当前位置:文档之家› 实验一晶体二极管特性分析

实验一晶体二极管特性分析

实验一晶体二极管特性分析
实验一晶体二极管特性分析

实验一实验报告

实验名称:晶体二极管特性分析

实验目的:

1.熟悉仿真软件MULTISIM的使用,掌控基于软件的电路设计和仿真分析方法;

2.熟悉PocketLab硬件实验平台,掌握基本功能的使用方法;

3.通过软件仿真和硬件实验验证,掌握基本二极管的基本特性。

实验内容:

一.仿真实验

1.根据如图所示电路,在Multisim中进行仿真分析,得到二极管的伏安特性。

仿真任务:二极管选取型号 1N3064,对直流电压源V1进行DC扫描,扫描范围0~1V,步长0.01V,测量二极管中的电流,得到二极管的伏安特性曲线。

仿真设置:Simulate->Analyses->DC Sweep,设置电压扫描范围和输出变量。

实验结果:

在软件中绘得电路图如下:

对直流电压源V1进行DC扫描,得到二极管的伏安特性曲线如下:

实验结论:

1)在V1电压很小的情况下,二极管不导通。

2)该二极管的导通电压大约为0.7V.

3)导通后二极管呈现低阻性,截止时为高阻性。

2.根据如图所示的半波整流电路,在Multisim 中进行仿真分析,得到输出电压随不

同参数的变化情况。

仿真任务及分析方法:

a.固定输入信号频率50HZ,振幅5V,直流电压0V,负载电容C1=10uf,改变负载电阻,

采用Agilent 示波器观察输入输出波形,测量输出电压的平均值和纹波电压,完成表1-1。

b.固定输入信号频率50HZ,振幅5V,直流电压0V,负载电阻R1=10K欧,改变负载电阻,

采用Agilent 示波器观察输入输出波形,测量输出电压的平均值和纹波电压,完成表1-2。

c.根据仿真实验数据,给出输出电压的平均值和纹波电压与负载电阻和负载电容的相

互关系。

仿真设置方法:

1)双击信号源设置输入信号,双击示波器观测波形。

2)Simulate->run

3)Simulate->Analyses->Transient Analysis

实验结果:

在软件中绘得电路图如下:

分别根据要求改变电阻和电容值,调节示波器得到两通道即输出电压和纹波电压的波形,如下图所示:(10K 10uf)

将测得的结果填入表中:

表1-1

表1-2

结论:

1)输出电压随负载电阻的增大而增大。

2)输出电压随负载电容的增大而增大。

3)负载电阻越大,输出纹波电压峰峰值越小,整流效果越好。

4)负载电容越大,输出纹波电压峰峰值越小,整流效果越好。

3.根据如图所示的二极管交流特性实验电路,在Multisim 中进行仿真分析,得到二

极管电路在不同输入信号幅度情况下对的失真情况,认识二极管的非线性特性。

仿真任务:输入信号信号源频率为10KHZ,直流电压2V,负载电阻1K欧,限流电阻100欧,改变输入信号幅度,观察和测量在不同输入信号幅度的情况下输出信号失真情况。用示波器观察输入输出瞬态波形,采用频谱分析仪测量基波和谐波幅度,完成表1-3,根据测试结果给出二极管电路输出信号失真度与输入信号幅度的定性关系。

实验结果:

在软件中绘得电路图如下:

用示波器和波特仪观察到的结果如下:

0.05V 0.1V

0.2V

结论:

1)输入信号越大,二极管电路的输出信号失真度越大。

思考:若改变二极管的直流工作电压,输出信号的失真情况会有什么变化?

若增大二极管的直流工作电压,输出信号的失真度会变大。反之减小。

二.硬件实验

1.根据下图在面包板上设计电路,直流电压源采用信号源代替,交流幅度设置为0,改变信号源的直流电压获得不同的直流电压输入,测量二极管两端电压,计算二极管中电流,完成表格1-4,并通过描点的方式绘制实际的二极管伏安特性曲线。

实验结果:

表格1-4

V/(V)

二极管福安特性曲线图

2.有一信号源,频率1000HZ,直流电压3V,信号振幅1V,在仿真实验2电路的基础上通过增加稳压管XXX(1/2W,2V)对信号进行整流和稳压,获得稳定的直流电压。

具体要求如下:

a.负载电阻R1=60K欧

b.输出电压纹波<200mV

c.负载短路峰值电流<10mA

根据以上要求设计稳压电路,给出电路图和期间参数,并在面包板上设计电路,采用Pocketlab实验系统对电路进行激励和测量,获得实际电路的输出电压波形,并采用标尺测量和标注输出电压的最大最小值。

实验结果:

仿真电路图如下:

测得该电路的负载短路电流小于10mA。

观测到纹波示波器波形如下

观测可知其纹波电压小于200mv.

