当前位置:文档之家› 已知函数f(x)是定义在R上的偶函数,且在区间[0,∞)上解读

已知函数f(x)是定义在R上的偶函数,且在区间[0,∞)上解读

已知函数f(x)是定义在R上的偶函数,且在区间[0,∞)上解读

已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数.令a=f(sin 2

7

π

),

b=f(cos 5

7

π

),c=f(tan

5

7

π

),则( )

A.b

解析:sin 2

7

π

=sin(π-

5

7

π

)=sin

5

7

π

.又

2

π

<

5

7

π

<

3

4

π

,可知tan

5

7

π

5

7

π

5

7

π

cos 5

7

π

<0,sin

5

7

π

>0,

∴|cos 5

7

π

|<|sin

5

7

π

|<|tan

5

7

π

|.

∴f(|cos 5

7

π

|)

5

7

π

|)

5

7

π

|),即b

答案:A

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

函数概念及其表示(知识点总结例题分类讲解)

龙文教育教师1对1个性化教案 教导处签字: 日期:年月日

函数及其表示 【要点回顾】 函数的概念 1.函数的概念 定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的任意x ,在集合B 中都有唯一的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为 . 2.函数的定义域与值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域. 函数的三要素:定义域、值域和对应法则 3.区间的概念 4.判断对应是否为函数 5.定义域的求法 6.函数值域的求法 7.复合函数(抽象函数)定义域的求法 函数的表示法 1.函数的三种表示法 图象法、列表法、解析法 2.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射的概念 设B A 、是两个非空的集合,如果按某一个确定的对应关系f ,对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射,通常记为B A f →: ,f 表示对应法则. 【例题讲解】 考点一:函数与映射概念考查

例1 判断下列图象能表示函数图象的是( ) 练习1:函数()y f x =的图象与直线x = a 的交点个数 ( ) A. 只有一个 B.至多有一个 C.至少有一个 D.0个 练习2:下述两个个对应是A 到B 的映射吗? (1)A R =,{|0}B y y =>,:||f x y x →= ; ( 2 ){| 0}A x x =>,{|}B y y R =∈,:f x y →= 练习3:下列是映射的是( ) 图1 图2 图3 图4 图5 (A)图1、2、3 (B)图1、2、5 (C)图1、3、5 (D)图1、2、3、5 函数相等:如果两个函数的定义域相同,并且对应关系完全一致. 例2 指出下列各函数中,哪个与函数y x =是同一个函数: (1)2 x y x =; (2)y = (3)s t =. 练习1:判定下列各组函数是否为同一个函数: (1)()f x x =, ()f x (2)()1f x x =+,21 ()1 x f x x -=- 练习2:试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (A)

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数教材分析解读

《函数》教材分析 1、哪儿发生变化,哪没变?从教材内容,(或添加、删减),内容 没变,但是呈现方式发生改变,体现的理念变化,为什么这么 变?实际上是要学有用的数学,身边的数学,应用数学,学是 为了用,设计思想,体现的理念。做数学,让学生参与。 2、新教材的重点和难点要分析出来,要将知识串起来。 3、变化的内容引起呈现方式的变化,技术所起的作用。技术的使用,引起学习方式的改变,怎么用?明确指出需要用技术的地方,形与数要结合。使用技术到非用不可,举例说明。重点! “函数是描述客观世界变化规律的重要数学模型。高中阶段用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程与方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社

