当前位置:文档之家› 相对定量方法PCR技术通过2 -△△CT 方法分析相对基因表达差异

相对定量方法PCR技术通过2 -△△CT 方法分析相对基因表达差异

相对定量方法PCR技术通过2 -△△CT 方法分析相对基因表达差异
相对定量方法PCR技术通过2 -△△CT 方法分析相对基因表达差异

利用实时定量 PCR 技术通过2 -△△CT 方法分析相

对基因表达差异

Kenneth J. Livak and Thomas D. Schmittgen

Department of Pharmaceutical Sciences, College of Pharmacy.

Washington State University, Washington 99164-6534

现在最常用的两种分析实时定量 PCR 实验数据的方法是绝对定量和相对定量。绝对定量通过标准曲线计算起始模板的拷贝数;相对定量方法则是比较经过处理的样品和未经处理的样品目标转录本之间的表达差异。 2 - △△ CT 方法是实时定量 PCR 实验中分析基因表达相对变化的一种简便方法。本文介绍了该方法的推导,假设及其应用。另外,在本文中我们还介绍了两种 2 - △△ CT 衍生方法的推导和应用,它们在实时定量 PCR 数据分析中可能会被用到。 关键词:反转录 PCR 定量PCR 相对定量 实时PCR Taqman

反转录 PCR ( RT-PCR )是基因表达定量非常有用的一种方法( 1 - 3 )。实时 PCR 技术和 RT-PCR 的结合产生了反转录定量 PCR 技术( 4 , 5 )。实时定量 PCR 的数据分析方法有两种:绝对定量和相对定量。绝对定量一般通过定量标准曲线来确定我们所感兴趣的转录本的拷贝数;相对定量方法则是用来确定经过不同处理的样品目标转录本之间的表达差异或是目标转录本在不同时相的表达差异。

绝对定量通常在需要确定转录本绝对拷贝数的条件下使用。通过实时 PCR 进行绝对定量已有多篇报道( 6 - 9 ),包括已发表的两篇研究论文( 10 , 11 )。在有些情况下,并不需要对转录本进行绝对定量,只需要给出相对基因表达差异即可。显然,我们说 X 基因在经过某种处理后表达量增加 2.5 倍比说该基因的表达从 1000 拷贝 / 细胞增加到 2500 拷贝 / 细胞更加直观。

用实时 PCR 对基因表达进行相对定量分析需要特殊的公式、假设以及对这些假设的验证。 2 - △△ CT 方法可用于定量 PCR 实验来计算基因表达的相对变化: 2 - △△ CT 公式的推导 , 以及实验设计,有效性评估在 Applied Biosystems User Bulletin No.2(P/N4303859) 中有介绍。用 2 - △△ CT 方法分析基因表达数据在文献中也有报道 (5, 6) 。本文介绍了该方法的推导、假设以

物秀-专心做生物

w w w .b b i o o .c o m

及应用。另外,本文还介绍了 2 - △△ CT 两种衍生方法的推导和应用,它们在实时定量 PCR 数据分析中都可能被用到。 ? 2 - △△ CT 方法 ? 2 - △△ CT 方法的推导 PCR 指数扩增的公式是:

Xn 是第 n 个循环后目标分子数。 X 0 是初始目标分子数。

Ex 是目标分子扩增效率。 n 是循环数

C T 代表目标扩增产物达到设定阈值所经历的循环数

因此:

X T 是目标分子达到设定的阈值时的分子数。 C T,X 是目标分子扩增达到阈值时的循环数。 Kx 是一个常数

对于内参反应而言,也有同样的公式:

用 X T 除以 R T 得到:

生物秀-专心做生物

w w w .b b i o o .c o m

对于使用Taqman 探针的实时扩增而言,X T 和R T 的值由一系列因素决定:包括探针所带的荧光报导基团、探针序列对探针荧光特性的影响、探针的水解效率和纯度以及荧光阈值的设定。因此常数K 并不一定等于 1 。

假设目标序列与内参序列扩增效率相同:

或:

X N 代表经过均一化处理过的初始目标分子量;△C T 表示目标基因和内标基因C T 值的差异(C T,X -C T,R )

整理上式得:

最后用任一样本q 的X N 除以参照因子(calibrator ,cb )的X N 得到:

在这里

对于一个少于150bp 的扩增片断而言,如果Mg 2+ 浓度、引物都进行了适当的优化,扩增效率接近于 1 。因此目标序列的量通过内均一化处理之后相对于参照因子而言就是:

1.2

要使△△ C T 计算方法有效,目标序列和内参序列的扩增效率必须相等。看两个反应是否具有相同的扩增效率的方法是看他们模板浓度梯度稀释后扩增产物△ C T 如何变化。

图1 显示的是cDNA 样品在100 倍稀释范围内的实验结果。对于每一个稀释样本,都用GAPDH 和c-myc 特异的荧光探针及引物进行扩增。计算出c-myc 和GAPDH 的平均C T 值以及△ C T 值,通过cDNA 浓度梯度的log 值对△ C T 值作图,如果所得直线斜率绝对值接近于0 ,说明目标基因和内标基因的扩增效率相同,就可以通过△△ C T 方法进行相对定量。在图1 中,直线斜率是0.047 ,因而假设成立,△△ C T 方法可以用来分析数据。如果两个扩增反应效率不同,则需要通过定量标准曲线和绝对定量的方法来进行相对定量;或者也可以重新设计引物,优化反应条件使得目标序列和内参序列具有相同的扩增效率。

1.3

基因作为内标之前首先确证该基因的表达不会受实验处理的影响。验证实验处理是否对内标基因表

达产生影响的方法在 2.2 部分有描述。

方法计算,目标基

倍数来表示。对于未经处理的参照样,

因表达差异通过经过处理的样本相对

于未经处理的样本的

△△ C T =0 ,而 2 0 = 1 。所以根据定义,未处理样本的倍数变化为 1 。而对于那些经过

处理的样本,相对于参考因子基因表达的倍数为

1.4

Time x 表示任意时间点, Time 0 表示经 β -actin 校正后 1 倍量的目标基因表达。

0 时刻目标基因和内标基因的平均 C T (见图 2 第 8 栏)被用于公式 9 中。通过公式 9 计算出每一个样本目标基因表达通过 β -actin 均一化处理后相对于 0 时刻的倍数(见图 2 第 9 栏)。平均 SD , CV 由每一个时间点所取的三个重复样求得。用这种分析方法,在 0 时刻的平均倍数变化接近于 1 。我们发现通过检测在 0 时刻平均倍数变化是否为 1 可以很方便的验证三个重复样品之间是否有错误或者误差。如果得到的结果与 1 偏差很大 , 则表明存在计算错误或者是很高的实验误差。

生物秀-专心做生物

w w w .b b i o o .c o m

在前面的例子中,在每一时间点上分别取了三个独立的RNA 样本进行了分析。因此对每一个样

本分别处理,通过

计算。怎么样计算平均值就要看目标基因和内参基因是在同一个管子中扩增还是在不同的管子中扩增。表 1 给出了目标基因(c- myc )和内参基因(GAPDH )在不同管中扩增的实验数据。在这里不应该把任一单个的c-myc 管子和GAPDH 管子作比较,而应该分别计算出c-myc 和GAPDH 的平均 C T 来计算△ C T 。重复实验中 C T 值的估计偏差通过标准的指数计算转化成最后结果中相对量的变化。但其中的一个

难点是 C T 值与相应的拷贝数成指数关系(见第 4 部分), 因此,在最后的计算中,

计算。在这里估计误差值也是一个不对称的范围,反映了误差经指数处理转化为线性差异。

在表 1 和表 2 中,估计误差在从△ C T 到△△ C T 的计算中未见有增加,这是因为我们把参照基因和检测基因的误差都显示出来了。我们把△ C T,cb 当作一个人为设定的常数来减去,得到

△△ C T 。这样得到的结果就与图 2 所显示的在求平均之前对不同重复样本分别通过各自的 C T

值求

2. 2 -ΔCT ’方法

2.1 2 - △ CT ’方法的推导

通过内标RNA 可以对加入RNA 的量的差异进行校正。

任一样品X 0,q 除以参照品 X 0,cb 得:

在这里△ CT ’=C T ,q-C T ,cb 。△ C T ’ 与前面计算中用的△ C T (用目标基因 C T 值减去参照基因 C T 值)相互区别。

就象在 1.1 部分所描述的,如果条件优化较好,效率接近于 1 ,内标相对于参照因子为:

2.2 2 -△CT ’ 方法的应用

2 - △ CT , 方法的一个应用就是确定实验处理对某一候选内标基因的影响。为了显示这一过程,我们做了血清饥饿 / 诱导实验 (7) 。血清饥饿 / 诱导是研究某些 mRNA 降解的常用方法 (8) 。然而,血清可能影响一些基因的表达包括标准的看家基因的表达。

在 24-h 血清饥饿培养之后,在 NIH 3T3 细胞中加入 15% 血清诱导基因表达。从细胞中提取 Poly(A) + RNA ,并将之反转录成 cDNA 。利用 SYBR Green 通过实时定量 PCR 检测 GAPDH ,β 2 -microglobulin cDNA 的量。 GAPDH 和β 2 -microglobulin 各自的相对量通过 2 - △ CT ‘ 公式

求得。细胞处理对于 GAPDH 的基因表达有明显影

响,但对β 2 -microglobulin 没有什么影响。因此β 2 -microglobulin 很适合做血清刺激定量实验的内标,而 GAPDH 并不适合。这一例子向大家展示了在只研究一个基因的时候怎么用 2 - △ CT ‘ 的方法分析基因相对表达数据。

物秀-专心做生物

w w w .b b i o o .c o m

3. 实时 PCR 数据的统计学分析

实时 PCR 最终分析的是阈值循环或 C 。 C T 值通过 PCR 信号的对数值和循环数来确定。 因此 C T 值是一个指数而非线性概念 。因此,在任何统计分析中都不要用原始的 C T 值来表示结果。正如我们在前文中所描述的一样, PCR 相对量通常和内标和参照样本一起计算而很少直接用 C T 值来表示,除非我们想检验重复样本之间的差别。为了向大家显示这一点,我们用 SYBR

生物秀-专心做生物

w w w .b b i o o .c o m

Green 通过 real-time PCR 来检测相同 cDNA 的 96 个重复反应。所有反应组分在同一管中混好后分装到 96 个管中,做实时 PCR 分析,得到了每一个样本的 C T 值。为了比较样品间变化,计算了 96 个样本的平均 ±SD ,如果通过原始 C T 值计算,平均 ±SD 是 20.00±0.193 , CV 为 0.971% 。但是如果把原始 Ct 值用 2 -CT 转化成线性形式,平均 ±SD 是 9.08 × 10 -7 ±1.33 × 10 -7 , CV 为 13.5 %。从这个简单的例子我们可以看出,通过原始 CT 值来反映变化是错误的,应该避免。用 2 -CT 将单个数据转化成线性形式来说明重复样本之间的变化和差异更准确可靠。 结论:

实时定量 PCR 实验设计和数据分析可以采用相对定量和绝对定量两种方法,研究人员在设计实时定量 PCR 实验分析基因表达的时候首先要问的一个问题就是:数据最后会以一个什么样的形式得到。如果需要知道绝对的拷贝数,就必须用绝对定量的方法,否则只需要给出基因表达相对量就足够了。相对定量可能比绝对定量要更容易一些,因为它不需要作标准曲线。

本文所给出的公式对于每个用相对定量的方法分析基因表达差异的研究人员都足够了。下面,我们总结一下实验设计和评估中的一些重要步骤: ? 选择一个内标基因。

? 确定内标的有效性,确保它不会受到实验处理的影响。

? 通过 PCR 扩增目标基因和内标基因 RNA 或 cDNA 的一系列梯度稀释模板确保它们的扩增效率相同。

最后通过 2 - △ CT 计算将统计数据转化成线性形式而不是原始 C T 值。 参考文献

? Murphy, L. D., Herzog, C. E., Rudick, J. B., Fojo, A. T., and Bates, S. E. (1990) Biochemistry 29, 10351–10356.

? Noonan, K. E., Beck, C., Holzmayer, T. A., Chin, J. E., Wunder,J. S., Andrulis, I. L., Gazdar, A. F., Willman, C. L., Griffith, B.,Von-Hoff, D. D., and Robinson, I. B. (1990) Proc. Natl. Acad. Sci. to a linear form using 2 2 C T more accurately depicts the USA 87, 7160–7164.

物秀-专心做生物

w w w .b b i o o .c o m

? Horikoshi, T., et al. (1992) Cancer Res. 52, 108–116.