结论:电容越大,整流效果越好;增大纹波电压也会减小纹波电压。

二极管的特性与应用

二极管的特性与应用 几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si 管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称

APD光电二极管特性测试实验

APD光电二极管特性测试实验 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图4的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪

二极管特性

二极管伏安特性曲线的研究 一、实验目的 通过对二极管伏安特性的测试,掌握锗二极管和硅二极管的非线性特点,从而为以后正确设计使用这些器件打下技术基础。 二、伏安特性描述 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。所以在做二极管反向特性时,应串入限流电阻,以防因反向电流过大而损坏二极管。 二极管伏安特性示意图1-1,1-2 图1-1锗二极管伏安特性图1-2硅二极管伏安特性 三、实验设计 图1-3 二极管反向特性测试电路 1、反向特性测试电路 二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。测试电路如图1-3,电阻选择510Ω

2、正向特性测试电路 二极管在正向导道时,呈现的电阻值较小,拟采用电流表外接测试电路。电源电压在0~10V内调节,变阻器开始设置470Ω,调节电源电压,以得到所需电流值。 图1-4 二极管正向特性测试电路 四、数据记录 见表1-1、1-2 表1-1 反向伏安曲线测试数据表 表1-2 正向伏安曲线测试数据表 注意:实验时二极管正向电流不得超过20mA。 五、实验讨论 1、二极管反向电阻和正向电阻差异如此大,其物理原理是什么? 2、在制定表1-2时,考虑到二极管正向特性严重非线性,电阻值变化范围很大,在表1-2中加一项“电阻修正值”栏,与电阻直算值比较,讨论其误差产生过程。

二极管的特性与应用及英文代码含义

二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1. 正向特性。 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2. 反向特性。

光敏二极管的检测方法

1.电阻测量法用黑纸或黑布遮住光敏二极管的光信号接收窗口,然后用万用表R×1k档测量光敏二极管的正、反向电阻值。正常时,正向电阻值在10~20kΩ之间,反向电阻值为∞(无穷大)。若测得正、反向电阻值均很小或均为无穷大,则是该光敏二极管漏电或开路损坏。 再去掉黑纸或黑布,使光敏二极管的光信号接收窗口对准光源,然后观察其正、反向电阻值的变化。正常时,正、反向电阻值均应变小,阻值变化越大,说明该光敏二极管的灵敏度越高。 2.电压测量法将万用表置于1V直流电压档,黑表笔接光敏二极管的负极,红表笔接光敏二极管的正极、将光敏二极管的光信号接收窗口对准光源。正常时应有0.2~0.4V电压(其电压与光照强度成正比)。 3.电流测量法将万用表置于50μA或500μA电流档,红表笔接正极,黑表笔接负极,正常的光敏二极管在白炽灯光下,随着光照强度的增加,其电流从几微安增大至几百微安。 1.光敏二极管的简易判别方法 (1)电阻测量法 用万用表1k档,测正向电阻约10kΩ左右。在无光照情况下,反向电阻应为∞,反向电阻不是∞,说明漏电流大;有光照时,反向电阻应随光照增强而减小,阻值小至几kΩ或1kΩ以下。 (2)电压测量法 用万用表1V档(无1V档可用1.5V或3V档),红表笔接光敏二极管的“十”极,黑表笔接“-”极,在光照情况下,其电压应与光照度成比例,一般可达0.2~0.4V。 (3)短路电流测量法 用万用表50mA或500mA电流档,红表笔接光敏二极管的“十”极,黑表笔接“-”极,在白炽灯下(不能用日光灯),应随光照的增强,其电流随之增加。短路电流,可达数十mA~数百mA。 光敏二极管的主要特性参数 ①最高反向工作电压VRM:是指光敏二极管在无光照的条件下,反向漏电流不大于0.1μA时所能承受的最高反向电压值。 ②暗电流ID:是指光敏二极管在无光照及最高反向工作电压条件下的漏电流。暗电流越小,光