会中的简单问题。” 二、内容安排: 函数这章教材共分个大节:第一大节是函数的概念及函数的一般性质;第二大节是指数与指数函数;第三大节是对数与对数函数;第四大节是函数的应用举例和实习作业。 1、函数是中学数学中最重要的基本概念之一。中学的函数教学大致为三个阶段,初中初步探讨函数的概念、函数关系的表示法、函数图象,并具体学习正比例、反比例、一次函数、二次函数等,使学生获得感性知识;本章及三角函数的学习是函数教学的第二阶段,是对函数概念的再认识阶段,用集合、映射的思想理解函数的一般定义,通过指数函数、对数函数以及后续的三角函数,使学生获得较为系统的函数知识,并初步培养函数的应用意识。第三阶段在选修部分,极限、导数与微分、积分是函数及其应用的深化与提高。 高中的函数知识是在初中的基础上学习的,主要讲函数的概念、函数关系的表示法、并学习函数的一般性质。从映射的概念看,函数是集合A到集合B的映射(A、B是非空数集),映射是特殊的对应,函数是特殊的映射,反函数也是映射。 2、学生在初中的基础上学习有理指数幂及其运算法则是不困难的。指数函数及其图象和性质是这一节的重点,要通过具体实例了解指数函数模型的实际背景,通过具体函数的图象来观察、归纳函数的性质,反之,函数性质又直观反映在图象上,指导准确作出函数图象。

函数的奇偶性知识点

函数的奇偶性 1.偶函数: 如果对于f(x)定义域内的任意一个x,都有f(-x)=f(x), 那么函数f(x)就叫偶函数. 奇函数: 如果对于f(x)定义域内的任意一个x,都有f(-x)=-f(x) ,那么函数f(x)就叫奇函数. 奇函数的图象关于原点对称;偶函数的图象关于y轴对称 判断函数的奇偶性,包括两个必备条件:一是定义域关于原点对称,先考虑定义域是解决问题的前提,如果一个函数的定义域关于坐标原点不对称,那么这个函数就失去了是奇函数或是偶函数的条件;二是判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立. 利用定义判断函数奇偶性的格式步骤:(1)首先确定函数的定义域,并判断其定义域是否关于原点对称;(2)确定f(-x)与f(x)的关系;(3)作出相应结论. 说明:根据奇偶性,函数可划分为四类:①偶函数②奇函数③既奇又偶函数④非奇非偶函数 2.奇函数的性质:○1定义域关于原点对称;○2f(-x)=-f(x)或f(-x)+f(x)=0;○3图象关于原点对称;○4在关于原点对称的区间上具有相同的单调性;○5如果0在f(x)的定义域内,则一定有f(0)=0 偶函数的性质:○1定义域关于原点对称;○2f(-x)=f(x)或f(-x)-f(x)=0;○3图象关于y轴对称;○4在关于原点对称的区间上具有相反的单调性;○5如果一个函数既是奇函数有是偶函数,那么有f(x)=0 3.判断函数的奇偶性为什么要判断定义域在x轴上所示的区间是否关于原点对称呢?答:由定义知,若x是定义域内的一个元素,-x也一定是定义域内的一个元素,所以函数y=f(x)具有奇偶性的一个必不可少的条件是:定义域在x轴上所示的区间关于原点对称.即:如果所给函数的定义域在x轴上所示的区间不是关于原点对称,这个函数一定不具有奇偶性.例如:函数f(x)=x3在R上是奇函数,但在[-2,1]上既不是奇函数也不是偶函数. 4.函数奇偶性的判断:定义域关于原点对称是函数具有奇偶性的前提条件。判断函数的奇偶性,首先要检验其定义域是否关于原点对称,若关于原点对称,再严格按照奇偶性的定义或其等价形式进行推理判断.函数定义域影响奇偶性,若首先求得定义域不关于原点对称,则该函数为非奇非偶函数; 判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1)考查定义域是否关于原点对称; (2)考查表达式f(-x)是否等于f(x)或-f(x): 若f(-x)= - f(x),则f(x)为奇函数; 若f(-x)= f(x),则f(x)为偶函数; 若f(-x)= f(x),且f(-x)=- f(x),则f(x)既是奇函数又是偶函数; 若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,即非奇非偶函数. 5.函数奇偶性定义的理解:(1)函数的奇偶性与单调性的差异.奇偶性是函数在定义域上的对称性,单调性是反映函数在某一区间上函数值的变化趋势.奇偶性是相对于函数的整个定义域来说的,这一点与函数的单调性不同,从这个意义上来讲,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只有对定义域中的每一个x,都有f(-x)=-f(x)[或f(-x)=f(x)],才能说f(x)是奇(偶)函数.(2)定义域关于原点对称是函数具有奇偶性的前提条件.由函数奇偶性的定义知,若x是定义域中的一个数值,则-x必然在定义域中,因此,函数y=f(x)是奇函数或偶函数的一个必不可少的条件是定义域在数轴上所示的区间关于原点对称.换言之,若所给函数的定义域不关于原点对称,则函数一定不具有奇偶性.如函数y=2x在(-∞,+∞)上是奇函数,但在[-2,3] 上则无奇偶性可言.(3)既奇又偶函数的表达式是f(x)=0,x∈A,定义域A是关于原点对称的非空数集.(4)若奇函数在原点处有定义,则有f(0)=0. 6.奇、偶函数的图象特征:(1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形.反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)如果一个函数是偶函数,则这个函数的图象关于y轴成轴对称图形.反之,如果一个函数的图象关于y轴成轴对称图形,

