当前位置:文档之家› 常用金属指示剂

常用金属指示剂

常用金属指示剂

金属指示剂

名称离解平衡及颜色变化配制方法

铬黑T(EBT)H2In-(紫红)HIn(蓝)In(橙)与NaCl 1:100

二甲酚橙(XO)H3In-(黄)H2In(红)0.5%乙醇或水溶液

K-B指示剂H2In (红) HIn-(蓝) In2 (酒红)0.2酸性铬蓝K和0.2萘酚绿B溶于水

钙指示剂H2In-(酒红) HIn2(蓝) In-(酒

红)

5%乙醇溶液

吡啶偶氮萘酚

(PAN)

H2In+(黄绿) HIn(黄) In-(淡红)1%乙醇溶液

磺基水杨酸H2In (红紫) HIn-(无色) In-(黄)10%水溶液

酸性铬蓝K 红-蓝0.1%乙醇溶液

PAR 红-黄0.05%或0.2%水溶液钙镁试剂H2In-(红) HIn-(蓝) In-(红橙)0.05%水溶液[3]

长安大学金属热加工名词解释

1,成分过冷:由溶质再分配导致界面前方熔体成分及其凝固稳定发生变化而引起的过冷称为成分过冷。条件:合金中的溶质含量较高;液相斜率大;溶质在液体中的扩散系数小;对于K0<1的合金,K0值很低,反之很高;凝固界面前的液相中温度梯度小;晶体生长速率高 .2 溶质再分布:凝固时固相中不能容纳的B原子被排挤出来,富集在界面上的液体中,然后逐渐向液体内部扩散均化。三种:1.溶质通过扩散进行再分布;2.溶液中有对流,局部增多的溶质借助熔体流动而达到在大体积液相中均匀分布;溶质即通过扩散也借助液体流动而进行再分布. 3伪共晶:非平衡凝固状态下,非共晶成分的合金凝固得到的共晶组织。 17回火抗力(回火稳定性):在回火过程中随回火温度的升高钢抵抗硬度下降的能力 ,4二次硬化:某些淬火合金钢在500℃以上回火后,形成特殊碳化物,弥散细小,使硬度-在硬度-回火温度曲线上出现峰值的现象 5、邻先相两个共晶相得析出次序和生长速度是不相同的,就是说,在两个相的生核和生长中必有一个相位先导。由于次相的析出,引起溶质的富集而导致另一相的析出和生长,此相成为领先相。 6、平衡凝固凝固过程中的每个阶段都达到平衡,即相变过程中有充分时间进行组元间的扩散,以达到平衡相的成分 7、固态相变固体物质内部结构的转变成为固态相变 8调幅分解:某些合金在高温下具有均匀单相固溶体,但冷却到某一温度范围时可分解成为与原固溶体结构相同但成分不同的两个威区的转变 9、热处理热处理的基本过程就都是把金属材料加热到一定温度并保温一段时间后,以规定的冷却速率冷却下来。 10过冷奥氏体:在临界点以下存在且不稳定的将要发生转变的奥氏体 11、回火M马氏体经分解后, 原马氏体组织转化为由有一定过饱和度的立方马氏体和ε-碳化物所组成的复相组织。 12、回火脆性定义:随回火温度升高,一般是钢的强度、硬度降低,塑性升高,但冲击韧性不一定总是随回火温度升高而升高,有些钢在某些温度回火时,韧性反而显著下降的现象13、A1称为共析转变线或共析温度,凡是含碳量大于0.0218的铁碳合金都将发生共析转变; A3它是在冷却过程中由奥氏体析出铁素体的开始线,或者说在加热过程中铁素体溶入奥氏体的终了线; Acm是二次渗碳体的开始析出线。 14、形状记忆效应:将某些材料进行变形后加热至某一特定温度以上时,能自动回复原来形状的效应。 15伪共晶区的特点:1共晶的各组元的熔点相近时,在液相线的延伸线包围的范围内,反之,偏离高熔点组元一侧。2由金属相和非金属相构成的共晶系中,伪共晶区一般是偏向非金属组元或金属性较低的组元一侧。 16、分析晶内偏析和晶界偏析的形成机理,如何减少和去除这两种偏析? 实际铸造条件下,所得的固溶体中,每一个晶粒内的成分都是不均匀的,晶粒内先结晶的部分和后结晶的部分的成分是不同的,这就是晶内偏析。在成分过冷不大的情况下,固溶体合金在结晶时会出现一种胞状结构,当液相内过冷度较大时,结晶时则呈现树枝状结构,胞状结构由一系列平行的棒状晶体所组成,沿凝固方向长大,呈六方断面,六方断面的晶界富集着溶质元素,因此这种偏析也叫胞状偏析。它属于晶界偏析。预防和消除方法:细化晶粒,均匀化退火。 17、分析带状偏析和逆偏析的形成机理。如何减少和去除这两种偏析? 带状偏析:当液体金属中的溶质的扩散速度低于固体生长速度时,在固液界面将产生溶质偏析,固液界面的过冷下降,由于界面的低减,结晶在固液界面过冷低减较小部位优先生长,此时由于固液界面的前方的过冷相对过大,优先结晶的部位进而长成树枝状,溶质浓化液将被树枝状的晶枝所捕捉,此时枝晶的成长将与邻近的的枝晶连接在一起,结晶前沿的成长又会出现新的停滞,如此重复在铸件断面可能出现数条带状偏析。减少溶质含量,采取孕育措施细化晶粒,提高合金的结晶速度。逆偏析:宽结晶区间的固溶体型合金在凝固时形成粗大的树枝状晶,枝晶相互交错,枝晶间富集着低熔点的溶质,当铸件产生体收缩,低熔点溶质

