当前位置:文档之家› 升降辊床连杆摇臂结构拓扑优化设计

升降辊床连杆摇臂结构拓扑优化设计

升降辊床连杆摇臂结构拓扑优化设计
升降辊床连杆摇臂结构拓扑优化设计

升降辊床连杆摇臂结构拓扑优化设计

升降辊床作为一种新型输送设备,具有高速、稳定、易于维护等优点,在各汽车焊装车间得到了广泛应用。文章对辊床连杆摇臂结构进行动力学分析,在此基础上针对摇臂结构进行结构拓扑优化,改善机构应力应变并提升疲劳寿命。

标签:升降辊床;摇臂结构;有限元;拓扑优化;疲劳寿命

引言

“冲压、焊装、油漆和总装”被称为当代汽车制造的四大工艺[1],在上汽大众仪征工厂焊装车间,焊接工艺种类多达8至10种,用来转运车身的工艺生产线多达12条,拥有德国KUKA自动化机械臂800多台,工艺过程极其复杂,工位数量繁多。基于曲柄连杆摇臂结构的Siemens高速输送升降辊床的大量应用,极大地提高了生产节拍,使生产线实现了柔性生产,产能得到大幅度提高[2]。

1 辊床结构及动力学分析

本文以西门子公司11-0908-1200系列升降辊床为研究对象,主要参数如表1所示。升降辊床主要由底座、升降机構、水平输送辊床和控制系统四大部分组成,实现其升降功能的是一个典型的多连杆机构,并可拆分为两个四杆机构,即前半部分为曲柄连杆摇臂机构[3-4],后半部分为平行四杆机构,因此,在运动学分析计算中可以忽略后半部分的平行四杆机构,仅分析前半部分的曲柄连杆摇臂机构[5](图1)。

为了解曲柄连杆摇臂机构在其运动周期内各构件的受力情况,在Adams软件中创建升降辊床曲柄连杆摇臂动力学仿真模型,施加辊床框架及雪橇、车身的重力负载为13000N,直接作用在前后摇臂上,受力方向始终竖直向下,经求解,后摇臂受到来自连杆的峰值拉力为17588N,在升降辊床从低位向高位运行过程中,摇臂克服负载力并将其向上举升,拉力从峰值开始逐渐降低为0N。

2 辊床有限元仿真分析

对辊床连杆结构进行有限元分析。摇臂的制造原材料为Q235B,建立摇臂模型并导入到ANSYS软件中,网格划分后共得到47478个节点、19295个单元。连杆与后摇臂相连的铰接转动副-单孔摇臂关节轴承处,其转动副处最大受力为17588N,选取此瞬态时刻,对后摇臂进行静力学分析,施加负载、约束后进行计算,得到其应力、应变分析结果情况如图2所示。

通过分析发现,在主轴中部轴颈与曲柄连接处是应力集中最严重的部位,从有限元分析结果可以看出,最大应力为91.36MPa,虽然小于摇臂材料的屈服强度235MPa,但这些应力集中部位极易出现疲劳裂纹,直至机械失效损坏,该分析结果与摇臂在实际生产作业中发生的断裂故障一致。

excel怎么做拓扑图

excel怎么做拓扑图 导语: 许多人知道excel有及其多强大的功能,拓扑图能直接在Excel中绘制。但大多数人却不知道,所以若不是Excel高手,在Excel绘制组织结构图还是十分痛苦的。其实,找一款专业的软件来绘制的话,会方便很多。 免费获取网络拓扑图软件:https://www.doczj.com/doc/4b4151818.html,/network/ excel怎么做拓扑图? 一般看起来高大上的拓扑图都是借助专业软件绘制,比如亿图图示。亿图图示是一款适合新手的入门级拓扑图绘制软件,软件界面简单,包含丰富的图表符号,中文界面,以及各类图表模板。软件智能排版布局,拖曳式操作,极易上手。与MS Visio等兼容,方便绘制各种网络拓扑图、电子电路图,系统图,工业控制图,布线图等,并且与他人分享您的文件。软件支持图文混排和所见即所得的图形打印,并且能一键导出PDF, Word, Visio, PNG, SVG 等17种格式。目前软件有Mac, Windows和Linux三个版本,满足各种系统需要。

亿图图示绘制“思科网络图”的特点 1.专业的教程:亿图图示的软件为用户制作了使用教程的pdf以及视频。 2.可导出多种格式:导出的文件Html,PDF,SVG,Microsoft Word, PowerPoint, Excel等多种格式。 3.支持多系统:支持Windows,Mac 和 Linux的电脑系统,版本同步更新。 4.软件特色:智能排版布局,拖曳式操作,兼容Office。 5.云存储技术:可以保存在云端,不用担心重要的数据图表丢失。 6.丰富的图形符号库助你轻松设计思科网络图

如何绘制一个网络拓扑图呢? 步骤一:打开绘制网络拓扑图的新页面 双击打开网络拓扑图制作软件 点击‘可用模板’下标题类别里的‘网络图’。 双击打开一个绘制网络拓扑图的新页面,进入编辑状态。 步骤二:从库里拖放添加 从界面左边的符号库里拖动网络符号到画布。