函数定义的理解

函数的定义 函数的传统定义: 设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。 我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。函数的近代定义: 设A,B都是非空的数的集合,f:x→y 是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有C含于B。 符号y=f(x)即是“y是x的函数”的数学表示,应理解为: x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述; y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式。y=f(x)仅仅是函数符号,不是表示“y等于f 与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示。 对函数概念的理解函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的。 函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分。当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了。因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可。只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说: 1)定义域不同,两个函数也就不同; 2)对应法则不同,两个函数也是不同的; 3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则。 例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R。也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数。定义域A,值域C以及从A到C的对应法则f,称为函数的三要素。由于值域可由定义域和对应法则唯一确定。两个函数当且仅当定义域与对应法则分别相同时,才是同一函数。

如何正确理解函数的概念

如何正确理解函数的概念 1.为学生概括和领悟函数概念搭建“脚手架” 函数概念是中学阶段最难理解的概念之一,其原因主要是:由f(x)的形式化表达方式所带来的高度抽象性;变量的概念涉及到用运动、变化的观点看待和思考问题,具有辩证思维特征;有许多下位概念(如自变量、因变量、定义域、值域、单调性、奇偶性……),是派生数学概念的强大“固着点”;具有广泛应用性,建立函数模型不仅需要具备较强的数学能力,而且与学生的人生阅历有关;等.其中最根本的还是其高度抽象性. 众所周知,越是基础性的概念,其包摄性就越强,应用范围就越广,学生从这些概念的学习中所领悟到的数学就越本质,所形成的思维方式、养成的思维习惯对学生的终身发展将具有根本性的影响.所以,对这些概念就越要强调理解的深刻性、基础的稳固性.但事情都有两面性,这些概念的理解和掌握往往难度很大,需要较长的时间,需要较多的经验积累.“是非经过故知难”,亲身经历过的事情感觉才会深刻.这些概念的教学要非常讲究从简单到综合地组织学习内容,要特别耐心地进行循序渐进的渗透和提高,要特别强调让学生经历从具体到抽象的概括过程.中学数学中,扮演这种奠基角色的概念不是很多(如数及其运算、空间观念、数形结合、向量、导数、统计观念、随机思想等),但函数概念是当之无愧的一员.为此,教材特别注意以具体例证为载体化解函数的抽象性,为学生搭建理解的平台,铺设概括的路线和阶梯,以帮助学生感悟到函数概念的“本来面目”.其中特别注重典型实例、表格和图象直观等的作用,并强调在思想方法上给予明确、具体的指导. (1)铺设概括路线.教材在简要回顾初中函数概念的基础上,以三个有真实背景的实例为载体,先从“变量说”出发,并用集合与对应的语言详细讲解第一个实例的对应关系,再引导学生通过模仿叙述后两个实例的对应关系,然后以“你能概括一下这三个实例的共同特征吗?”为引导,使学生用集合与对应语言概括实例的本质而形成“对应说”.接着,在函数的表示、函数的性质等内容中,不断强化对函数这一类特殊“对应关系”的认识,强化对函数所研究的问题和思想方法的理解.教材希望通过这样的概括路线,引领学生逐步领悟函数的本质. (2)实例的作用.在实例的选择中,我们特别在意它们的典型性和丰富性,因为我们相信这些例子在学生理解函数概念中能起到奠基性的“参照物”作用.教材在函数概念的引入、表示、性质和应用等各阶段,都借助实例为学生提供思考、探究、交流的机会,以便使学生在具体例子的支持下开展思维,形成函数概念理解活动的强大背景支撑. (3)表格、图象的作用.表格、函数图象不仅是“表示法”的一种,从学生学习的角度看,它们使抽象的函数符号形象化,为学生提供了直观的机会.例如图象的种种形象和基本性质使得学生直观地“看到”、想象到函数的定义域、值域、单调性等种种性质,看到a的取值是如何决定y=a x的特性的,看到 y=sin(2x+)什么时候取正值或负值等.所以,图象是帮助学生理解函数概念的重要载体.另外,用函数图象分析和解决问题时体现出的数形结合思想,是培养学生数学能力的重要载体. (4)思想方法的明确和具体指导.从知识分类角度看,“内容所反映的数学思想方法”属“隐性知识”,是人类在认识客观世界中的“数量关系”“空间形式”和“随机性中的规律性”的过程中产生的,