滴定曲线及指示剂的选择

滴定曲线及指示剂的选择(二) 【学习要求】 1.理解弱酸或弱碱的滴定曲线、突跃范围的确定及指示剂的选择。 2.掌握弱酸或弱碱的滴定条件 【复习回顾】 1、什么是酸碱滴定曲线?什么是滴定突跃? 2、强碱滴定强酸一般选用什么酸碱指示剂? 3、弱酸、弱碱、强碱弱酸盐、强酸弱碱盐、缓冲溶液的pH的计算公式 【预习内容】有人说“在化学计量点时溶液的pH等于7”你认为对吗?试举例说明 【学习内容】 一、弱酸或弱碱的滴定 以0.1000mol/L NaOH滴定20mL 0.1000mol/L HAC溶液为例 1、滴定前 溶液的pH取决于pH= 2、滴定开始至化学计量点前 溶液的pH取决于,当加入的NaOH溶液体积达到99.9%,此时消耗mLNaOH,溶液的pH= 3、化学计量点时 此阶段溶液的pH处于突变状态,此时溶液中的溶质为。此时消耗mLNaOH,溶液的pH= 4、化学计量点后 当加入的NaOH溶液体积达到100.1%时,此时消耗mLNaOH,此时溶液的溶质主要为,溶液的pH=

5、滴定曲线和滴定突跃 (1)绘制滴定曲线,描述变化特点 (2)根据突跃范围选择指示剂 (3)影响突跃范围大小的因素 强酸(强碱)滴定弱碱(弱酸)时,溶液越稀,滴定突跃范围。弱碱的Kb值(弱酸Ka值)越小,即酸越弱,突跃范围越 6、弱酸或弱碱准确滴定的条件为。多元弱酸或多元弱碱,若Ka1或Kb1满足上述滴定分析条件,则可以直接滴定;;若相邻两级电离常数之比,还可以分步滴定。 【例题1】 试判断c=1.0mol/L的甲酸、氨水,氢氰酸能否用酸碱滴定法直接滴定。 【例题2】用0.1000mol/LHCl滴定20mL氨水溶液,滴定突跃是多少?化学计量点pH是多少?应选择哪种指示剂? 【课后练习】 1、在酸碱滴定中,化学计量点时溶液的pH ( ) A. 大于7 B. 小于7 C.等于7 D.都有可能 2、在用盐酸测定硼砂时,化学计量点时pH=5.1,应选用下列哪一种指示剂() A.甲基橙 B. 甲基红 C 酚酞D甲基黄(2.9—4.0) 3、0.1000mol/LNaOH滴定20mL 0.1000mol/L HCOOH溶液的化学计量点pH是多少?应选择何种指示剂?

