主要因素,也说明对苯酚的去除是十分有效的。 在相同条件下,初始浓度低的溶液苯酚降解速率更快。苯酚浓度随降解时间的变化可用表观一级反应动力学关系式来表示:In(Co/C)=kt;式中,k为表观一级反应动力学速率常数;t 为反应时间。拟合结果表明,苯酚初始浓度8,6、4mg/L时,对应的表观一级反应动力学速率常数k分别为0.606 5,0.887 3、0.976 6;R 分别为0.993 4、0.935 6、0.896 8。2.2 处理温度对苯酚去除率的影响 废水处理温度的高低,直接影响着处理装置的复杂程度和处理费用。若要求处理温度较高时,处理低温废水就需要加热设施,这不仅使处理装置复杂和处理操作麻烦,而且也增加了设备投资和运行费用。处理时间为20 min,考察处理温度对去除率的影响,结果见图2。随处理温度的升高,苯酚去除率提高,但影响不大,在l0℃时,处理20min,苯酚的去除率达87%以上。这表明利用二氧化氯处理含酚废水不要求高的处理温度,不必增添加热设施,低温下也有较好的处理效果。 利用二氧化氯水溶液进行苯酚废水处理,不仅方便、安全,操作也十分简单,直接将其按一定量加入废水中,搅拌均匀,维持一定的处理时间,即可达到良好的处理效果,不存在二次污染。处理1 nag苯酚废水:二氧化氯加入量为2.5~ 3.0mg、废水pH值<8、废水处理时

相关主题
相关文档 最新文档