函数的奇偶性的经典总结

x x x f 1)(+=1 )(2+= x x x f x x f 1)(=函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-,0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及 ) ()(x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2)(,(2)x x x f -=3)( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3)(x x f =,x x f sin )(=, (3)常见的奇函数有:2)(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时,) ()(x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时,) ()(x g x f 是偶函数。

函数概念的发展

初中数学新课程标准解读 一、函数概念的发展 从古希腊到十七世纪末这样一个漫长的时期内,并不存在一般函数的定义,就是到了牛顿、莱布尼兹的微积分问世时,函数的一般定义仍没诞生,原因在于:数学家们一直同具体的函数打交道,对具体函数求导、积极分、讨论各种各样的问题,并没有感到定义一般函数概念的需要和动机。 "function"这个词来自于莱布尼兹,他首先用"function"表示"幂",后来他又用它表示曲线上的点的横坐标、纵坐标、切线长度、垂线长度等所有与曲线上的点有关的几何量,莱布尼兹的两次定义,正反映出函数的几何的和代数的特性。 1718年,莱布尼兹的学生约翰·贝努利继承了代数的思想,把"function"的含义固定在"解析表达式上",他说:"所谓变量的函数,就是指由这些变量和常量所组成的解析表达式"。而欧拉则继承了几何的思想,认为"function"思想指任意画出的曲线,并把这种函数叫"随意函数"。 这时出现了争论,欧拉认为函数是指任意的曲线,即任意曲线都是函数。而达朗贝尔则认为不是这样,他从解析式出发认为,只有可以用单一解析式表达的曲线才是函数,而且认为能用单一解析式表达的曲线只有连续且光滑的曲线。因而,只有连续曲线才是函数。可以看出,两位数学家争论的焦点在于曲线与解析式之间的

关系,欧拉认为他的定义更广泛,因为任意描画的曲线比任意解析式具有更广的意义,解析表达式可以描为某曲线,而任意曲线不一定有相应的解析式。达朗贝尔则认为只有连续曲线才能用唯一的解析式表达,才是函数,至于任何唯一解析式的所代表的曲线是否连续,他则没有考虑。然而,付里叶的研究使数学界大吃一惊,付里叶的结论是:"由不连续曲线给出的函数,可以用一个三角函数式表示,"并举例指出下图那样的不连续曲线虽然用 这单一的式子表示出来。 付里叶的研究表明:在解析式与曲线之间并没有不可逾越的鸿沟,通过级数可以把它们相互勾通。那种视函数为解析式的观点终于得以澄清。历史的缩影可以在学生的学习中找到,中学生把函数与解析式等同是及其普遍的。 既然函数不再要求用唯一的解析式来表示,所以,无论y是用一个式子还是用多个式子表示都无关紧要,只要对于x的每一个值,y有完全确定的值与之对应,则y就是x的函数,柯西便给出了函数如下定义:对于x每个值,如果y有完全确定的值与之对应,则y叫做x的函数。 由于认识到了解析式对于x与y的关系并无多大意义,所以黎曼和狄里克需更进一步,他们完全抛弃解析式的限制,定义了我们所常说的结论的函数定义:对于x的每个值,如果y有完全确定的值与之对应,不论x、y所建立的对应方式如何,y都叫做x的函数。