结构拓扑优化的发展现状及未来

结构拓扑优化的发展现状及未来 王超 中国北方车辆研究所一、历史及发展概况 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年和提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。 二、拓扑优化的工程背景及基本原理 通常把结构优化按设计变量的类型划分成三个层次:结构尺寸优化、形状优化和拓扑优化。尺寸优化和形状优化已得到充分的发展,但它们存在着不能变更结构拓扑的缺陷。在这样的背景下,人们开始研究拓扑优化。拓扑优化的基本思想是将寻求结构的最优拓扑问题转化为在给定的设计区域内寻求最优材料的分布问题。寻求一个最佳的拓扑结构形式有两种基本的原理:一种是退化原理,另一种是进化原理。退化原理的基本思想是在优化前将结构所有可能杆单元或所有材料都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素,直至最终得到一个最优化的拓扑结构形式。进化原理的基本思想是把适者生存的生物进化论思想引入结构拓扑优化,它通过模拟适者生存、物竞天择、优胜劣汰等自然机理来获得最优的拓扑结构。 三、结构拓扑优化设计方法 目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。 退化法即传统的拓扑优化方法,一般通过求目标函数导数的零点或一系列迭代计算过程求最优的拓扑结构。目前常用于拓扑优化的退化法有基结构方法、均匀化方法、变密度法、变厚度法等。 基结构方法(GSA)的思路是假定对于给定的桁架节点,在每两个节点之间用杆件连结起来得到的结构称为基结构。按照某种规则或约束,将一些不必要的杆件从基本结构中删除,认为最终剩下的构件决定了结构的最佳拓扑。基结构方法更适合于桁架和框架结构的拓扑优化。基结构法是在有限的子空间内寻优,容易丢失最优解,另外还存在组合爆炸、解的奇异性等问题。 均匀化方法(HA)引入微结构的单胞,通过优化计算确定其材料密度分布,并由此得出最优的拓扑结构。均匀化方法主要应用于连续体的拓扑优化设计,它不仅能用于应力约束和位移约束,也能用于频率约束。目前用均匀化方法来进行拓扑优化设计的有一般弹性问题、热传导问题、周期渐进可展曲面问题、非线性热弹性问题、振动问题和骨改造问题等。 变密度法是一种比较流行的力学建模方式,与采用尺寸变量相比,它更能反映拓

无线覆盖系统方案及常用拓扑图

前言: 最近一直在干办公楼的项目,无线覆盖系统是标配了,无线AP组网方式有多种,办公楼的无线覆盖系统常用的组网方式有哪些? 正文: 一、无线AP是无线路由器的有效补充 无线接入器也可称为无线AP,它可作为无线路由器的有效补充,可充当有线或无线网络的延伸。比如在工厂车间中,车间具有一个网络接口连接有线网,而车间中许多信息点由于距离很远使得网络布线成本很高,还有一些信息点由于周边环境比较恶劣,无法进行布线。由于这些信息点的分布范围超出了单个接入点的覆盖半径,我们可以采用无线接入点进行无线接入布网,以扩大无线网络的覆盖范围。 无线AP是无线路由器的有效补充

无线AP不能直接跟ADSL MODEM相连,所以在使用时必须再添加一台交换机或者集线器:使用下面的拓扑架构时,AP和无线路由的用法是一样的。不过,大部分无线路由器由于具有宽带拨号的能力,因此可以直接跟ADSL MODEM连接进行宽带共享。 无线AP组网拓扑图 上面就是较为常用的无线AP组网拓扑图。 二、无线AP模式的组网方案 AP接入点模式是无线AP的基本工作模式,用于构建以无线AP为中心的集中控制式网络,所有通信都通过AP来转发,类似于有线网络中的交换机的功能。 这种模式下连接方式大致如下图所示:

无线接入器以AP模式组网拓扑图 AP既可以和无线网卡建立无线连接,也可以和有线网卡通过网线建立有线连接。如果只有一个LAN口,一般不用它来直接接电脑,而是用来与有线网络建立连接,直接连接前端的路由器或者是交换机。 在这种模式下,无线1到13。选择中应该注意的是,如果周围环境中还有其他的无线网络,尽量不要与它使用相同的频率段。然后选择无线AP的工作的模式同时注意开启无线功能,就是不要选中“关闭无线功能”的这个选项即可。选中“Access Point”选项,设置好SSID号即可。注意,通过无线方式与我们的无线AP建立连接的无线网卡上设置的SSID号必需与我们无线AP上设置的SSID号相同,否则无法接入网络。 三、AP客户端模式组网 AP client模式下,即可以有线接入网络也可以无线接入网络,但此时接在无线AP下的电脑只能通过有线的方式进行连接,不能以无线方式与AP进行连接。

结构拓扑优化的组合准则及应用

结构拓扑优化的组合准则及应用 丁繁繁* 郭兴文 (河海大学工程力学系,江苏,南京,210098) 摘要:本文研究了拓扑相关荷载作用下连续体结构拓扑优化设计问题,探讨了ESO 方法中单独应用最大拉应变准则或主应力准则来删除单元的问题,提出了基于主压应力删除准则与最大拉应变删除准则的组合优化删除准则,给出了组合准则的迭代步骤.依据所提准则与迭代步骤, 应用Ansys 分析软件对一受拓扑相关径向均布荷载作用的连续体进行了拓扑优化设计,获得了相应的最优拓扑结构,算例表明,本文提出的组合优化法可以消除单一应力删除准则在优化过程中出现的迭代波动问题,能加快拓扑优化的收敛速度. 关键词:拓扑优化, 拓扑相关荷载, 主应力准则, 最大拉应变准则,组合准则 1.前言 结构拓扑优化设计是目前结构优化设计领域最赋有挑战性的研究课题,近十几年来,随着科学技术的进步, 结构拓扑优化设计得到了迅速的发展. 有关结构拓扑优化设计的最新发展,文献以综述的形式作了详细的叙述.连续体结构拓扑优化方法主要有均匀化法、两相法、内力法、变厚度法、变密度法、人工材料、渐进结构优化法及线性规划法等。其中渐进结构优化法(简称ESO)是通过一定的删除准则,将无效或低效的材料逐步去掉,结构将逐渐趋于优化。该方法可采用已有的有限元分析软件,通过迭代过程在计算机上实现,该法的通用性很好。 ESO 法最早是由澳大利亚华裔学者谢忆民于1993年提出来的。随后得到了荣见华等人的发展,成功应用于包含应力、位移(刚度)、临界应力和动力学约束的众多结构拓扑优化领域。基于主应力的ESO 法考虑了实际材料在拉、压应力方面的特性差异,特别适用于一些拉压性质明显的建筑类型,例如桥梁工程,从而改进了ESO 法的工程适用性。 ]4~1[]5[目前,连续体结构拓扑优化研究主要集中在荷载作用位置及作用方向不变情况下的结构拓扑优化问题,而对于荷载作用位置变动情况下的连续体结构拓扑优化研究刚刚起步. ]6[本文研究了荷载位置随拓扑变化而变化作用下的连续体结构拓扑优化问题,该连续体结构是一混凝土受压结构。优化过程中在进行尝试使用不同删除准则的基础上,提出了基于主压应力删除准则与最大拉应变删除准则的组合优化删除准则.依据提出的组合优化删除准则, 应用Ansys 分析软件对一受径向均布荷载作用简支的矩形初始构型进行了拓扑优化设计, 获得了相应的最优拓扑结构,算例表明,本文提出的组合优化法可以消除单一应力删除准则https://www.doczj.com/doc/4b4151818.html,