? Heid, C. A., Stevens, J., Livak, K. J., and Williams, P. M. (1996) Genome Res. 6, 986–994. ? Winer, J., Jung, C. K., Shackel, I., and Williams, P. M. (1999) Anal. Biochem. 270, 41–9. ? Schmittgen, T. D., Zakrajsek, B. A., Mills, A. G., Gorn, V., Singer, M. J., and Reed, M. W. (2000) Anal. Biochem. 285, 194–204.

? Schmittgen, T. D., and Zakrajsek, B. A. (2000) J. Biochem. Biophys.Methods 46, 69–81. ? Chen, C. Y., and Shyu, A. B. (1994) Mol. Cell. Biol. 14, 8471–8482. ? Iyer, V. R., et al. (1999) Science 283, 83–87.

? Giulietti, A., Overbergh, L., Valckx, D., Decallone, B., Bouillon, R., and Mathieu, C. (2001) Methods 25, 386–401.

? Niesters, H. G. M. (2001) Methods 25, 419–429.

生物秀-专心做生物

w w w .b b i o o .c o m

实时荧光定量PCR(Real-Time-PCR)实验流程

实时荧光定量PCR(Real-Time PCR)实验流程 一、RNA的提取(详见RNA提取及反转录) 不同组织样本的RNA提取适用不同的提取方法,因为Real-Time PCR对RNA样品的质量要求较高,所以,正式实验前要选择一款适合自己样品的提取方法,在实验过程中要防止RNA的降解,保持RNA的完整性。 在总RNA的提取过程中,注意避免mRNA的断裂;取2ug进行RNA的甲醛变性胶电泳检测,如果存在DNA污染时,要用DNase I进行消化(因为在处理过程中RNA极易降解,建议体系中加入适量RNA酶抑制剂)。 二、DNase I 消化样品RNA 中的DNA 用DNase I 消化DNA 组份加量 模板(RNA) 10ug RNase Inhibitor 4ul DNase I buffer 10ul DNase I 10ul DEPC处理H2O 至100ul 混匀,37℃ 90min 三、RNA琼脂糖凝胶电泳 1.1%的琼脂糖凝胶电泳凝胶的配制: 1)称取琼脂糖0.45g放入三角瓶中,向其中加入4.5ml的10×MOPS缓冲液和39.5ml 的DEPC水,放微波炉里溶化。 2)待冷却到60摄氏度左右时,加入1ml甲醛,摇匀(避免产生气泡)。倒入凝胶板上凝固30min。 2.取各个RNA样品4μl,加入6×RNA电泳上样缓冲液2μl混匀,加入变性胶加样孔中。3.120V电压下电泳25min。用凝胶紫外分析仪观察,照相保存。 4.RNA电泳结果如下图所示。可见28S和18S两条明亮条带,无DNA条带污染。 四.RNA反转录为cDNA 反转录程序(以MBI的M-MLV为例) 组份加量(20ul体系) 加量(40ul体系) 模板(RNA) 0.1~2.5ug(根据条带的亮度适当调整) 3ug(根据条带的亮度适当调整) 引物T18(50uM)(或其他引物) 2.0ul 4.0ul DEPC处理H2O 至12.5ul 至25ul

实时荧光定量PCR方法简介

实时荧光定量PCR方法简介 一.实时荧光定量PCR的基本原理 理论上,PCR过程是按照2n(n代表PCR循环的次数)指数的方式进行模板的扩增。但在实际的PCR反应过程中,随着反应的进行由于体系中各成分的消耗(主要是由于聚合酶活力的衰减)使得靶序列并非按指数方式扩增,而是按线性的方式增长进入平台期。因此在起始模板量与终点的荧光信号强度间没有可靠的相关性。如采用常规的终点检测法(利用EB染色来判断扩增产物的多少,从而间接的判断起始拷贝量),即使起始模板量相同经PCR 扩增、EB染色后也完全有可能得到不同的终点荧光信号强度。 为了能准确判断样品中某基因转录产物(mRNA)的起始拷贝数,实时荧光定量PCR采用新的参数——Ct值,定量的根本原理是Ct值与样品中起始模板的拷贝数的对数成线性反比关系。 Ct值是如何得到的 在实时荧光定量PCR的过程中,靶序列的扩增与荧光信号的检测同时进行,定量PCR仪全程采集荧光信号,实验结束后分析软件自动按数学算法扣除荧光本底信号并设定阈值从而得到每个样品的Ct值。 Ct值的定义 Ct值中的“C”代表Cycle(循环),“t”代表检测threshhold(阈值),其含义是PCR扩增过程中荧光信号强度达到阈值所需要的循环数;也可以理解为扩增曲线与阈值线交点所对