函数的定义域、值域、单调性、奇偶性、对称性、零点(心血之作)

函函数数的的定定义义域域、、值值域域、、单单调调性性、、奇奇偶偶性性、、对对称称性性、、 反反函函数数、、伸伸缩缩平平移移变变换换、、零零点点问问题题知知识识点点大大全全 一、函数的定义域 1、求函数定义域的主要依据: (1)分式的分母不为零; (2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零; (4)指数函数和对数函数的底数必须大于零且不等于1; 例.(05江苏卷)函数y = ________________________ 2、求函数定义域的两个难点问题 (1)知道f(x)的定义域(a ,b ),求f(g(x))的定义域:转化为解不等式a

函数的定义域及求法讲解

函数 一、函数的定义域及求法 1、分式的分母≠0;偶次方根的被开方数≥0; 2、对数函数的真数>0;对数函数的底数>0且≠1; 3、正切函数:x ≠kπ+ π/2 ,k∈Z;余切函数:x ≠kπ,k ∈Z ; 4、一次函数、二次函数、指数函数的定义域为R; 5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法; 6、复合函数定义域的求法:推理、取交集及分类讨论. [例题]: 1、求下列函数的定义域

3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论] 当m=0时,则mx2-4mx+m+3=3,→原函数的定义域为R; 当m≠0时,则mx2-4mx+m+3>0, ①m<0时,显然原函数定义域不为R; ②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R, 所以当m∈[0,1) 时,原函数定义域为R.

4、求函数y=log x + 1 (x≥4) 的反函数的定义域. 2 [解析]:[求原函数的值域] 由题意可知,即求原函数的值域, ∵x≥4,∴log2x≥2∴y≥3 所以函数y=log2x + 1 (x≥4) 的反函数的定义域是[3,+∞). 5、函数f(2x)的定义域是[-1,1],求f(log x)的定义域. 2 [解析]:由题意可知2-1≤2x≤21→f(x)定义域为[1/2,2] → 1/2≤log2x≤2→√ ̄2≤x≤4. x)的定义域是[√ ̄2,4]. 所以f(log 2 二、函数的值域及求法 1、一次函数y=kx+b(k≠0)的值域为R; 2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时, y≤-△/4a ; 3、反比例函数的值域:y≠0 ; 4、指数函数的值域为(0,+∞);对数函数的值域为R; 5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R; 6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法. [例题]::求下列函数的值域

偶函数教案

偶函数的概念 一、教学目标 1.知识与技能: 理解偶函数的概念及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断什么样的函数是偶函数 2.过程与方法: 通过偶函数概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想 3.情态与价值: 通过偶函数的学习,培养学生从特殊到一般的概括归纳问题的能力 二.教学重点和难点 教学重点:偶函数的概念及其几何意义 教学难点:判断偶函数的方法与格式 三.学法与教学用具 学法:学生通过自己动手计算,独立地去经历发现,猜想与证明的全过程,从而建立偶函数的概念,理解其性质 教学用具:三角板多媒体课件 四.教学思路 (一)创设情景,揭示课题 “对称”是大自然的一种美,先用投影仪给出几个现实生活中“对称美”的例子。然后由现实生活过渡到数学中来。 这种“对称美”在数学中也有大量的反映,让我们看看下列两个函数 (1)这两个函数有什么共同特征? (2)你能利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2, 由学生通过填表,讨论,引导学生得到以下两个结论 结论:1、这两个函数之间的图象都关于y轴对称 2、这两个函数的解析式都满足:f(-3)=f(3);f(-2)=f(2);f(-1)=f(1).可以发现对 于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说