连续体结构拓扑优化方法及存在问题分析

编号:SY-AQ-00556 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 连续体结构拓扑优化方法及存 在问题分析 Topology optimization method of continuum structure and analysis of existing problems

连续体结构拓扑优化方法及存在问 题分析 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结

酒店在线功能拓扑图

赛美控制台系统功能之一:酒店在线功能 图解分析 此功能是读取酒店是否在线. 酒店系统服务器 赛美控制台服务端 赛美总系统 1.server 启动 2连接server 内网-通信 返回在线 返 回 下 线 连接成功 连接失败 连接成功,返回在线或者 下线 连接失败,返回失去连接 外网通信 线程池

一.内网通信功能概述: 1.概要设计-----赛美控制台代码以服务的形式在电脑端启动,作为内网通信的服务端开启监听,酒店系统启动tomcat的时候就启动任务去连接控制台的服务端. 2.技术定义-----通信定义为长连接,在硬件支持的情况,连接不能断开,信息存放利用NIO技术存放在缓冲区,当酒店系统启动时,把酒店信息存放在NIO缓冲区,以list的形式放入对象中。 3.技术疑点-----如何建立长连接,NIO框架的使用,酒店服务器只有停掉服务的时候才会断开连接,如果中途为了计算机的性能断了连接,那如何连接起来。 二.外网通信功能概述: 1.概要设计----赛美控制台除了连接内部通讯外,还需要连接外网的总系统服务器,(内部他作为服务端等别人连他,外部他作为客户端去连总系统) 2.技术定义-----外网通信也是长连接,因为服务端要主动推送信息到客户端;赛美控制台连接到总系统的时候,总系统通过线程池开启一个线程。如果没连接上,那在赛美总系统是失去连接,而并非酒店下线。连接成功传入list中的数据给总系统,显示需要的信息在页面。 3.技术疑点-----就在线的功能而言,是否需要长连接。内网连接将信息放入了list中,是否可以断开连接,外网连接成功将list传入到总系统。只有当内网赛美系统发生变化时,重新连接控制台,重写list的数据,此触发外网通信,重新与总系统通信传入list。