模拟电路实验报告,实验三二极管的伏安特性

电子实验报告 实验名称二极管的伏安特性日期 2014/3/30 一、实验目的 1、了解二极管的相关特性 2、学会在面包板上搭接测量电路。 3、学会正确使用示波器测量二极管的输入输出波形 4、学习使用excel画出二极管的伏安特性曲线 5、学会正确使用函数信号发生器、数字交流毫伏表。 6、学习使用Multisim电子电路仿真软件。 二.实验仪器设备 示波器、函数发生器、面包板、二极管、电阻、万用表,实验箱等。 三、实验内容 1、准备一个测量二极管伏安特性的电路。 2、在面包板上搭接二极管伏安特性的测量电路,给电路加入可调的正向和反向的输入电压,分别测量不同电压下流经二极管的电流,记录数据,用excel 画出二极管的伏安特性曲线。 正向输入测量8组数据,反向测量6组。 3、给二极管的测量电路加入正弦波,用示波器分别测量二极管的输入输出波形,解释输出波形的特征。 4,利用二极管和电阻画出或门和与门,并连接电路,测量检验。 四、实验原理 示波器工作原理是利用显示在示波器上的波形幅度的相对大小来反映加在示波器Y偏转极板上的电压最大值的相对大小, 二极管是最常用的电子元件之一,它最大的特性就是单向导电,也就是电流只可以从二极管的一个方向流过 电路图: 其伏安特性图为:

电路图为: 动态电路: 正向,二极管两端: 电阻两端:

反向:二极管两端 电阻两端

2)与门,或门可以通过二极管和电阻来实现。五、实验数据 上述实验图分别对应的波形图及实验数据如下:正向,二极管两端:

信号类型Vpp:V Vmax:V Vmin:V T:ms 输入信号 5.1 2.43 -2.71 1.9986 输出信号 3.4 0.7 -2.67 1.9997 电阻两端: 信号类型Vpp:V Vmax:V Vmin:V T:ms 输入信号 5.1 2.43 -2.71 2.0013 输出信号 1.85 1.8 -0.05 2.0013 反向:二极管两端

第四章 晶体二极管与晶体三极管复习课程

第四章晶体二极管与晶体三极管 本章概述:晶体管是采用半导体晶体材料(如硅、锗、砷化镓等)制成的,在 电子产品中应用十分广泛。本章从二、三极管的型号、分类、外形识别及检测等多个方面,对常用二、三极管进行了较为详细和系统的讲解。 第一节晶体二极管和晶体三极管的型号命名方法 一、中华人民共和国国家标准(GB249-74) 国标(GB249-74)半导体器件型号命名由五部分组成,见表4-1。 表4-1 国标半导体器件型号命名方法

例如:锗PNP高频小功率管为3AG11C,即 3(三极管)A(PNP型锗材料)G(高频小功率管)11(序号)C(规格号)二、美国电子半导体协会半导体器件型号命名法 表4-2 美国电子半导体协会半导体器件型号命名法 三、日本半导体器件型号命名方法 表4-3 日本半导体器件型号命名方法 第二节半导体器件的外形识别

一、晶体二极管的外形识别 1.晶体二极管的结构与特性 定义:晶体二极管由一个PN结加上引出线和管壳构成。所以,二极管实际就是一个PN结。电路图中文字表示符号为用V表示。 基本结构:PN结加上管壳和引线,就成为了半导体二极管。 图4-1 二极管的结构和电路符号 二极管最主要的特性是单向导电性,其伏安特性曲线如图4-2所示。 1)正向特性 当加在二极管两端的正向电压(P为正、N为负)很小时(锗管小于0.1伏,硅管小于0.5伏),管子不导通,处于“截止”状态,当正向电压超过一定数值后,管子才导通,电压再稍微增大,电流急剧暗加(见曲线I段)。不同材料的二极管,起始电压不同,硅管为0.5-0.7伏左右,锗管为0.1-0.3左右。

光敏电阻伏安特性光敏二极管光照特性

光敏电阻伏安特性、光敏二极管光照特性(FB815型光敏传感器光电特性实验仪 ) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管、光敏三极管、硅光电池与光学纤维的光电传感特性及在某些领域中的应用。 【实验原理】 1(光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。