应的横坐标。 Ct值与样品中模板的对应关系 Ct值与样品中起始模板的拷贝数的对数成线性反比关系(y=ax+b,x代表起始模板拷贝数的对数,y代表Ct值)。 与终点法相比利用Ct值的优势 由于Ct值是反映实际PCR反应过程中扩增即将进入指数期的参数,该参数几乎不受试剂消耗等因素的影响,因此利用Ct值判断的起始模板拷贝数更加精确,重复性也更好。传统的终点检测法是在PCR扩增经历了指数扩增期进入平台期后利用EB等染料染色来判断扩增产物的多少,从而间接的判断起始拷贝量,这种方法的精确度不高、重复性也不好。 下图中是96个复孔的实时扩增曲线(完全相同的反应体系、相同的反应protocol、相同的样品起始浓度),可以看到Ct值具有很好的重复性,而终点的荧光信号强度差异达到300个单位。 此外,采用实时荧光定量PCR还能从方法学上有效的防止PCR实验中交叉污染的问题。因为荧光定量PCR中模板的扩增与检测是同时进行的,当实验完成后即可获得定量结果,

实时荧光定量PCR仪ViiA7操作步骤

实时荧光定量PCR仪ViiA 7 操作步骤 ——以RNase P示例实验为例 一、定义384孔样品模块的实验属性 打开电脑访问ViiA 7 软件,然后打开左侧仪器开关。单击Experiment Setup图标。单击Experiment Properties以访问Experiment Properties屏幕。 在ViiA 7 软件中设计RNase P实验示例时,请输入: 二、使用Define屏幕定义RNase P示例实验的目标基因、样品。 1. 单击Define以访问Define屏幕。 2. 定义目标基因 a. 单击New以增加和定义目标基因。 b. 在目标基因表中,单击Target Name列中的一个单元格,并输入: c. (可选)单击Save以便将新增或原有的正在编辑的目标基因保存到Target Library。 d. 单击Add Saved从目标基因库添加目标基因。 3. 定义样品 a. 单击New以增加和命名样品。 b. 在样品表中,单击Sample Name列中的一个单元格,并输入: c. (可选)单击Save以将新增或原有的正在编辑的样品保存到Sample Library。 d. 单击Add Saved从样品库添加样品。 4. (可选)定义生物学平行测定 a. 在Define Biological Replicates Groups表中,单击New以增加和命名生物学平行 测定组。 b. 从下拉菜单选择Color。 c. 单击Comments列,以便为该生物学平行测定组添加注释。 注:实验示例不使用生物学平行测定组。保留Biological Replicate Groups空白。 5. 选择用作参比荧光的染料ROX。

实时荧光定量PCR(RT-qPCR)完全手册

实时荧光定量PCR(RT-qPCR)完全手册 所谓的实时荧光定量PCR就是通过对PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。RT-qPCR是由三个步骤组成 RT-qRCR影响分析可靠性关键点(Key porint) 关键词:荧光实时实时荧光定量PCRRT-qPCRRT-PCR反转录定量PCRQRT-PCR 方法简介 所谓的实时荧光定量PCR就是通过对PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量PCR反应中,引入了一种荧光化学物质,随着PCR 反应的进行,PCR 反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线。 RT-qPCR是由三个步骤组成: 1.反转录:依赖反转录酶将RNA反转录成cDNDA; 2. 扩增:用PCR的方法扩增cDNA; 3.检测:实时检测和定量扩增的产物. RT-qRCR影响分析可靠性关键点(Key porint): 1.分析结果依赖于模板的数量、质量以及合理的检测方法设计 2.反转录反应的非标准化影响试验的稳定性 3.数据分析应该高度客观,如果不合理的分析,从分析结果中会得到混淆的错误结果,因此通过对RT-qPCR的每一组分进行质量评价以达到最小化变异性,最大化可重复性,而且还需要沿用一个通用的数据分析的指南。对基因表达分析的标准化的需要是与人类临床诊断分析相适应的。