酸碱中和滴定的关键

酸碱中和滴定的关键:一要准确测定出参加中和反应的酸、碱溶液的体积;二要准确判断中和反应是否恰好完全反应。 酸碱指示剂可在中和反应终点时出现颜色变化,因此终点判断须选择合适指示剂。 酸碱恰好完全中和的时刻叫滴定终点,为准确判断滴定终点,须选用变色明显,变色范围的pH与恰好中和时的pH吻合的酸碱指示剂。 酚酞和甲基橙是中和滴定时常用的指示剂,其变色范围分别是:甲基橙的pH在3.1~4.4之间,酚酞的pH在8.2~10.0之间。如用0.1000 mol/L的NaOH溶液去滴定20.00 mL 0.1000 mol/L 的盐酸溶液,理论上应用去NaOH溶液20.00 mL,这时溶液的pH=7。但如果用酚酞作指示剂,在它所指示的滴定终点时,pH≠7,而是在8.2~10.0之间。实际计算表明,当滴定到终点时,溶液的pH并不一定等于7,而是存在误差的。这是由指示剂的变色范围所导致的,所造成的误差是在许可范围之内,可以忽略不计。 为了减小误差,强酸强碱之间的互滴,可选择甲基橙或酚酞。若酸与碱中有一方是弱的,则要根据中和后所得的盐溶液的pH来确定选择哪一种指示剂。一般说来:强酸中和弱碱时,选择甲基橙(变色范围pH在3.1~4.4之间,生成的强酸弱碱盐显酸性);强碱中和弱酸时,选择酚酞(变色范围pH在8.2~10.0 之间,生成的强碱弱酸盐显碱性)。由于石蕊试液的变色范围较大,且变色不明显,在中和滴定时一般不用其作为中和滴定的指示剂。 一、选择指示剂 【例题1】已知常温、常压下,饱和CO2的水溶液的pH=3.9,则可推断用标准盐酸溶液滴定碳酸氢钠水溶液时,适宜选择的指示剂及滴定终点时颜色变化的情况是 A. 石蕊,由蓝变红 B. 甲基橙,由橙变黄 C. 酚酞,红色褪去 D. 甲基橙,由黄变橙 解析:标准盐酸溶液滴定碳酸氢钠水溶液时,发生的反应是: NaHCO3 + HCl === NaCl + CO2↑+ H2O,滴定终点时pH=3.9,因此滴定终点时溶液显酸性,指示剂选用甲基橙(3.1~4.4),滴定终点时溶液pH降低到3.9,颜色由黄变橙。 答案:D 【例题2】实验室现有3种酸碱指示剂,其pH变色范围如下: 甲基橙:3.1~4.4 石蕊:5.0~8.0 酚酞:8.2~10.0 用0.1000 mol/L NaOH溶液滴定未知浓度的CH3COOH溶液,反应恰好完全时,下列叙述中正确的是 A. 溶液呈中性,可选用甲基橙或酚酞作指示剂 B. 溶液呈中性,只能选用石蕊作指示剂 C. 溶液呈碱性,可选用甲基橙或酚酞作指示剂 D. 溶液呈碱性,只能选用酚酞作指示剂 解析:0.1000 mol/L NaOH溶液滴定未知浓度的CH3COOH溶液,反应恰好完全时,生成CH3COONa 是强碱弱酸盐,因发生水解而使溶液显碱性,故选择酚酞作指示剂误差最小。若选用甲基橙,在甲基橙的变色范围内,NaOH的量不足,导致测定出的CH3COOH浓度偏小。石蕊变色范围太宽,误差大,且颜色变化不明显,不能作酸碱中和反应的指示剂。因此,应选用酚酞作指示剂。

金属工艺的名词解释

名词解释 强度——强度是金属材料在静载荷作用下抵抗变形和破坏的能力。 屈服点----开始出现微量的塑性变形的应力。 抗拉强度----断裂之前所受最大应力。 塑性——塑性是金属材料在静载荷作用下产生永久变形而不破坏的能力。塑性指标用伸长率δ和断面收缩率ψ来表示。δ、ψ值越大,表示材料的塑性越好。 硬度——硬度是衡量金属材料软硬的一个指标。 布氏硬度----HBS(钢球)HBW(合金球)-----数值+字符+直径/载荷/时间 洛氏硬度---- HRA与HRC(金刚石顶角为120°的圆锥体)HRB(钢球) 维氏硬度----HV向对面间为136°的正四棱锥金刚石 韧性——金属材料抵抗冲击载荷作用而不破坏的能力,称为韧性。 疲劳强度——金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强 晶体——指其组成微粒(原子、离子或分子)呈规则排列的物质 晶格——抽象地用于描述原子在晶体中排列形式的空间几何格子,称为晶格。 晶胞——组成晶格的最小几何单元称为晶胞。 单晶体—一块晶体内部的晶格位向(即原子排列的方向)完全一致,称这块晶体为单晶体。 多晶体——由许多晶粒组成的晶体称为多晶体。 晶界—一将任何两个晶体学位向不同的晶粒隔开的那个内界面称为晶界。 晶粒—一多晶体材料内部以晶界分开的、晶体学位向相同的晶体称为晶粒。 结晶—一通过凝固形成晶体的过程称为结晶(包含晶核的形成与晶核的长大)。 变质处理—一在浇注前,将少量固体材料加入熔融金属液中,促进金属液形核,以改善其组织和性能的 合金—一两种或两种以上的金属元素或金属与非金属元素组成的金属材料。 组元—一组成合金最基本的、独立的物质称为组元。 .相—一在一个合金系统中具有相同的物理性能和化学性能,并与该系统的其余部分以界面分开。 组织—一金属及其合金内部涉及晶体或晶粒的大小、方向、形状、排列状况等组成关系的构造情况。 固溶体——一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类 型的固态金 属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化——由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高 弥散强化——金属化合物细小均匀分布在固溶体基体上是,能显著提高合金的强度,硬度和耐磨性的现象 化合物——合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物——由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体—一α-Fe内固溶有碳所形成的体心立方的固溶体F(或α) 奥氏体—一γ-Fe内固溶有碳所形成的面心立方的固溶体,常用符号A(或γ)