光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体结内部有自建电场。当光照射在结及其附近时,在能量PNPN 足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场的作用,电子漂移到区,空穴漂移EN到区。结果使区带负电荷,区带正电荷,产生附加电动势,此电动势称为光生电动PPN 势,此现象称为光生伏特效应。 2(光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。 伏安特性: 光敏传感器在一定的入射光照度下,光敏元件的电流与所加电压之间的关系称为IU光敏器件的伏安特性。改变照度则可以得到一族伏安特性曲线。它是传感器应用设计时的重要依据。 光照特性: 光敏传感器的光谱灵敏度与入射光强之间的关系称为光照特性,有时光敏传感器的输出电压或电流与入射光强之间的关系也称为光照特性,它也是光敏传感器应用设计时选择参数的重要依据之一。

光敏电阻伏安特性、光敏二极管光照特性

光敏传感器的光电特性研究 (FB815型光敏传感器光电特性实验仪) 凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。 光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。基于这种效应的光电器件有光电管、光电倍增管等。另一种现象是电子并不逸出材料表面的,则称为是内光电效应。光电导效应、光生伏特效应都是属于内光电效应。好多半导体材料的很多电学特性都因受到光的照射而发生变化。因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。 通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。 【实验原理】 1.光电效应: (1)光电导效应: 当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。它是一种内光电效应。 光电导效应可分为本征型和杂质型两类。前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。杂质型光电导的长波限比本征型光电导的要长的多。 (2)光生伏特效应: 在无光照时,半导体PN结内部有自建电场。当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P 区。结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。 2.光敏传感器的基本特性: 光敏传感器的基本特性则包括:伏安特性、光照特性等。

电路实验四实验报告_二极管伏安特性曲线测量

电路实验四实验报告 实验题目:二极管伏安特性曲线测量 实验内容: 1.先搭接一个调压电路,实现电压1-5V连续可调; 2.在面包板上搭接一个测量二极管伏安特性曲线的电路; 3.测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好; 4.给二极管测试电路的输入端加Vp-p=3V、f=100Hz的正弦波,用示波器观察该电路的输 入输出波形; 5.用excel或matlab画二极管的伏安特性曲线。 实验环境: 数字万用表、学生实验箱(直流稳压电源)、电位器、整流二极管、色环电阻、示波器DS1052E,函数发生器EE1641D、面包板。 实验原理: 对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 为了测量二极管的伏安特性曲线,我们用直流电源和电位器搭接一个调压电路,实现电压1-5V连续可调。调节电位器的阻值,可使二极管两端的电压变化,用万用表测出若干组二极管的电压和电流值,最后绘制出伏安特性曲线。电路图如下所示: 用函数发生器EE1641D给二极管施加Vp-p=3V、f=100Hz的交流电源,再用示波器观察二极管的输入信号波形和输出信号波形。电路图如下:

实验记录及结果分析: 得到二极管的伏安特性曲线如下: 结论:符合二极管的特性,即开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时,电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。 2. 示波器显示二极管的输入输出波形如下图(通道1为输入波形,通道2为输出波形):

光电二极管检测电路的组成及工作原理

光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SPICE模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法 是将一个光电二极管跨接在一个CMOS输入 放大器的输入端和反馈环路的电阻之间。这种 方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压 (零偏置)方式。光电二极管上的入射光使之 产生的电流I SC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻R F。输出电压会随着电阻R F两端的压降而变化。 图中的放大系统将电流转换为电压,即 V OUT = I SC×R F(1) 图1 单电源光电二极管检测电路 式(1)中,V OUT是运算放大器输出端的电压,单位为V;I SC是光电二极管产生的电流,单位为A;R F是放大器电路中的反馈电阻,单位为W 。图1中的C RF是电阻R F的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p R F C RF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件R F。用这个模拟程序,激励信号源为I SC,输出端电压为V OUT。 此例中,R F的缺省值为1MW ,C RF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p R F C RF),即318.3kHz。改变R F 可在信号频响范围内改变极点。

实验五 二极管特性及应用

实验四二极管特性曲线及应用 一、实验目的 1. 了解二极管的单向导电特性。 2. 学习二极管极性及性能是否良好的判断方法。 3. 用仿真软件仿真测试和二极管的伏安特性曲线。 二、实验原理 二极管,是电子元件当中一种具有两个电极的装置,只允许电流由单一方向流过。许多二极管的使用是应用其整流的功能。而变容二极管(Varicap Diode )则用来当作电子式的可调电容器。 大部分二极管所具备的电流方向性我们通常称之为“整流(Rectifying )”功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断(称为逆向偏压)。因此,二极管可以想成电子版的逆止阀。然而实际上二极管并不会表现出如此完美的开与关的方向性,而是较为复杂的非线性电子特征。 晶体二极管为一个由p 型半导体和n 型半导体形成的pn 结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于pn 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN 结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN 结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。当二极管两端的正向电压超过一定数值,内电场很快被削弱,电流迅速增长,二极管正向导通。叫做门坎电压或阈值电压,硅管约为0.5V ,锗管约为0.1V 。硅二极管的正向导通压降约为0.6~0.8V ,锗二极管的正向导通压降约为0.2~0.3V 。 外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。一般硅管的反向电流比锗管小得多, 小功率硅 (a )(b )(c )(d ) 图3.1 常见二极管的符号