存在的问题 由于各个学术团体和科研机构使用不同的操作流程,必然导致大家使用不同定量的来源物以及数据分析: 1.新鲜、冰冻、甲醛固定的样品 2.整个组织样本,显微切割样本,单个细胞,组培细胞 3.总RNA或者mRNA 4.RNA反转录成cDNA的不同的引发策略 5.不同的酶以及酶的不同组合 6.变异系数、灵敏度 7. 多类型的检测化学方法,反应的条件,热循环仪的分析以及汇报方式。 8.每一步骤缺乏标准化分析流程造成了在样品的处理,内参的使用,归一化的方法,质量控制等等因素严重影响RT-qPCR的可信度,重复性。 RNA 质量评价 现在RNA 定量的程序很多。最近EMBO qPCR course (http://www-db.embl.de/jss/Embl GroupsOrg/conf_28) 比较了用Ribogreen, Agilent BioAnalyser, spectrophotometer,Nan odrop and the BioRadExperion来定量同样的样品。结果显示没有哪两种方法得到同样的

实时荧光定量PCR具体实验步骤

以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL 试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm 离心5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA 溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M 乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板

利用实时定量PCR和2-△△CT法分析基因相对表达量

利用实时定量PCR和2-△△CT法分析基因相对表达量 METHODS 25, 402–408 (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitati ve PCR and the 2-△△CT Method Kenneth J. Livak* and Thomas D. Schmittgen?,1 *Applied Biosystems, Foster City, California 94404; and ? Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164-6534 摘要: 现在最常用的两种分析实时定量PCR 实验数据的方法是绝对定量和相对定量。绝对定量通过标准曲线计算起始模板的拷贝数;相对定量方法则是比较经过处理的样品和未经处理的样品目标转录本之间的表达差异。2-△△CT方法是实时定量P CR 实验中分析基因表达相对变化的一种简便方法,即相对定量的一种简便方法。本文介绍了该方法的推导,假设及其应用。另外,在本文中我们还介绍了两种2-△△CT衍生方法的推导和应用,它们在实时定量 PCR 数据分析中可能会被用到。 关键词:反转录PCR 定量PCR 相对定量实时PCR Taqman 反转录 PCR (RT-PCR )是基因表达定量非常有用的一种方法(1 - 3 )。实时PCR 技术和RT-PCR 的结合产生了反转录定量 PCR 技术(4 ,5 )。实时定量 P CR 的数据分析方法有两种:绝对定量和相对定量。绝对定量一般通过定量标准曲线来确定我们所感兴趣的转录本的拷贝数;相对定量方法则是用来确定经过不同处理的样品目标转录本之间的表达差异或是目标转录本在不同时相的表达差异。 绝对定量通常在需要确定转录本绝对拷贝数的条件下使用。通过实时 PCR 进行绝对定量已有多篇报道(6 - 9 ),包括已发表的两篇研究论文(10,11 )。在有些情况下,并不需要对转录本进行绝对定量,只需要给出相对基因表达差异即可。显然,我们说 X 基因在经过某种处理後表达量增加 2.5 倍比说该基因的表达从1000 拷贝/ 细胞增加到2500 拷贝/ 细胞更加直观。

实时荧光定量PCR操作步骤

实时荧光定量PCR操作步骤 以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放臵5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75% O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心乙醇(75%乙醇用DEPCH 2 5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或 0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml 的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板

半定量和实时定量PCR步骤

半定量和实时定量PCR步骤 实验原理: RT-PCR将以RNA为模板的cDNA合成同PCR结合在一起,提供了一种分析基因表达的快速灵敏的方法。RT-PCR用于对表达信息进行检测或定量。另外,这项技术还可以用来检测基因表达差异或不必构建cDNA文库克隆cDNA。RT-PCR比其他包括Northern印迹、RNase 保护分析、原位杂交及S1核酸酶分析在内的RNA分析技术,更灵敏,更易于操作。 RT-PCR的模板可以为总RNA或poly(A)+选择性RNA。逆转录反应可以使用逆转录酶,以随机引物、oligo(dT)或基因特异性的引物(GSP)起始。RT-PCR可以一步法或两步法的形式进行。在两步法RT-PCR中,每一步都在最佳条件下进行。cDNA的合成首先在逆转录缓冲液中进行,然后取出1/10的反应产物进行PCR。在一步法RT-PCR中,逆转录和PCR在同时为逆转录和PCR优化的条件下,在一只管中顺次进行。 实验步骤: Trizol法RNA提取步骤 1、提取总RNA 2、逆转录反应 3、PCR反应以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。⑤RNA 干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或 0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液浓度成分 0.4M MOPS,pH 7.0 0.1M 乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板放入电泳槽内,加足量的1×MOPS电泳缓冲液至覆盖胶面几个毫米。②准备RNA样品