机械结构拓扑优化设计研究现状及其发展趋势

机械结构拓扑优化设计研究现状及其发展趋势 发表时间:2018-12-27T16:17:28.400Z 来源:《河南电力》2018年13期作者:谢进芳 [导读] 机械产品应用范围相对较广,为确保机械产品在我国日常生活及企业从生产中得到有效应用,实施优化设计十分必要。 (广东科立工业技术股份有限公司广东省佛山市 528000) 摘要:随着现代科学技术的发展,市场产品竞争也越来越激烈,产品品种的换代速度加快,产品的复杂性在不断增加。所以产品生产正在以小批量、多品种的生产方式取代过去的单一品种大批量生产方式。而这种生产方式,肯定会缩短产品的生产周期,产品的成本也会降低,产品提高市场的占有率和竞争力也会提高。所以在机械结构设计中采用优化设计是满足市场竞争的需要。 关键词:机械结构拓扑;现状;发展趋势 引言 机械产品应用范围相对较广,为确保机械产品在我国日常生活及企业从生产中得到有效应用,实施优化设计十分必要。目前我国已经针对机械结构优化设计进行了研究,并取得一定成果,主要表现在船舶行业、焊工航天以及汽车行业等。机械结构的优化设计可有效提高其产品性能并增加其自身市场竞争力,对其市场发展起重要作用。 1.机械结构优化设计 随着科学技术的发展,机械产品更新换代的速度越来越快。过去,机械产品主要是大批量生产,产品相对单一。目前采用的是小批量加工方式,以保证产品的多样性。为了保证生产企业的利润,必须在保证质量的前提下,缩短生产周期,降低生产成本。优化设计能够达到上述目标,在一定程度上缩短了生产时间,降低了成本,有效地抢占了市场。机械结构优化设计已广泛应用于造船、运输、航空航天、冶金、纺织、建筑等领域。 机械结构优化设计流程主要包括:(1)针对所优化机械产品尽心目标函数优化设计,可确保机械产品相关技术指标符合优化要求。(2)设计机械产品优化函数变量,变量设计包括机械产品长度、厚度以及弧度等相关结构参数。(3)对机械产品优化设计约束条件进行设定,对计算过程中各项变量浮动范围进行限定。(4)通过以上步骤得出多种优化设计方案,分别对不同方案进行评价,根据机械结构优化设计需求选择最佳方案实施。 2.机械结构拓扑优化设计常用方法 (1)均匀化方法 常用的连续结构拓扑优化设计方法主要有均匀化方法、变密度方法、水平集方法以及进化结构优化方法等。 均匀化方法属于材料描述方式,基本思想是将微结构模型引入结构拓扑优化设计领域,以微结构的单胞尺寸参数为设计变量,根据单胞尺寸的变化实现微结构的增删,优化实体与孔的分布形成带孔洞的板,达到结构拓扑优化的目的。优化过程:①设计区域的划分;②确定设计变量;③进行拓扑优化设计;④以不同的微结构形式的分布显示连续结构的形状和拓扑状态。 图1 微结构单胞示意图 微结构的划分形式通常有空孔、实体和开孔 3种,空孔是指没有材料的微结构,其孔的尺寸为 1;实体是指具有各向同性材料的微结构,其孔的尺寸为 0;开孔是指具有正交各向异性材料的微结构,其孔的尺寸介于 0~1 且可变化。设计区域划分为空孔、实体和开孔的微结构形式。简单的二维微结构单胞示意图如图 1 所示。微结构上孔的尺寸和方位角是设计变量,其中孔的尺寸是微结构材料主方向,它可以由坐标转换矩阵体现在材料的有效弹性模量上,通过微结构的密度与有效弹性模量之间的关系曲线,把设计变量与结构各处的形态联结起来。在结构拓扑优化设计过程中,微结构中孔的尺寸和在 0~1 的变化区域就可使各微结构在空孔与实体之间变化,这样就可用连续变量对结构优化设计问题进行描述。 均匀化结构拓扑优化方法涉及的设计变量非常多,用的较多的优化算法是准则优化算法。 (2)变密度方法 变密度方法式是引入一种假想的密度在 0~1可变的材料,采用材料的密度作为优化设计变量,实现结构的拓扑变化;材料弹性模量等物理参数与材料密度间的关系也是人为假定的;这样不但将结构的拓扑优化问题转换为材料的最优分布问题,还可使优化结果尽可能具有非 0 即 1 的密度分布。变密度结构拓扑优化方法与采用尺寸变量相比,它更能反映拓扑优化的本质特征。因此,在实际工程的结构优化设计中大多采用变密度方法来解决结构优化问题。变密度结构拓扑优化方法常用的插值模型是固体各向同性惩罚微结构模型(SIMP)。由于变密度结构拓扑优化方法更能反映拓扑优化的本质特征,且概念简单、设计变量数目少,简化了计算求解过程,因此,变密度结构拓扑优化方法成为目前最常用的、也是用的最多的结构优化设计方法。 3.机械结构优化的应用趋势 随着优化方法的不断发展和完善,结构优化设计也逐渐发展起来。近年来,在结构优化算法方面,由于结构优化设计中变量较多,结构优化设计往往采用接近实际情况的复杂结构模型来模拟一些大型结构系统。因此,新的准则优化方法备受关注,但如何为一些特殊结构

升降辊床连杆摇臂结构拓扑优化设计

升降辊床连杆摇臂结构拓扑优化设计 升降辊床作为一种新型输送设备,具有高速、稳定、易于维护等优点,在各汽车焊装车间得到了广泛应用。文章对辊床连杆摇臂结构进行动力学分析,在此基础上针对摇臂结构进行结构拓扑优化,改善机构应力应变并提升疲劳寿命。 标签:升降辊床;摇臂结构;有限元;拓扑优化;疲劳寿命 引言 “冲压、焊装、油漆和总装”被称为当代汽车制造的四大工艺[1],在上汽大众仪征工厂焊装车间,焊接工艺种类多达8至10种,用来转运车身的工艺生产线多达12条,拥有德国KUKA自动化机械臂800多台,工艺过程极其复杂,工位数量繁多。基于曲柄连杆摇臂结构的Siemens高速输送升降辊床的大量应用,极大地提高了生产节拍,使生产线实现了柔性生产,产能得到大幅度提高[2]。 1 辊床结构及动力学分析 本文以西门子公司11-0908-1200系列升降辊床为研究对象,主要参数如表1所示。升降辊床主要由底座、升降机構、水平输送辊床和控制系统四大部分组成,实现其升降功能的是一个典型的多连杆机构,并可拆分为两个四杆机构,即前半部分为曲柄连杆摇臂机构[3-4],后半部分为平行四杆机构,因此,在运动学分析计算中可以忽略后半部分的平行四杆机构,仅分析前半部分的曲柄连杆摇臂机构[5](图1)。 为了解曲柄连杆摇臂机构在其运动周期内各构件的受力情况,在Adams软件中创建升降辊床曲柄连杆摇臂动力学仿真模型,施加辊床框架及雪橇、车身的重力负载为13000N,直接作用在前后摇臂上,受力方向始终竖直向下,经求解,后摇臂受到来自连杆的峰值拉力为17588N,在升降辊床从低位向高位运行过程中,摇臂克服负载力并将其向上举升,拉力从峰值开始逐渐降低为0N。 2 辊床有限元仿真分析 对辊床连杆结构进行有限元分析。摇臂的制造原材料为Q235B,建立摇臂模型并导入到ANSYS软件中,网格划分后共得到47478个节点、19295个单元。连杆与后摇臂相连的铰接转动副-单孔摇臂关节轴承处,其转动副处最大受力为17588N,选取此瞬态时刻,对后摇臂进行静力学分析,施加负载、约束后进行计算,得到其应力、应变分析结果情况如图2所示。 通过分析发现,在主轴中部轴颈与曲柄连接处是应力集中最严重的部位,从有限元分析结果可以看出,最大应力为91.36MPa,虽然小于摇臂材料的屈服强度235MPa,但这些应力集中部位极易出现疲劳裂纹,直至机械失效损坏,该分析结果与摇臂在实际生产作业中发生的断裂故障一致。