光电二极管检测电路的工作原理及设计方案

?光电二极管及其相关的前置放大器是基本物理量和电子量之间的桥梁。许多精密应用领域需要检测光亮度并将之转换为有用的数字信号。光检测电路可用于CT扫描仪、血液分析仪、烟雾检测器、位置传感器、红外高温计和色谱分析仪等系统中。在这些电路中,光电二极管产生一个与照明度成比例的微弱电流。而前置放大器将光电二极管传感器的电流输出信号转换为一个可用的电压信号。看起来好象用一个光电二极管、一个放大器和一个电阻便能轻易地实现简单的电流至电压的转换,但这种应用电路却提出了一个问题的多个侧面。为了进一步扩展应用前景,单电源电路还在电路的运行、稳定性及噪声处理方面显示出新的限制。 本文将分析并通过模拟验证这种典型应用电路的稳定性及噪声性能。首先探讨电路工作原理,然后如果读者有机会的话,可以运行一个SP IC E模拟程序,它会很形象地说明电路原理。以上两步是完成设计过程的开始。第三步也是最重要的一步(本文未作讨论)是制作实验模拟板。 1 光检测电路的基本组成和工作原理 设计一个精密的光检测电路最常用的方法是将一个光电二极管跨接在一个CMOS 输入放大器的输入端和反馈环路的电阻之间。这种方式的单电源电路示于图1中。 在该电路中,光电二极管工作于光致电压(零偏置)方式。光电二极管上的入射光使之产生的电流ISC从负极流至正极,如图中所示。由于CMOS放大器反相输入端的输入阻抗非常高,二极管产生的电流将流过反馈电阻RF。输出电压会随着电阻RF两端的压降而变化。 图中的放大系统将电流转换为电压,即 VOUT = ISC ×RF (1)

图1 单电源光电二极管检测电路 式(1)中,VOUT是运算放大器输出端的电压,单位为V;ISC是光电二极管产生的电流,单位为A;RF是放大器电路中的反馈电阻,单位为W 。图1中的CRF是电阻RF的寄生电容和电路板的分布电容,且具有一个单极点为1/(2p RF CRF)。 用SPICE可在一定频率范围内模拟从光到电压的转换关系。模拟中可选的变量是放大器的反馈元件RF。用这个模拟程序,激励信号源为ISC,输出端电压为VOUT。 此例中,RF的缺省值为1MW ,CRF为0.5pF。理想的光电二极管模型包括一个二极管和理想的电流源。给出这些值后,传输函数中的极点等于1/(2p RFCRF),即318.3kHz。改变RF可在信号频响范围内改变极点。 遗憾的是,如果不考虑稳定性和噪声等问题,这种简单的方案通常是注定要失败的。例如,系统的阶跃响应会产生一个其数量难以接受的振铃输出,更坏的情况是电路可能会产生振荡。如果解决了系统不稳定的问题,输出响应可能仍然会有足够大的“噪声”而得不到可靠的结果。 实现一个稳定的光检测电路从理解电路的变量、分析整个传输函数和设计一个可靠的电路方案开始。设计时首先考虑的是为光电二极管响应选择合适的电阻。第二是分析稳定性。然后应评估系统的稳定性并分析输出噪声,根据每种应用的要求将之调节到适当的水平。 这种电路中有三个设计变量需要考虑分析,它们是:光电二极管、放大器和R//C反馈网络。首先选择光电二极管,虽然它具有良好的光响应特性,但二极管的寄生电容将对电路的噪声增益和稳定性有极大的影响。另外,光电二极管的并联寄生电阻在很宽的温度范围内变化,会在温度极限时导致不稳定和噪声问题。为了保持良好的线性性能及较低的失调误差,运放应该具有一个较小的输入偏置电流(例如CMOS工艺)。此外,输入噪声电压、输入共模电容和差分电容也对系统的稳定性和整体精度产生不利的影响。最后,R//C反馈网络用于建立电路的增益。该网络也会对电路的稳定性和噪声性能产生影响。 2 光检测电路的SPICE模型