相对荧光定量PCR三种常用方法、注意事项

相对定量方法实际操作 (三种常用方法) 本人用的是相对荧光定量PCR法,在分子水平上比较课题中5种新基因的表达差异。实验进行很多次,感受颇深,同时遇到了一些问题:扩增效率、标准品选择(及赋值)、标准曲线、重复性等问题,希望有同行朋友一起探讨和指教。 1. Comparative Delta-delta Ct法定量流程(RG6000软件设置) 1).先对样品中的目的基因与看家基因分别做标准曲线,通过标准曲线确定两个 基因的扩增效率是否一致或接近;将扩增效率优化为一致。 2).同一样品分别进行看家基因和目的基因的扩增,分列在两页中 公式: P1 P2 相同的样品在两页里命名成相 同的名称,并定义为unknown 分别分析P1和P2页 选delta-delta Ct选项 依次填入,并定义对照样品 完成分析 F=2— 待检样品看对照组目的 基因平均Ct 对照组看家 — 待检样品目 ——

Comparative Delta-delta Ct法的特点、注意事项及实际应用 1). Comparative Delta-delta Ct法是很常用的一种相对定量方法,其最大特点 是,当优化的体系已经建立后,在每次实验中无需再对看家基因和目的基因做标准曲线,而只需对待测样品分别进行PCR扩增即可。 2). 其缺点是,每次实验都默认目的基因和看家基因的扩增效率一致,而并非真 实扩增情况的反映,这里势必存在一定的误差。 3). Comparative Delta-delta Ct法展开定量实验前,在预实验中,必需对目的基 因和看家基因做两组标准曲线。Rotor-Gene 的软件会自动给出两组标准曲线的R值、扩增效率等信息,如果两组标准曲线的斜率,即M值的差小于 0.1,那么后续实验中就可以用Comparative Delta-delta Ct法进行相对定量 分析。反之,如果M差值大于0.1,就无法用该方法进行相对定量分析。此时的解决方法有两种,一是优化实验,使两组标准曲线的斜率差值小于0.1,二是换用其它的相对定量方法。 应用实例:

荧光定量PCR全攻略

荧光定量PCR完全攻略 1、什么是定量PCR? 以参照物为标准,对PCR终产物进行分析或对PCR过程进行监测,从而达到评估样本中靶基因的拷贝数,称为定量PCR。定量PCR的可行性定量一般是在PCR扩增的指数期进行的。 2、定量PCR定量的理论依据是什么? 特定的待扩增基因片段起始含量越大,则指数扩增过程越短,当扩增速率趋于稳定后,则无论原来样品中起始模板含量多少,最终扩增片段的含量通常是一样的。理想的扩增结果:Y=X×2n其中Y代表扩增产物量,X代表PCR反应体中的原始模板数n为扩增次数;理论上PCR扩增效率为100%,PCR产物随着循环的进行成指数增长,但实际上:DNA的每一次复制都不完全,即每一次扩增中,模板不是呈2的倍增长;实际应为:Y= X(1+E)n,其中E 代表扩增效率:E = 参与复制的模板/总模板,通常E≤1,E在整个PCR扩增过程中不是固定不变的。通常X 在1~105拷贝、循环次数n≤30时,E 相对稳定,原始模板以相对固定的指数形式增加,适合定量分析,这也就是所谓的指数期;随着循环次数n的增加(>30次),E值逐渐减少,Y 呈非固定的指数形式增加,最后进入平台期。 3、荧光定量PCR定量的理论模式又是什么? PCR是对原始待测模板核酸的一个扩增过程,任何干扰PCR指数扩增的因素都会影响扩增产物的量,使得PCR扩增终产物的数量与原始模板数量之间没有一个固定的比例关系,通过检测扩增终产物很难对原始模板进行准确定量。近年来研究人员通过大量的实践,研究了相对准确的定量PCR方法,即荧光定量PCR。 PCR扩增通式:① T n=T0(1+E)n ② T n=Tn-1(1+E)n 注:[0

免费实时荧光定量PCR具体实验步骤

实时荧光定量PCR实验操作步骤 以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75% O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心乙醇(75%乙醇用DEPCH 2 5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数×40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl ×0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml 的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M 乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板放入电泳槽内,加足量的1×MOPS电泳缓冲液至覆盖胶面几个毫米。