连续体结构拓扑优化方法及存在问题分析(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 连续体结构拓扑优化方法及存在问题分析(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

连续体结构拓扑优化方法及存在问题分析 (最新版) 文章深入分析国内外连续体结构拓扑优化的研究现状,介绍了拓扑优化方法的发展及实现过程中存在的问题。对比分析了均匀化方法,渐进结构优化法,变密度法的优缺点。研究了连续体结构拓扑优化过程中产生数值不稳定现象的原因,重点讨论了灰度单元,棋盘格式,网格依赖性的数值不稳定现象,并针对每一种数值不稳定现象提出了相应的解决办法。 结构拓扑优化设计的主要对象是连续体结构,1981年程耿东和Olhof在研究中指出:为了得到实心弹性薄板材料分布的全局最优解,必须扩大设计空间,得到由无限细肋增强的板设计。此研究被认为是近现代连续体结构拓扑优化的先驱。 目前,国内外学者对结构拓扑优化问题进行了大量研究,这些

研究大多数建立在有限元法结构分析的基础上,但由于有限元法中单元网格的存在,结构拓扑优化过程中常常出现如灰度单元,网格依赖性和棋盘格等数值不稳定的现象。本文介绍了几种连续体结构拓扑优化方法及每种方法存在的问题,并提出了相应的解决办法。 1.拓扑优化方法 连续体结构拓扑优化开始于1988年Bendoe和Kikuchi提出的均匀化方法,此后许多学者相继提出了渐进结构优化方法、变密度法等拓扑优化数学建模方法。 1.1.均匀化方法 均匀化方法即在设计区域内构造周期性分布的微结构,这些微结构是由同一种各向同性材料实体和孔洞复合而成。采用有限元方法进行分析,在每个单元内构造不同尺寸的微结构,微结构的尺寸和方向为拓扑优化设计变量。1988年Bendsoe研究发现,通过在结构中引入具有空洞微结构的材料模型,将困难的拓扑设计问题转换为相对简单的材料微结构尺寸优化问题。 很多学者发展了均匀化方法,Suzhk进行了基于均匀化方法结构

具有多种约束的连续体结构拓扑优化

文章编号:1004Ο8820(2003)02Ο0138206 具有多种约束的连续体结构拓扑优化 江允正,王子辉,初明进 (烟台大学土木工程系,山东烟台264005) 摘要:对于具有多种约束条件的连续体结构的拓扑优化设计,本文提出一种通用优化方 法:首先用优化方法确定微孔或称为基点的位置,然后再扩大微孔并确定其边界.文中对 于具有应力和位移约束的几个平面问题进行拓扑优化,计算结果十分令人满意. 关键词:结构拓扑优化;结构优化;连续体; 中图分类号:TP391.72 文献标识码:A 近年来,Bendsoe 和K ikuchi [1]等广泛采用连续体拓扑优化的均匀方法.首先从连续介质中人为地引进某一形式的微结构,例如周期性分布的微孔洞;然后用以数学中扰动理论为基础的均匀化方法这一数学工具建立材料的宏观弹性性质和微结构尺寸的关系,连续介质的拓扑优化就转化为决定微结构尺寸最优分布的尺寸优化问题,可以采用成熟的尺寸优化算法.迄今为止的均匀化方法还不能给出带有微观结构的材料的宏观许用应力和微结构尺寸的关系,因此到目前为止均匀优化方法可以求解的拓扑优化问题还很有限.均匀化方法的另一缺点是求得的最终设计可能具有很不清晰的拓扑,即结构中有的区域是相对密度介于0和1之间的多孔介质;文献[2]提出修改的满应力法来求解受应力约束的平面弹性体的拓扑优化问题,也仅能考虑应力约束问题;文献[3]提出统一骨架与连续体的结构拓扑优化的ICM 理论与方法.这些方法,基本上都采用有限元法进行结构分析,为了使边界光滑,不得不划分很细的单元,对于一般平面问题,单元数目都在数千个之上,计算效率低.总之,拓扑优化是最具挑战性而又困难的问题,优化方法仍然处在发展初期.这一领域迫切需要取得进展,开发通用的算法仍是挑战. 如上所述,采用均匀方法时,首先从连续介质中人为地引进某一形式的微结构,例如周期性分布的微孔洞.我们认为微孔洞的数量和位置应该用优化方法确定.并称这种微孔的中心叫做删除区的基点.然后扩大微孔,用优化方法确定孔的边界.于是,连续体结构的拓扑优化,可以归结为确定删除区的基点位置及其边界的问题. 1 方 法 对于一个二维连续体,当给定外载和支承位置时,满足应力、位移等各种约束条件下的结构最优拓扑问题,都可以按如下步骤来求解: 收稿日期:2002-12-17 作者简介:江允正(1942-),男,湖南衡阳人,教授,主要从事结构优化方向教学与研究工作. 第16卷第2期 烟台大学学报(自然科学与工程版)Vol.16No.22003年4月Journal of Y antai University (Natural Science and Engineering Edition ) Apr.2003