对于函数定义域内一个x ,都有f(-x)=f(x) 此时,老师指出,这样的函数就是我们这一节课要学习的偶函数 (二)研探新知 通过以上的讨论,引导学生得出偶函数的定义 1、定义 一般地,如果对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数 注意:①如果一个函数是偶函数,那么它所具有的性质是函数的整体性质; ②由偶函数定义可知,如果一个函数是偶函数的一个必要条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称). 2、偶函数的图像的特征 偶函数的图象关于y 轴对称 (三)质疑答辩,排难解惑,发展思维 例1.下列说法是否正确,为什么? (1)若f (-2) = f (2),则函数 f (x )是偶函数. (2)若f (-2) ≠ f (2),则函数 f (x )不是偶函数. 例2.下列函数是否为偶函数,为什么? (1)2 ()[1,2]f x x x =∈- (2)()4f x x = (3)()31f x x =+ 解:(1)函数2(),[1,2]f x x x =∈-不是偶函数,因为它的定义域关于原点不对称 (2)对于函数()4f x x =,其定义域为(,)-∞+∞ 因为对定义域内的每一个x ,都有 ()()44()f x x x f x -=-==, 所以,函数()4f x x =为偶函数 (3)对于函数()31f x x =+,其定义域为(,)-∞+∞ 因为对定义域内的每一个x , ()()3()131f x x x f x -=-+=-+≠ 所以,函数()31f x x =+不是偶函数

函数的概念解读

函数的概念 一、教材分析 函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。 本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。 二、重难点分析 函数的概念既是本节课的重点,也应该是本章的难点。 三、学情分析 1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研 究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。 2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间 对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。 四、目标分析 1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义 域、值域。 2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻 辑思维、建模等方面的能力。 3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越 的创新品质。

函数概念的学习与理解

函数概念的学习与理解 丹阳五中 吴延俊 摘要:函数概念是重要的数学概念,学好函数概念是应用函数知识解决问题的前提.函数的传统定义与近代定义叙述不同,但实质都是从非空数集A 到非空数集B 的一个特殊的对应;函数概念包括定义域、值域及对应法则三个要素,缺一不可;映射从集合论的角度进一步定义函数,学习映射也有利于函数概念的学习. 一、函数定义 (一)基本定义 定义1:设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数,x 叫自变量,与x 值对应的y 值叫函数值. 定义2 :设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 值对应的y 值叫做函数值,函数值的集合{}()|f x x A ∈叫做函数的值域.显然,值域是集合B 的子集. (二)定义分析 定义1是函数的传统定义,定义2是函数的近代定义.两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合的观点出发.函数的实质都是从非空数集A 到非空数集B 的一个特殊的对应. 举例:(1)正比例函数3y x =.(2)反比例函数1y x = 解析:(1)是对于每一个实数x ,都有惟一的实数y 与其对应,y 是x 的3倍;非空数集A 、B 是实数集R ,对应关系f 是乘3. (2)对每个不等于0的实数,都有惟一的实数y 与其对应,y 是x 的倒数; 非空集合A 是不等于0的全体实数组成的集合{}|0x R x ∈≠,非空集合B 可以是实数集R (只要B 包含集合{}|0y y ≠即可),对应关系f 是求倒数. 从以上两个例子中,可以进一步明确函数的两个定义本质上是相同的,只是叙述方式略有不同.符号()y f x =表示的是“y 是x 的函数”的数学表示,理解为:x 是自变量,它是对应关系所施加的对象;f 是对应关系,它可以是一个或几个解析式,可