三种荧光定量PCR检测方法比较

三种荧光定量PCR检测方法比较 定量pcr:以参照物为标准,对PCR终产物进行分析或对PCR过程进行监测,从而达到评估样本中靶基因的拷贝数,称为定量PCR。定量PCR的可行性定量一般是在PCR 扩增的指数期进行的。 常见荧光定量PCR检测方法可分为以下几类: (1) SYBR Green I 检测模式 SYBR Green I 是一种能与双链DNA 结合发光的荧光染料。其与双链DNA 结合后,荧光大大增强。因此,SYBR Green I 的荧光信号强度与双链DNA 的数量相关,可以根据荧光信号检测出PCR 体系存在的双链DNA 数量。SYBR Green I 的最大吸收波长约为497nm,发射波长最大约为520nm。PCR 扩增程序一般为94℃~55℃~72℃三步法,40 个循环。SYBR Green I 的缺点:由于SYBR Green I 没有特异性,不能识别特定的双链,只要是双链就会结合发光,对PCR 反应中的非特异性扩增或引物二聚体也会产生荧光,通常本底较高,所以在临床上使用可能会有假阳性发生。 SYBR Green I 的优点:SYBR Green I 的优点是因为其缺点产生,由于它能所有的双链DNA相结合,所以对不同模板不需特别定制不同的特异性探针,通用性较好,并且价格相对较低。这对科研是很有利的,因此国内外在科研中使用比较普遍。 (2) 水解探针模式(taq man探针) TaqMan 探针是一种寡核苷酸探针,荧光基团连接在探针的5’末端,而淬灭剂则在3’末端。当探针与靶序列配对时,荧光基团发射的荧光因与3’端的淬灭剂接近而被淬灭。在进行延伸反应时,聚合酶的5’外切酶活性将探针切断,使得荧光基团与淬灭剂分离,发射荧光。一分子的产物生成就伴随着一分子的荧光信号的产生。随着扩增循环数的增加,释放

实时荧光定量PCR具体实验步骤

实时荧光定量PCR具体实验步骤 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下:

荧光定量PCR详细流程和问题解析

荧光定量PCR详细流程和问题解析 普通PCR与荧光定量PCR技术区别? 简单的讲PCR技术最早是用于扩增一段特异的PCR片段,用于克隆、测序等实验,后来也将其用于样本中特异的PCR片段有无或非很粗的相对定量,而荧光定量PCR 技术则是为了测定样本中特异的PCR片段相对及绝对量,是一种测定特异的PCR 片段含量的方式。如测定病人样本中病原体的含量、实验样本中某一特定的mRNA 的含量等。 前些年有人讲过普通PCR后,通过电泳也可以进行定量,其实是将PCR产物的定量与PCR样本中模板定量相混了。近两年没有人再讲这类的话了。 Sybr Green、Taqman、Molecular beacon、LUX这些方法如何选择? 从实验成本来讲,Sybr Green是最好的,基本上就是普通PCR加上一点Sybr Green I 荧光染料即可,其信号强度也很好,还可以进行融解曲线分析等,但缺点是只能在一个反应管内进行一种PCR反应的检测,另一个问题是非特异性扩增会影响实验结果,当然也有一些技术解决这些问题,后面会讲到。对于研究人员来讲,如果需要检测的基因很多,而每个反应管中进行一种PCR反应的检测可以满足实验要求,则Sybr Green是最好的选择。 如果需要进行多通道实验,即在一个反应管中进行2种或以上的反应,则要选择其他的方法,最常用的是Taqman、Molecular beacon,这两种都是探针的方式,由于增加了探针的特异性,因此其扩增曲线反映的就是特异性产物的扩增曲线,不含有非特异性扩增的成分。因此商业用途的检测试剂盒大都采用这一技术,以减少非特异性产物造成错误结论的可能性。其缺点在于探针成本较高,有时设计的探针并不合适,有造成损失的可能性。并且要进行较多的实验条件的优化。这两种探针技术用于商业目的时都有专利问题,据说取得Molecular beacon的许可权的成本相对较低,但只是据说。 另一种值得一提的是LUX探针,它也可进行多通道实验,但它没有Taqman和Molecular beacon方法的增加探针特异性的功能,因此只能是一种折中的方案,

相关主题
文本预览
相关文档 最新文档