结构拓扑优化与材料设计:试卷及参考答案

《结构拓扑优化与材料设计》 试卷参考答案 一.基本概念(30分) 1.按照设计变量层次不同,结构优化可分为哪三类,并说明拓扑优化的优势以及原因。(8分) 答:按照设计变量层次的不同,结构优化可分为尺寸优化、形状优化、拓扑优化三类。 相比尺寸优化和形状优化,拓扑优化节省材料更显著,有更大的经济效益,往往得到新的设计,也容易被工程师接受。 原因在于拓扑优化可以更好地改善结构的性能,或者在保持原结构性能不变的情况下更多地减轻结构质量,为设计者提供了一个概念设计,而且拓扑优化能够在调节结构构型设计的同时实现结构尺寸和形状的设计。 2.写出连续体动力基频最大化问题的拓扑优化模型列式。(7分) 答: 22** 01 max {min{}} ..:,(1,...,),, (,,1,...,),0,(),01,(1,,). E j j e j j j j k jk N e e e e E s t ωj J j k k j J V V V V e N ρ ωδραρρ====≥=-≤=<≤≤=∑T K φM φφM φL 3.均匀化方法可用于预测复合材料的等效宏观性能。说明均匀化方法适用的复合材料微结构分布的特点以及微结构尺寸与宏观尺寸的关系(在什么条件下,材料的宏观等效性能可以通过均匀化方法获得?)。并总结均匀化方法预测复合材料等效宏观性能的主要步骤。(10分) 答:均匀化方法适用的复合材料,其微结构呈周期性分布,且微结构尺寸要远小于整个结构的尺寸。 主要步骤: ①将位移表示成双尺度坐标的函数 0122()(,)(,)(,)u x u x y u x y u x y εεε=+++L ②将一阶近似位移用广义位移表示

结构拓扑优化设计的三角网格进化法

第19卷 第3期应用力学学报Vol.19 No.3 2002年9月CHINESE JOURNAL OF APPL IE D MECHANICS Sep.2002 文章编号:100024939(2002)0320050204 结构拓扑优化设计的三角网格进化法Ξ 罗 鹰 段宝岩 (西安电子科技大学 西安 710072) 摘要:针对进化式拓扑优化方法的不足,提出了一种基于遗传算法的新型进化式拓扑优化方法—三角网格进化法,该方法不仅能够同时进行拓扑、形状与截面变量优化设计,而且在优化过程中实现了退化和进化的统一,提高了优化效率。另外本文还首次对结构类型变量进行了优化计算,取得了有益的结果。最后几个数值算例证明了本方法的可行性和有效性。 关键词:拓扑优化;进化法;类型优化;遗传算法 中图分类号:039TB121 文献标识码: A 1 引 言 工程结构拓扑优化方法可分为两类:退化法和进化法。退化法又可进一步分为基结构方法(ground structural approach)[1]和均匀化方法(ho2 mogenization method)[2],退化法的基本思想是在优化前将结构所有可能杆单元(对基结构方法而言)或所有材料(对均匀化方法而言)都加上,然后构造适当的优化模型,通过一定的优化方法逐步删减那些不必要的结构元素(杆单元及节点)或材料,直至最终得到一个最优化的拓扑结构形式。当然,在删减的同时也可能伴随着少量结构元素的再加入。进化法[3~6]正好与退化法相反,它是从另一个途径考虑问题。根据给定的固定节点与载荷,首先给出简单拓扑结构形式,然后通过一定的优化策略不断增加结构元素,直到获得最优的拓扑结构。K irsch[5,6]曾对此类方法进行过分析与展望,并且由William在1995年提出了自然生长方法[3],Mc Keown在1998年又提出了节点增加方法[4]。它们的不足之处在于,优化过程中,只有结构元素(包括杆单元和节点)的增加而不能够删减。另外,根据目前所掌握的文献看,结构类型变量优化还未被问津。本文利用遗传算法(G A)将结构类型也作为一类设计变量,对它进行了数学优化计算的尝试。 2 优化模型 本文讨论的是结构的整体优化问题,设计目标是使结构整体重量最轻(或体积最小),而约束条件包括应力约束以及各节点坐标位移约束。设计变量包括结构类型、拓扑、可动节点坐标以及单元截面积四种参数。由于遗传算法(G A)[5,7,8,9]不能直接处理结构优化中各设计变量,而必须将它们转换成遗传空间中由基因个体排列组成的染色体或个体。为此,引入以下几组参数: 211 结构类型参数αi 杆系结构的类型不仅有桁架、刚架(梁)结构,还有杆、梁组合结构(即结构中既有杆单元又有梁单元)。为此引入参数αi(i=1,2,…,N)分别代表结构中各单元的类型。其中,N表示结构单元数。其数学表达式为: α i = 0 单元i为杆单元 1 单元i为梁单元  (i=1,2,…,N) (1)结构的总刚度方程为: Ξ基金项目:国家自然科学基金项目(95635150) 来稿日期:2001202220 修回日期:2002202227第一作者简介:罗鹰,男,1970年生,西安电子科技大学机电工程学院博士生;研究方向:面向工程的广义优化1

拓扑优化

结构拓扑优化设计现状及前景 目前, 最优化设计理论和方法在机械结构设计中得到了深入的研究和广泛的应用。所谓优化设计就是根据具体的实际问题建立其优化设计的数学模型, 并采用一定的最优化方法寻找既满足约束条件又使目标函数最优的设计方案。根据优化问题的初始设计条件, 目前结构优化技术有四大领域: 1) 尺寸优化; 2) 形状优化; 3) 拓扑与布局优化; 4) 结构类型优化。结构尺寸优化是在结构的拓扑确定的前提下, 首先用少量尺寸对结构的某些变动进行表达, 如桁架各单元的横截面尺寸、某些节点位置的变动等, 然后在此基础上建立基于这些尺寸参数的数学模型并采用优化方法对该模型进行求解得到最优的尺寸参数。在尺寸优化设计中, 不改变结构的拓扑形态和边界形状, 只是对特定的尺寸进行调整, 相当于在设计初始条件中就增加了拓扑形态的约束。而结构最初始的拓扑形态和边界形状必须由设计者根据经验或实验确定, 而不能保证这些最初的设计是最优的, 所以最后得到的并不是全局最优的结果。结构形状优化是指在给定的结构拓扑前提下, 通过调整结构内外边界形状来改善结构的性能。以轴对称零件的圆角过渡形状设计的例子。形状设计对边界形状的改变没有约束,和尺寸优化相比其初始的条件得到了一定的放宽,应用的范围也得到了进一步的扩展。拓扑优化设计是在给定材料品质和设计域内,通过优化设计方法可得到满足约束条件又使目标函数最优的结构布局形式及构件尺寸。拓扑设计的初始约束条件更少, 设计者只需要提出设计域而不需要知道具体的结构拓扑形态。拓扑设计方法是一种创新性