滴定终点指示剂的选择

滴定终点与指示剂的选择 河北省宣化县第一中学栾春武 酸碱中和滴定的关键:一要准确测定出参加中和反应的酸、碱溶液的体积;二要准确判断中和反应是否恰好完全反应。 酸碱指示剂可在中和反应终点时出现颜色变化,因此终点判断须选择合适指示剂。 酸碱恰好完全中和的时刻叫滴定终点,为准确判断滴定终点,须选用变色明显,变色范围的pH与恰好中和时的pH吻合的酸碱指示剂。 指示剂的变色范围越窄越好,pH稍有变化,指示剂就能改变颜色。石蕊溶液由于变色范围较宽,且在滴定终点时颜色的变化不易观察,所以在中和滴定中不采用。 酚酞和甲基橙是中和滴定时常用的指示剂,其变色范围分别是:甲基橙的pH在3.1~4.4之间,酚酞的pH在8.2~10.0之间。如用0.1000 mol/L的NaOH溶液去滴定20.00 mL 0.1000 mol/L 的盐酸溶液,理论上应用去NaOH溶液20.00 mL,这时溶液的pH=7。但如果用酚酞作指示剂,在它所指示的滴定终点时,pH≠7,而是在8.2~10.0之间。实际计算表明,当滴定到终点时,溶液的pH并不一定等于7,而是存在误差的。这是由指示剂的变色范围所导致的,所造成的误差是在许可范围之内,可以忽略不计。 溶液颜色的变化由浅到深容易观察,而由深变浅不易观察。强酸强碱之间的互滴,尽管甲基橙或酚酞都可以选用。但为了减小误差,应选择在滴定终点时使溶液颜色由浅变深的指示剂。如强酸滴定强碱时,甲基橙加在碱里,达到滴定终点时,溶液颜色由黄色变橙色,易于观察,故选择甲基橙。用强碱滴定强酸时,酚酞加在酸中,达到滴定终点时,溶液颜色由无色变浅红色,易于观察,故选择酚酞。 若酸与碱中有一方是弱的,则要根据中和后所得的盐溶液的pH来确定选择哪一种指示剂。一般说来:强酸中和弱碱时,选择甲基橙(变色范围pH在3.1~4.4之间,生成的强酸弱碱盐显酸性);强碱中和弱酸时,选择酚酞(变色范围pH在8.2~10.0之间,生成的强碱弱酸盐显碱性)。 一、选择指示剂 【例题1】已知常温、常压下,饱和CO2的水溶液的pH=3.9,则可推断用标准盐酸溶液滴定碳酸氢钠水溶液时,适宜选择的指示剂及滴定终点时颜色变化的情况是()。 A. 石蕊,由蓝变红 B. 甲基橙,由橙变黄 C. 酚酞,红色褪去 D. 甲基橙,由黄变橙 解析:标准盐酸溶液滴定碳酸氢钠水溶液时,发生的反应是:NaHCO3 + HCl === NaCl + CO2↑+ H2O,滴定终点时pH=3.9,因此滴定终点时溶液显酸性,指示剂选用甲基橙(3.1~4.4),滴定终点时溶液pH降低到3.9,颜色由黄变橙。 答案:D

金属热处理名词概念

第一章 【比容差应变能】由于新相和母相的比容往往不同,故新相形成时的体积变化将受到周围母相的约束而产生弹性应变能,称为比容差应变能Es。 【伪共析】从这一转变过程和转变产物的组成相来看,与钢中共析转变(即珠光体转变)相同,但其组成相的相对量(或转变产物的平均成分)却并非定值,而是依奥氏体的碳含量而变,故称为伪共析转变。 【惯习面】在许多固态相变中,新相与母相间往往存在一定的取向关系,而且新相往往又是在母相一定的晶面族上形成,这种晶面称为惯习面。 【共格界面】当界面上的原子所占位置恰好是两相点阵的共有位置时,两相在界面上的原子可以一对一地相互匹配。 【半共格界面】当错配度增大到一定程度时,便难以继续维持完全共格,这样就会在界面上产生一些刃型位错,形成界面上两相原子部分地保持匹配的半(或部分)共格界面,以补偿原子间距差别过大的影响,使弹性应变能降低。 【非共格界面】当两相界面处的原子排列差异很大,即错配度很大时,其原子间的匹配关系便不再维持。这种界面称为非共格界面。 【等温转变(IT)曲线】在实际工作中,人们通常采用一些物理方法测出在不同温度下从转变开始到转变不同量,以至转变终了时所需的时间,做出“温度—时间—转变量”曲线,通称为等温转变曲线,缩写为TTT(Temperature-Time-Transformation)或IT(Isothermal Transformation)曲线。 【CT曲线】如果转变在连续冷却过程中进行,则有过冷奥氏体连续冷却转变图,又称CT或CCT(Continuous Cooling Transformation)图。 【韧脆转变温度】(简称:NDT)主要针对钢铁随着温度的变化其内部晶体结构发生改变,从而钢铁的韧性和脆性发生相应的变化。 第二章奥氏体 【奥氏体】奥氏体是碳在 -Fe中的间隙固溶体 【组织遗传】在生产中有时能遇到这样的情况,即过热后的钢(过热是指加热温度超过临界点太多,引起奥氏体晶粒长大,结果在冷却后得到的组织,如马氏体或贝氏体,也十分粗大)再次正常加热后,奥氏体仍保留原来的粗大晶粒,甚至原来的取向和晶界。这种现象称为组织遗传。 第三章珠光体 【屈氏体】其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,根据片层间距分为屈氏体和索氏体。 在光学显微镜下可以分辨的(片层间距为0.25~1.9μm),称为珠光体。 无法分辨(片层间距为30~80nm)的称为屈氏体(托氏体也译做屈氏体)。 介于两者之间的称为索氏体。 【索氏体】 【上临界冷却速度】Vc称为淬火临界冷速, 又称为上临界冷速。 【下临界冷却速度】 【完全退火】一般是指加热使钢完全得到奥氏体后慢冷的工艺。 【扩散退火(均匀化退火)】扩散退火的目的是消除钢锭或大型钢铸件中不可避免的成分偏析,尤其是在高合金钢中,应用更为普遍。