光敏二极管特性实验

光敏二极管特性实验 一、实验目的 通过实验掌握光敏二极管的工作原理及相关特性,了解光敏二极管特性曲线及其测试电路的设计。 二、基本原理 1、光敏二极管工作原理(详见红外功率可调光源曲线标定实验)。 2、光敏二极管特性实验原理 光敏二极管在应用中一般加反向偏压,使得其产生的光电流只与光照度有关。图1-9中,当光照为零时,光敏二极管不会产生广生载流子,也没有其他电流流过,整个电路处于截止状态;当有光照时,光敏二极管产生光电流,由于放大器的正负输入端虚短,放大器输出负电压。再二级放大,然后用跟随器输出。并且光照越强,输出电压越大。 R2680 总线模块 光电检测综合试验台的总 线模块 +5V -5V AGND +12V -12V 222426 40 PIN1 光敏二极管 PIN2 电流流向 A V GND VCC Vin ADJ R11K LED C9013R2680 +5V 0~5V GND 实验台 R V A AGND

2_+ 3+5V -5V 74 2_+ 3+5V -5V 74 2_+ 3+5V -5V 74 -5V +5V 2224AGND 40 图1-9 光敏二极管特性测试图 三、实验仪器 1、光电检测与信息处理实验台(一套) 2、红外功率可调光源探头 3、红外接收探头 4、光电信息转换器件参数测试实验板 5、万用表 6、光学支架 7、导线若干 四、实验步骤 1、按图1-9连接实验线路。 (1)把光电信息转换器件参数测试实验板插在光电检测综合试验台的总线模块PLUG64-1、PLUG64-2、PLUG64-3的任意位置上; (2)由光敏二极管探头的两个输出接线端PIN1、PIN2分别引出导线连接到试验台的总线模块的22(负极)和24

实验一晶体二极管特性分析

实验一实验报告 实验名称:晶体二极管特性分析 实验目的: 1.熟悉仿真软件MULTISIM的使用,掌控基于软件的电路设计和仿真分析方法; 2.熟悉PocketLab硬件实验平台,掌握基本功能的使用方法; 3.通过软件仿真和硬件实验验证,掌握基本二极管的基本特性。 实验内容: 一.仿真实验 1.根据如图所示电路,在Multisim中进行仿真分析,得到二极管的伏安特性。 仿真任务:二极管选取型号 1N3064,对直流电压源V1进行DC扫描,扫描范围0~1V,步长0.01V,测量二极管中的电流,得到二极管的伏安特性曲线。 仿真设置:Simulate->Analyses->DC Sweep,设置电压扫描范围和输出变量。 实验结果: 在软件中绘得电路图如下:

对直流电压源V1进行DC扫描,得到二极管的伏安特性曲线如下: 实验结论: 1)在V1电压很小的情况下,二极管不导通。 2)该二极管的导通电压大约为0.7V. 3)导通后二极管呈现低阻性,截止时为高阻性。 2.根据如图所示的半波整流电路,在Multisim 中进行仿真分析,得到输出电压随不 同参数的变化情况。 仿真任务及分析方法: a.固定输入信号频率50HZ,振幅5V,直流电压0V,负载电容C1=10uf,改变负载电阻, 采用Agilent 示波器观察输入输出波形,测量输出电压的平均值和纹波电压,完成表1-1。 b.固定输入信号频率50HZ,振幅5V,直流电压0V,负载电阻R1=10K欧,改变负载电阻, 采用Agilent 示波器观察输入输出波形,测量输出电压的平均值和纹波电压,完成表1-2。 c.根据仿真实验数据,给出输出电压的平均值和纹波电压与负载电阻和负载电容的相 互关系。 仿真设置方法: 1)双击信号源设置输入信号,双击示波器观测波形。 2)Simulate->run 3)Simulate->Analyses->Transient Analysis 实验结果:

光电二三极管特性测试实验报告分解

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

二极管特性及应用实验

姓名班级________学号____ 实验日期__节次教师签字成绩 二极管的特性研究及其应用一.实验目的 1.通过二极管的伏安特性的绘制,加强对二极管单向导通特性的理解; 2.了解二极管在电路中的一些应用; 3,学习自主设计并分析实验 二.实验内容: 1.二极管伏安特性曲线绘制; 2.交流条件下二极管电压波形仿真; 3.二极管应用电路 三.实验仪器 稳压电源RIGOL DS5102CA FLUKE190型测试仪;1N4001二极管若干; 函数信号发生器 TFG2020G ;电阻若干; 四.实验步骤 1.二极管伏安特性曲线绘制; 二极管测试电路

(1)创建电路二极管测试电路; (2)调整V1电源的电压值,记录二极管的电流与电压并填入表1; (3)调整V2电源的电压值,记录二极管的电流与电压并填入表2; (4)根据实验结果,绘制二极管的伏安特性。 表一 V1 200mv 300mv 400mv 500mv 600mv 700mv 800mv 1v 2v 3v ID VD 表二 V1 I D V D 绘制U—I图: 2.交流条件下二极管电压波形仿真;

D1 1N4001GP R1 100Ω V16 Vpk 100 Hz 0° XSC1 A B C D G T 2 1 仿真电路图 仿真结果

3.二极管应用电路 (1)桥式整流电路 D1 1N4001 D2 1N4001 D3 1N4001 D4 1N4001 V115 Vpk 60 Hz 0° R1100Ω 1 3 45 用示波器测量R1两端波形,并记录

桥式整流电路仿真 D1 1N4001 D21N4001 D3 1N4001 D41N4001 V115 Vpk 60 Hz 0° R12kΩ 4 XSC1 A B Ext Trig + + _ _ + _ 3 2 仿真结果

晶体二极管的特性与检测教案

晶体二极管的特性与检测教案 松江区劳技中心丁珏 一、教学目标: 知识与技能 1、知道晶体二极管的特性、符号和种类; 2、学会用万用表判断整流二极管的极性、发光二极管的好坏。 过程与方法 1、自主探究发现整流二极管的特性; 2、学生在熟练运用万用表的基础上,通过自主探究学习,对整流二极管进行极性判断,对发光二极管进行筛选。 3、在掌握有关知识点技能的基础上,通过拓展探究第二种判断极性的方法。情感态度与价值观 通过晶体二极管的检测,感悟团结协作、主动探究的乐趣。 三、教学重点: 通过自主探究,让学生发现整流二极管的单向导电性,确定判断极性的方法。 四、教学难点: 对二极管单向导电性的理解 五、教学用具: 多媒体设备、万用表、整流二极管、发光二极管、电池夹。 六、教学步骤:

文字符号(V) 图形符号 该图中的箭头表示电流的允许 通过的方向。 2、内部结构: 由P型半导体和N型半导体组成,中间是PN结 3、主要分类:教师介绍(1)整流二极管:用于整流电路,将交流电变成直流电;(2)发光二极管:用于指示灯(3)光电二极管:将光信号转变为电信号的一种电子器件。(4)稳压二极管:稳定电压。 4、整流二极管特性与检测:(1)、特性:教师提出具体要求引导学生主动探究 引导:通过观察二次指针情况,能得出什么结论? (2)、极性判断 教师提出具体要求引导学生主 动探究 引导:根据特性和红黑棒上电流的流向,如何判断极性? 初步了解 联系生活中的二极管 进行思考 主动探究寻找并总结 特性:单向导电性: (即电流只能从二极 管的正极流向负极) 交流探究设计判断极 性 结论:当电路导通时, 与黑表棒相连接的是 二极管的正极。 学生活动 表达及意义 知道分类及 日常的应用 引导学生自 主探究的能 力,初立探 究意识 提高学生自 主探究的能 力 达成目标 步骤

实验一、伏安法测二极管的特性(优.选)