的设计方法, 能为我们提供一些新颖的结构拓扑。目前, 拓扑设计理论在柔性受力结构、MEMS 器件及其它柔性微操作机构的设计中得到了广泛的研究。 结构拓扑优化的发展概况 结构拓扑优化包括离散结构的拓扑优化和连续变量结构的拓扑优化。近10 年来, 结构拓扑优化设计虽然取得了一些进展, 但大部分是针对连续变量的, 关于离散变量的研究为数甚少。由于离散变量优化的目标函数和约束函数是不连续、不可微的, 可行域退化为不连通的可行集, 所以难度远大于连续变量优化问题。在离散结构中, 桁架在工程中的应用较为广泛, 由于其重要性, 也由于其分析比较简单, 桁架结构的拓扑优化在文献中研究得最多. 结构拓扑优化的历史可以追溯到1904 年Michell提出的桁架理论, 但这一理论只能用于单工况并依赖于选择适当的应变场, 不能应用于工程实际。1964 年Dorn、Gomory、Greenberg 等人提出基结构法( ground structure approach) , 将数值方法引入该领域, 此后拓扑优化的研究重新活跃起来, 陆续有一些解析和数值方面的理论被 提出来。所谓基结构就是一个由结构节点、荷载作用点和支承点组成的节点集合, 集合中所有节点之间用杆件相连的结构。该方法的基本思路是: 从基结构的模型出发, 应用优化算法( 数学规划法或准则法) , 按照某种规划或约束, 将一些不必要的杆件从基结构中删除, 例如截面积达到零或下限的杆件将被删掉, 并认为最终剩下的杆件 决定了结构的最优拓扑。因此应用基结构, 可以将桁架拓扑优化当作

结构拓扑优化

拓扑优化(topology optimization) 1. 基本概念 拓扑优化是结构优化的一种。结构优化可分为尺寸优化、形状优化、形貌优化和拓扑优化。其中尺寸优化以结构设 结构优化类型的差异 计参数为优化对象,比如板厚、梁的截面宽、长和厚等;形状优化以结构件外形或者孔洞形状为优化对象,比如凸台过渡倒角的形状等;形貌优化是在已有薄板上寻找新的凸台分布,提高局部刚度;拓扑优化以材料分布为优化对象,通过拓扑优化,可以在均匀分布材料的设计空间中找到最佳的分布方案。拓扑优化相对于尺寸优化和形状优化,具有更多的设计自由度,能够获得更大的设计空间,是结构优化最具发展前景的一个方面。图示例子展示了尺寸优化、形状优化和拓扑优化在设计减重孔时的不同表现。 2. 基本原理 拓扑优化的研究领域主要分为连续体拓扑优化和离散结构拓扑优化。不论哪个领域,都要依赖于有限元方法。连续体拓扑优化是把优化空间的材料离散成有限个单元(壳单元或者体单元),离散结构拓扑优化是在设计空间内建立一个由有限个梁单元组成的基结构,然后根据算法确定设计空间内单元的去留,保留下来的单元即构成最终的拓扑方案,从而实现拓扑优化。 3. 优化方法 目前连续体拓扑优化方法主要有均匀化方法[1]、变密度法[2]、渐进结构优化法[3](ESO)以及水平集方法[4]等。离散结构拓扑优化主要是在基结构方法基础上采用不同的优化策略(算法)进行求解,比如程耿东的松弛方法[5],基于遗传算法的拓扑优化[6]等。 4. 商用软件 目前,连续体拓扑优化的研究已经较为成熟,其中变密度法已经被应用到商用优化软件中,其中最著名的是美国Altair公司Hyperworks系列软件中的Optistruc t和德国Fe-design公司的Tosca等。前者能够采用Hypermesh作为前处理器,在各大行业内都得到较多的应用;后者最开始只集中于优化设计,而没有自己的有限元前处理器,操作较为麻烦,近年来