金属学金相学名词解释

金属:具有正的电阻温度特性的物质。 晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。原子排列规律不同,性能也不同。 点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点(原子、分子或离子)忽略,抽象成纯粹几何点,称为阵点或节点。为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。这种用以描述晶体中原子(分子或离子)排列规律的空间格架称为空间点阵,简称点阵或晶格。 晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。这个用以完全反映晶格特征最小的几何单元称为晶胞。多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。 空位:某一温度下某一瞬间,总有一些原子具有足够能量克服周围原子约束,脱离原平能位置迁移到别处,在原位置上出现空节点,形成空位。到晶体表面,称为肖脱基空位;到点阵间隙中,称弗兰克尔空位; 位错:它是晶体中某处有一列或若干列原子发生了有规律的错排现象,使长达几百至几万个原子间距、宽约几个原子间距范围内原子离开平衡位置,发生有规律的错动,所以叫做位错。基本类型有两种:即刃型位错和螺型位错。 晶界:晶体结构相同但位相不同的晶粒之间的界面称为晶粒间界,简称晶界。小角度晶界位相差小于10°,基本上由位错组成。大角度晶界相邻晶粒位相差大于10°,晶界很薄。 亚晶界和亚结构:分别泛指尺寸比晶粒更小的所有细微组织及分界面。 柯氏气团:刃型位错的应力场会与间隙及置换原子发生弹性交互作用,吸引这些原子向位错区偏聚。小的间隙原子如C、N 等,往往钻入位错管道;而大置换原子,原来处的应力场是受压的,正位错下部受拉,由相互吸引作用,富集在受拉区域;小的置换原子原来受拉,易于聚集在受压区域,即位错的上部。使畸变能降低,同时使位错难以运动,造成金属的强化。这就是利用溶质原子与位错交互作用的柯垂尔气团--柯氏气团。用以解释钢的脆化、强度提高等宏观现象。 元:组成合金的最基本的独立的物质,简称元 相:合金中结构相同、成分和性能均一并以界面互相分开的组成部分,称之为相。 组织:由于形成条件不同,形成具有不同形状、大小数量及分布的相相互结合而成的综合体。固溶体:组元以不同比例混合后形成的固相晶体结构与组成合金的某一组元相同,这种相称固溶体 化合物:是构成的组元相互作用,生成不同与任何组元晶体结构的新物质 相图:是表示合金系中合金的状态与温度、压力与成分之间关系的一种图解。又称状态图或平衡图。 表象点:位于相图中,并能表示合金成分、温度的点称表象点。 吉布斯相律:相律是表示平衡条件下,系统的自由度数、组元数和相数之间的关系,是系统平衡条件的数学表达式。相律可用下式表示:f = c -p +2 当系统的压力为常数时,则为:f = c-p + 1式中,c 系统的组元数,p 平衡条件下系统中相数,f 为自由度数。 自由度:是指在保持合金系中相的数目不变的条件下,合金系中可以独立改变的影响合金状态因素的数目 匀晶转变:从液相结晶出单相的固溶体,这种结晶过程称匀晶转变 异分结晶:固溶体结晶过程中,结晶出的固相与母相成分不同,这种结晶也称为选择结晶。

微专题 中和滴定指示剂的选择

微专题酸碱中和滴定指示剂的选择 新洲一中张新平 [知识点] 1.石蕊的变色范围是5~8,变色范围较宽(氢离子浓度跨度高达1000倍),比起甲基橙、酚酞就显得非常不灵敏。且在溶液处在一个不断稀释的过程,从紫色到蓝色的色差人眼识别困难,也就难以依据颜色突变判断滴定终点了,所以不能做中和滴定时的指示剂。 2. 常用滴定指示剂是甲基橙和酚酞——其变色范围窄,突变颜色明显易识别。 [典型范例] [2016·全国I.T12]298K时,在20.0 mL 0.10 mol·L-1氨水中滴入0.10 mol·L-1的盐酸,溶液的pH与所加盐酸的体积关系如图所示。已知0.10 mol·L-1氨水的电离度为1.32%,下列有关叙述正确的是() A.该滴定过程应该选择酚酞作为指示剂 B.M点对应的盐酸体积为20.0 mL C.M点处的溶液中c(NH4+)=c(Cl-)=c(H+)=c(OH-) D.N点处的溶液中pH<12 [解析]在经历多年高考的全国卷中后,偶然出现了“关于强酸滴定弱碱的指示剂的选择”问题的选项A、以及“关于弱电解质的电离度的计算”问题选项D,这都是高于教材的。也正因为该题的出现,所以在2017年新修订的“高考大纲”中就添加了“能利用电离平衡常数进行相关计算”。 A.依据指示剂选择的一般规律,其指示的(即发生颜色突变)点是恰好完全中和、或前后的点(即等当点)。氨水中滴入盐酸,恰好完全反应所生成的氯化铵溶液因水解而显酸性,因此,应该选择在酸性范围变色的指示剂——甲基橙。 B. 恰好完全反应时,消耗盐酸的体积为20.00 mL,而此时pH<7。 C. M点处的溶液为中性溶液,有电荷守恒:c(NH4+)+c(H+)=c(Cl-)+c(OH-),大小关系是c(NH4+)=c(Cl-)>c(H+)=c(OH-)。 D.N点处的溶液中:c(OH-)=0.10 mol·L-1×1.32%=1.32×10-3mol·L-1,