函数概念中对应法则

函数概念中对应法则 【知识概述】函数知识是形成函数思想、数性结合与等价变换等数学思想方法的基础。函数是高中数学最主要的概念之一,更是高中数学的主要内容,同时又是高考重点考查的对象。要切实掌握函数的有关概念,并会用定义证明函数的性质。而函数概念的掌握关键是对其中的对应法则的理解和把握。 通常教师依据课本内容,先介绍映射,然后用其来定义函数。这从表面上看似乎解决了问题,其实则不然。因为映射中的对应法则即对应关系并未被学生所掌握。或者说学生对书上的图表映射例子能接受,但不深刻,不能把其运用到抽象的函数解析式中来.这一点往往被教师忽略,在以后的学习中将会产生深远的影响。这当中有一个大的思维跨度,能否越过这个槛,将会对学生高中数学学习有着重要影响。 一般有经验的老师都通过以下的方式来理解函数中的对应关系 第一种方式,教师只停留在书本所给的几个直观例子上,或者简单的找些类似例子,特别是集合文示图的例子。虽然有的教师也枚举诸如指数、开算术根、二次函 数等例子(22 36,y x y x y ==+=如①,②③用“定义”来进行文字解说,试着让学生通过几个不同函数中的对应法则的“定义”嵌套,就能“整合”函数对应法则,从而“内消”掌握该知识点。但却因没有进一步对函数对应法则进行分析,易导致学生对该知识点的理解不够到位,或者说是笼统的,还是停留在“定义”字面上。这将会制约学生对后继课程的学习。 第二种方式,函数的对应法则被看作“加工厂”,这种观点是把函数中自变量的取值看作“原材料”,而把函数值看作“产品”。既形象又直观,类比贴切,但还不够全面。因为用这种观点不好做“原材料”是“初级产品”的题。也即是“自变量位置”不是某个单一字母(即不是“自变量”本身)的情形(其系数与指数都不是1时,或者说是某个字母的非正比例中系数是1的表达式时)。在处理迭代时学生会有较大障碍。【例如:①()()21,21f x x f t t =+=+ 是同一函数吗?②()2132,f x x +=-

函数的概念(第一课时)解读

函数的概念(第一课时) ------郑州外国语学校乔慧娜【三维目标】 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识. 2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性. 【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型. 【教学难点】函数概念及符号y=f(x)的理解. 【教学方法】诱思教学法 【教学过程】 Ⅰ.创设情景引入课题 北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系. 在初中已学习过函数的定义. 首先请同学们复习回顾初中学习的函数的定义: 设在某一变化过程中有两个变量x和y,如果对于每一个x值,y都有唯一的值和它对应,那么就说y是x的函数,x叫自变量,y叫因变量. 函数的定义从运动变化的观点描述了变量之间的依赖关系. Ⅱ.探索研究 上一章我们已学习过集合,并且知道集合是现代数学的基本语言,能否用集合和对应的语言来描述函数?函数又有哪些构成要素呢?将是本节课探讨的主要内容. 一、实例分析 (1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2. (﹡) 你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t的变化范围是什么?炮弹距离地面高度h的变化范围是什么? 炮弹距离地面的高度h随时间t的变化而变化,对于在(0,26)范围内变化

函数概念及其表示知识点总结例题分类讲解

龙文教育教师1对1个性化教案 学生姓名教师 姓名 授课 日期 授课 时段 课题 教学 目标 教 学 步 骤 及 教 学 内 容 教导处签字: 日期:年月日

作业布置 学习过程评价学生对于本次课的评价 特别满意□满意□一般□差□教师评定 1、学生上次作业评价 好□较好□一般□差□ 2、学生本次上课情况评价 好□较好□一般□差□ 家长 意见 家长签名: 心灵鸡汤★学习靠自己,进步靠努力。每天比别人多付出一点点,将来比别人收获多许多。 ★好成绩来源于持之以恒的努力,好前程来源于永不懈怠的刻苦。 ★想做好大事情,必先得将小事情做漂亮。想有好成绩的人,就必须上好每一堂课,做好每一次作业。

函数及其表示 【要点回顾】 函数的概念 1.函数的概念 定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的任意x ,在集合B 中都有唯一的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为 . 2.函数的定义域与值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域. 函数的三要素:定义域、值域和对应法则 3.区间的概念 4.判断对应是否为函数 5.定义域的求法 6.函数值域的求法 7.复合函数(抽象函数)定义域的求法 函数的表示法 1.函数的三种表示法 图象法、列表法、解析法 2.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射的概念 设B A 、是两个非空的集合,如果按某一个确定的对应关系f ,对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射,通常记为B A f →: ,f 表示对应法则.

相关主题
文本预览
相关文档 最新文档