结构优化设计的综述与发展

结构优化设计的综述与发展 摘要:结构优化设计,就是在计算机技术等高科技手段的支持下,为了提升机械产品的性能、工作效率,延长机械产品的工作寿命,对机械产品的尺寸、形状、拓扑结构和动态性能进行优化的过程。这是机械行业发展的必然要求,也是信息时代的必然要求。结构优化设计,必须在保证机械产品满足工作需要的前提下,通过科学的计算来实行。文章将简单对结构优化设计的发展状况进行介绍,列举几种优化设计方法,以及讨论未来优化的发展情况。 关键词:结构优化设计发展优化设计方法 1 结构优化设计 结构优化简单来说就是在满足一定的约束条件下,通过改变结构的设计参数,以达到节约原材料或提高结构性能的目的。结构优化设计通常是指在给定结构外形,给定结构各元件的材料和相关载荷及整个结构的强度、刚度、工艺等要求的条件下,对结构进行整体和元件优化设计。结构优化设计一般由设计变量、约束条件和目标函数三要素组成。评价设计优、劣的标准,在优化设计中称为目标函数;结构设计中以变量形式参与的称为设计变量;设计时应遵守的几何、刚度、强度、稳定性等条件称为约束条件,而设计变量、约束函数与目标函数一起构成了优化设计的数学模型。结构优化的目的是让设计的结构利用材料更经济、受力分布更合理。 结构优化设计根据设计变量选取的不同可以分为截面(尺寸)优化、形状优化、拓扑优化三个层次。尺寸优化是选取结构元件的几何尺寸作为设计变量,例如,杆元截面积、板元的厚度等等[1]。而形状优化是选取结构的内部形状或者是节点位置作为设计变量。拓扑优化就是选取结构元件的有无作为设计变量,为0-1型逻辑型设计变量。 2 结构优化设计研究概况与现状 结构优化设计最早可以追溯到17世纪,伽利略和伯努利对弯曲梁的研究从而引发了变截面粱形状优化的问题。后来Maxwell和Michell提出了单载荷仅有应力约束条件下最小重量桁架结构布局的基本理论,为系统地分析结构优化理论作出了重大的贡献。然而长期以来,由于缺乏高速可靠的计算手段和理论,结构优化设计一直无法获取较大发展。 到上世纪六十年代,有限元技术借助于计算机技术,得到了极大的发展。1960年Schmit在求解多种载荷情况下弹性结构的最小重量问题时,首次在结构优化中引入入数学规划理论,并与有限元方法结合应用,形成了全新的结构优化思想,标志着现代结构优化技术的开始[2]。 1973年Zienkiewicz和Campbell[3]在解决水坝的形状优化问题时,首次以节点坐标作为设计变量,在结构分析方面使用了等参元,在优化方法上使用了序列线性规划的方法。其后,众多的学者在此基础上,逐渐发展形成了使用边界形状参数化方法描述连续

连续体结构拓扑优化方法评述_夏天翔

第2卷第1期2011年2月航空工程进展 A DV A N CES IN A ERON A U T ICA L SCIEN CE A N D EN GIN EERIN G Vo l 12N o 11Feb 1 2011 收稿日期:2010-12-01; 修回日期:2011-01-20基金项目:教育部长江学者创新团队项目(Irt0906)通信作者:姚卫星,w xyao@https://www.doczj.com/doc/4b4151818.html, 文章编号:1674-8190(2011)01-001-12 连续体结构拓扑优化方法评述 夏天翔,姚卫星 (南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京 210016) 摘 要:连续体结构拓扑优化在优化中能产生新的构型,对实现自动化智能结构设计具有重要意义。目前,连续体结构拓扑优化方法主要有:均匀化方法、变厚度法、变密度法、渐进结构优化方法、水平集法、独立连续映射方法。本文首先系统回顾了以上方法的发展历程,介绍了它们的研究现状。其次,通过对比以上拓扑优化方法对若干典型算例的优化结果,表明以上方法都有较好的减重效果。最后,对以上方法进行了总结,列出了它们的优缺点和发展方向。 关键词:拓扑优化;均匀化方法;变厚度法;变密度法;渐进结构优化方法;水平集法;独立连续映射方法中图分类号:V 211.7 文献标识码:A A Survey of Topology Optimization of Continuum Stru cture Xia Tianx iang ,Yao Weix ing (K ey L abor ator y of F undamental Science fo r N atio nal Defense -adv anced Design T echno lo gy of F lig ht V ehicle,Nanjing U niver sity o f A eronautics and A st ronautics,N anjing 210016,China) Abstract:A s the to po log y optim izat ion o f continuum structure can pr oduce new config ur atio ns during the optim-i zatio n,it is significant for automatic str ucture design.A t present,the most commo nly used t opolo gy o ptimiza -t ion methods of continuum st ructur e ar e:the ho mog enization method,var iable t hickness method,v ariable dens-i t y metho d,evo lutio nar y str uctur al o pt imizatio n met ho d,lev el set metho d,independent co ntinuous mapping method.Firstly,the develo pment pro cesses of above metho ds ar e sy stematically review ed,their cur rent r e -sear ch is br iefly intro duced in this paper.T hen,these methods ar e com par ed and discussed t hr ough a number of typical ex amples.T he typical ex amples show that all of above methods have gr eat abilities to r educe w eig ht.F-i nally ,the adv ant ag es,disadv ant ag es and dev elo pment directio ns of abov e metho ds ar e discussed. Key words:to po lo gy o ptimization;homog enizat ion metho d;va riable thickness method;var iable density method;evolutionar y structure optimization metho d;lev el set method;independent continuo us mapping method 0 引言 按照设计变量的不同,结构优化可分为以下三个层次:尺寸优化、形状优化和拓扑优化。结构拓 扑优化能在给定的外载荷和边界条件下,通过改变结构拓扑使结构在满足约束的前提下性能达到最优。与尺寸优化、形状优化相比,结构拓扑优化的经济效果更为明显,在优化中能产生新的构型,是 结构实现自动化智能设计所必不可少的。 按照优化对象的性质,拓扑优化可分为离散体拓扑优化和连续体拓扑优化两种。连续体拓扑优化与离散体拓扑优化相比,在应用范围更广的同 时,模型描述困难,设计变量多,计算量大。在过去很长一段时间里,连续体拓扑优化发展得十分缓慢,直到1988年Bendso e 等人[1] 提出均匀化方法之后,它才得到了迅速发展。目前,国内外学者对结构拓扑优化问题已经进行了大量研究[2-9]。目前最常用的连续体拓扑优化方法有均匀化方法、变厚 度法、变密度法、渐进结构优化方法(ESO)、水平集法(Level set)、独立连续映射方法(ICM)等。从拓

相关主题
文本预览
相关文档 最新文档