中和滴定指示剂选择

中和滴定是利用中和反应原理来测定酸或碱溶液的浓度的方法,在反应过程中,由于溶液的pH发生突变而引起指示剂变色,由此来判断滴定终点。中和滴定通常使用的指示剂有酚酞和甲基橙,由于酸碱类型(强弱)不同,使用的指示剂具有选择性。下面通过有关计算来说明酸碱中和滴定中选择指示剂的依据。 一、强酸与强碱中和滴定指示剂的选择 强酸与强碱发生中和反应生成的强酸强碱盐不发生水解,因此恰好中和时,其溶液呈中性。当强酸或强碱过量时,溶液的pH由过量的酸或碱的量所决定。 【例1】在20.00mL0.100mol·L-1的氢氧化钠溶液中,当加入20.00mL0.100 mol·L-1盐酸时恰好中和。当少加一滴或多加一滴(设一滴溶液的体积为0.05 mL)盐酸时,溶液的pH分别为多少? 解析:当少加一滴盐酸即加入盐酸19.95mL时,碱过量,溶液呈碱性。 pH= -lgc(H+)= -lg8.0×10-11=10.1 当多加一滴盐酸即加入盐酸20.05mL时,酸过量,溶液呈酸性。 pH= -lgc(H+)= -lg1.25×10-4=3.9 以上计算说明,当少加一滴盐酸到多加一滴盐酸时,溶液的pH从10.1突变到3.9,而酚酞的pH变色范围为8.2-10.0,甲基橙的pH变色范围为3.1-4.4,溶液的pH突变均会引起指示剂的颜色变化,造成的误差很小。因此,酚酞和甲基橙都可以作为强酸与强碱中和滴定的指示剂。 二、强酸滴定弱碱指示剂的选择 强酸与弱碱发生中和反应,生成的强酸弱碱盐因发生水解而使溶液呈酸性,应选择酸性条件下变色的指示剂。 【例2】在20.00mL0.100mol·L-1的氨水中,当加入20.00mL0.100mol·L-1盐酸恰好中和时,溶液的pH为多少?当多加一滴(设体积为0.05 mL)盐酸时,溶液的pH为多少?(氨水的K b=1.8×10-5)。 解析:当氨水和盐酸恰好中和时,生成NH4Cl,根据NH4+的水解平衡计算溶液的pH。设溶液中H+浓度为x mol·L-1,则: NH4++H2ONH3·H2O+H+ 起始浓度: c 0 0 平衡浓度:c-x x x 水解平衡常数: 由于K h很小,故c(H+)很小,c(NH4+)- c(H+)=c-x≈c,则: pH=-lgc(H+)=-lg5.3×10-6=5.3 上述氨水和盐酸恰好中和时,溶液的pH为5.3,此时,若多加一滴盐酸(设体积为0.05mL),溶液的pH将变小。在忽略NH4+水解的情况下,由例1计算结果可知:此时溶液的pH=-lgc(H+)=-lg1.25×10-4=3.9,再考虑水解因素,实际上溶液的pH小于3.9,用甲基橙作指示剂,溶液由黄色变为橙色。 如果用酚酞作指示剂,当溶液的pH降到8.2以下时,溶液颜色由浅红色变为无色。设在上述氨水中加入xmL0.100mol·L-1盐酸时,溶液的pH降到8.2。此时盐酸的量不足,氨水过量,溶液呈碱性。若忽略NH4+的水解,可根据氨水的电离平衡进行计算。 NH3·H2ONH4++ OH- 解得:x=18.4