1 / 3word. 实验一、伏安法测二极管的特性 一、实验目的 1、学习用伏安法测量二极管的伏安特性的方法 2、理解伏安法电路中电流表内接和外接两种方法 3、了解二极管的伏安特性 二、实验仪器和用具 直流稳压电源、直流电流表、直流电压表、滑线变阻器、可变电阻箱、微安表、开关、待测二极管. 三、实验原理 1.伏安特性曲线 当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻,以电压 V 为横坐标 ,以电流 I 为纵坐标, 作出 _V I 图线, 叫该元件的伏安特性曲线,若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 二极管就是一种非线性元件,二极管伏安特性 曲线上各点的电压和电流的比值并不是一个常量。 显然,此时说这个元件的阻值是多少意义是不明确 的,只有电压和电流均为确定值时,才有确定的意 义。或者说,任何一个阻值都不能表明这个元件的 电阻特性。故一般均用伏安特性曲线来反映非线性 元件的这种特性。 二极管的伏安特性曲线可用图1所示特性 曲线来描绘。 2、二极管伏安特性的测定 用伏安法测量二极管的特性实验操作线路图如图2和图3所示, 2R 是为分压器,1R 既是分压器又是限流器,改变滑线变阻器1R 、2R 的阻值可改变二极管两端的电压,用电压表测出二极管两端的电压,同时用电流表测出流过该二极管的电流,实验中可以测出一系列对应值V 与 I ,以电压 V 为横坐标 ,以电流 I 为纵坐标, 作出 _V I 图线, 叫二极管的伏安特性曲线。 3、电流表的连接和接入误差 图1 二极管伏安特性曲线 K E 3=图2 正向伏安特性接线电路图 mA 表从75mA 开始 K E 30=图3 反向伏安特性接线电路图 μA 表:15μA 或50μA

晶体二极管教学设计

《晶体二极管》教案 授课班级班授课时间年月日教学内容二极管的结构、符号及特性 教学目标1、知识与技能目标: A、辨认实验室的常用二极管, B、会画普通二极管的图形、文字符号,判断二极管的正负极, C、能说出二极管的导电特性并判断简单电路中二极管的导通情况。 2、过程与方法目标: 通过分组实验锻炼学生的电路拼搭能力,锻炼学生的观察,模仿、总结、表达能力。 3、情感、态度与价值观目标: 让学生在大胆假设、小心求证的实验过程中体会到严谨、细致工作的重要性。 课的类型理实一体化的理论课 教学方法教学做一体化教学、情境教学法、分组教学 教学准备1.电子电路拼搭器件准备、学生任务书、二极管分发,课件播放 2.组长课前辅导,主要介绍电子电路拼搭板的技巧指导,课堂任务安排 3.课前5分钟用收音机收听节目。 教学重点学生会画二极管的图形符号、文字符号和学生会用导电特性。教学难点学生应用二极管的导电特性判断简单电路中的二极管是否导通。

教学过程设计 设计流程教学内容设计意图 情境引入(3’)教学形式:视觉、听觉、触觉感受实物展示 能让学生 在视觉、听 觉、触觉上 得到真实 感受,启发 学生思考, 提高学习 兴趣。 1.教师展示收音机实物,收听节目,学生感受电波魅力。 2.教师提问:你知道最简单收音机(矿石机)的制作材料吗?学生 思考。 3.教师简单介绍最简单收音机的材料,学生了解。 4教师指出学习对象——二极管,指出电子技术的发展离不开二极 管,二极管改变世界,学生引发思考“二极管有这么重要吗?”。 “触”二极管结构、符号(8’)教学形式:实物展示、口诀记忆采用实物、 图形等直 观教学手 段能让学 生对二极 管的认识 是具体的, 采用口诀 记忆方式 让学生对 二极管正 负极的判 断是简单 的。 1、看一看:教师实物、图片展示实验室的常见二极管,并分发给每 位学生二极管两个(整流二极管1N4007和检波二极管2AP9)并简单 讲解二极管的结构,学生观察、比较二极管实物、听取教师介绍。 2、画一画:学习二极管的电路符号和文字符号,教师在黑板上、学 生在任务书上绘制二极管符号。 3、记一记:教师提问:怎样判断二极管的正负极,想想有什么好办 法能更好地记一记二极管的正负极。学生自主思考、自由表达。 教师介绍判断常见二极管实物正负极的方法,介绍判断二极管 图形符号正负极的口诀:三角一端极为阳,短杠一端极为阴。学生 默记学习。 “探”二极管的单向导电性(10’)教学形式:提问——教师实验——学生实验——观察——结论 由于学生 对电子电 路拼搭的 不熟悉,教 师展示实 验即可以 给学生参 考、模仿的 机会,提高 教学效率, 又可以跟 学生探索 实验形成 对比,突出1、教师提问:小小的二极管能改变世界凭的是什么?它有什么特 性?让我们一起用实验来试验下!学生动手欲望被点燃。 2、【实验1】——教师展示实验: 电阻调方向后再实验 灯_______(亮或灭)灯_______(亮或灭) 引导学生得出结论:电阻是没有正负极性的元器件,双向均可导电。 VD

相关主题
文本预览
相关文档 最新文档