金属材料名词解释

名词解释: 1 淬火性:钢的淬透性是指钢在淬火时能获得淬硬深度的能力,它是钢材本身固有的属性。 2 淬硬性:钢的淬硬性也叫硬性,是指钢在淬火后能达到最高硬度的能力,它主要取决于M的含量。 3 贝氏体:贝氏体是由含过饱和碳的铁素体于弥散分布的渗碳体(或碳化物)组成的非层状两相组织, 用“B”表示。 4 残余奥氏体:当奥氏体中碳的百分含量大于0.5%时,由于M F已低于室温,因此淬火室温时,必然 有一部分奥氏体被残留下来,这部分奥氏体称为残余奥氏体。 5 共析转变:由一定成分的固相,在一定温度下,同时析出成分不同的两种固相的转变,称为共析转变。A 727℃ (F+Fe3C) 6 固溶强化:由于固溶体的晶格发生畸变,使塑性变形抗力增大,结果使金属材料的强度、硬度增高。 这种通过溶入溶质元素形成固溶体,使金属材料的强度、硬度升高的形象,称为固溶强 化。 7 等温冷却转变:在A1以下,保持恒温一段时间,让过冷奥氏体完成转化叫过冷奥氏体等温转变。 8 临界冷却曲线:与过冷奥氏体连续冷却转变曲线鼻尖相切的冷却速度,称为马氏体临界冷却速度。 9 共晶转变:一定成分的液相,在一定温度下,同时结晶出成分不同的两种固相的转变,称为共晶转 变。 10调质处理:将淬火加高温回火相结合的热处理称为调质处理,其目的使钢获得强度、硬度和塑性、韧性都较好的综合力学性能。 问题 1力学性能符号含义σs(σ0.2 ) σb HBW(HBS) HRA(B、C) HV δψa kσ-1 σs:在拉伸过程中,当负荷不增加甚至有所降低时。试样仍继续产生变形,此时的最小应力叫屈服点,用σs表示 σ0.2:屈服强度为试样标距部分产生0.2%残余伸长时的应力。 σb试样在拉断前所承受的最大负荷于原始截面积之比。 HBW:当压头为硬质合金球时的布氏硬度符号,适用于布氏硬度值为450~650的金属材料。 HBS:当压头为淬火钢球时的布氏硬度符号,适用于布氏硬度值为低于450的金属材料。 HRA、HRC压头是金刚石圆锥的洛氏硬度符号,HRB是直径1.5488mm钢球的洛氏硬度符号。负荷分别为60、100、150Kg。适用范围70~85、25~100、20~67。 HV维氏硬度符号 δ试样在断裂时的相对伸长。 ψ试样断裂后,试样横截面积减小量与试样横截面积之比。 a k冲击吸收功,即试样变形和断裂所消耗的功。 σ-1光滑试样的对称循环旋转弯曲疲劳极限。 2 铁碳合金组织:A、F、P、Fe3C、Ld、L’d及组成。 A:奥氏体,是碳溶于ㄚ–Fe中的间隙固溶体; F:铁素体,是碳溶于α-Fe中的间隙固溶体; P:珠光体,是 铁素体和渗碳体的机械混合物; Fe3C是一种具有复杂晶格的金属化合物; Ld :莱氏体,是奥氏体和渗碳 体的细密混合物; L’d:变态莱氏体,是珠光体和渗碳体的混合物。 3 钢的精密度如何分级? 一般将N小于4的称为粗晶粒,5~8级称为细晶粒,8以上称为超细晶粒。 4 根据含碳量如何区分钢与铁?根据组织室温下钢可分那三类? 含碳量<2.11%的铁碳合金称为钢,>2.11%的铁碳合金称为生铁,<0.0218%的铁碳合金称为纯铁。根据室温下钢可分为:共析钢、亚共析钢、过共析钢。 5 金属结晶包括那二个过程。细化晶粒措施有那些? 晶核形成和晶核不断长大二个过程。措施有:1增加过冷度2变质处理3附加振动。 6 1227 1538

金属热处理 名词解释

结构起伏:短程有序的原子集团瞬间出现瞬间消失,这样不断变化着的短程有序的原子集团能量起伏:各微观区域内的自由能并不相同有的高有的低各微观的能量处于的起伏状的状态正温度梯度:是指液相中的温度随与界面的距离的增加而提高的温度分布状况 变质处理:是在浇注前往液态金属中加入形核剂促成形成大量的非均匀晶核来细化晶粒。固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度,硬度提高,而塑性韧性有所下降的现象 扩散退火:也叫均与化退火,是指将铸件加热至低于固相线100-200的温度,进行较长时间保温,使偏元素充分进行扩散,达到成分均匀 选择结晶:也叫异分结晶,是指固溶体合金结晶时所结晶出的的固相成分和液相成分不同,这种结晶出的晶体与母相化学成分不同的结晶成分称为 离异共晶:在先共晶相数量较多而共晶组织甚少的情况下,有时共晶组织中与先共晶相相同的那一相,会依附于先共晶相生长,剩下的另一相则单独存在于晶界处,从而使共晶组织的特征消失,这种两相分离的共晶称为 滑移:晶体的塑性变形是晶体的的一部分相对于另一部分沿某些晶面和晶向发生滑移的结果滑移带:如果将表面抛光的单晶体金属试样进行拉伸,当试样经适量的塑性变形后,在金相显微镜下可以观察到,在抛光的表面上出现许多相互平行的线条,这些线条成为滑移带 滑移系:一个滑移面和此面上的一个滑移方向结合起来组成一个滑移系 多系滑移:两个或更多的滑移系上进行的滑移称为多系滑移,简称多滑移 交滑移:由于晶体取向的改变可能使两个或多个相交的滑移面沿一个滑移方向进行滑移,因而使加工硬化效果逐渐下降,这个过程成为交滑移 加工硬化:在塑性变形过程中,随着金属内部组织的变化,金属的力学性能也产生明显的变化,即随着变形程度的增加,金属的强度,硬度增加,而塑性韧性下降 多变形化:是冷变形金属加热时,原来处在滑移面的位错,通过滑移和攀移,形成与滑移面垂直的亚晶界的过程 再结晶:冷变形后的金属加热到一定温度或保温足够时间后,在原来的变形组织中产生于畸变的新晶粒,性能也发生显著变化,并恢复到冷变形前的水平, 临界变形度:通常把对应于得到特别粗大的晶粒的变形称为 热处理:是将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定速度冷却到室温的一种热加工工艺 马氏体的正方度:体心正方的马氏体,c轴伸长,而另外两个a轴稍有缩短,轴比c/a称为马氏体转变:钢从奥氏体状态快速冷却抑制其扩散性分解在较低温度下发生的无扩散型相变奥氏体的热稳定化:因冷却缓慢或冷却过程停留引起奥氏体稳定性提高而使马氏体转变滞后的现象叫 奥氏体的机械稳定化:由于奥氏体在淬火过程中受到较大塑性变形或受到压应力而造成的稳定化现象 临界冷却速度:表示过冷奥氏体在连续冷却过程中全部转变为珠光体的最大冷却速度 回火:是将淬火钢加热到低于临界点A1的某一温度保温一段时间,使淬火组织转变为稳定的回火组织,然后以适当方式冷却到室温的一种热处理工艺 回火脆性:有些钢在一定的范围内回火时,其冲击韧度显著下降,这种催化现象叫钢的 退火:是将钢加热到临界点Ac1以上或一下温度,保温后随炉缓慢冷却以获得近于平衡状态的热处理工艺 正火:是将钢加热到Ac3或Acm以上适当温度,保温以后在空气中冷却得到珠光体类组织淬火:将钢加热到临界点Ac3或Ac1以上一定温度,保温后以大于临界冷却速度冷却得到马氏体或下贝氏体 等温淬火:是将奥氏体化后的工件淬入Ms点以上某温度盐浴中,等温保持足够长时间,使之转变为下贝氏体组织,然后取出在空气中冷却的淬火方法 调质处理:将淬火和随后回火相结合的热处理工艺成为调质处理 淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力 淬硬性:表示钢淬火时的硬化能力 形变热处理:是将塑性变形和热处理有机结合在一起的一种复合工艺 自扩散:是不伴有浓度变化的扩散,它与浓度梯度无关,只发生在纯金属和均匀固溶体中互扩散:是伴有浓度变化的扩散,它与异类原子的浓度差有关,如在不均匀固溶体中,不同相之间或不同材料制成的扩散偶之间的扩散过程中,异类原子相对扩散,相互渗透,所以又称为异扩散 下坡扩散:是沿着浓度降低的方向进行的扩散,使浓度趋于均匀化 上坡扩散:是沿着浓度升高的方向进行的扩散,即由低浓度向高浓度方向扩散 原子扩散:在扩散过程中晶格类型始终不变,没有新相产生,这种扩散就成为原子扩散 反应扩散:通过扩散使固溶体的溶质组元浓度超过固溶度极限而形成新相过程称为反应扩散

滴定终点与指示剂的选择

滴定终点与指示剂的选择 酸碱中和滴定的关键:一要准确测定出参加中和反应的酸、碱溶液的体积;二要准确判断中和反应是否恰好完全反应。 酸碱指示剂可在中和反应终点时出现颜色变化,因此终点判断须选择合适指示剂。 酸碱恰好完全中和的时刻叫滴定终点,为准确判断滴定终点,须选用变色明显,变色范围的pH与恰好中和时的pH吻合的酸碱指示剂。 指示剂的变色范围越窄越好,pH稍有变化,指示剂就能改变颜色。石蕊溶液由于变色范围较宽,且在滴定终点时颜色的变化不易观察,所以在中和滴定中不采用。 酚酞和甲基橙是中和滴定时常用的指示剂,其变色范围分别是:甲基橙的pH 在3.1~4.4之间,酚酞的pH在8.2~10.0之间。如用0.1000 mol/L的NaOH 溶液去滴定20.00 mL 0.1000 mol/L 的盐酸溶液,理论上应用去NaOH溶液20.00 mL,这时溶液的pH=7。但如果用酚酞作指示剂,在它所指示的滴定终点时,pH ≠7,而是在8.2~10.0之间。实际计算表明,当滴定到终点时,溶液的pH并不一定等于7,而是存在误差的。这是由指示剂的变色范围所导致的,所造成的误差是在许可范围之内,可以忽略不计。 溶液颜色的变化由浅到深容易观察,而由深变浅不易观察。强酸强碱之间的互滴,尽管甲基橙或酚酞都可以选用。但为了减小误差,应选择在滴定终点时使溶液颜色由浅变深的指示剂。如强酸滴定强碱时,甲基橙加在碱里,达到滴定终点时,溶液颜色由黄色变橙色,易于观察,故选择甲基橙。用强碱滴定强酸时,酚酞加在酸中,达到滴定终点时,溶液颜色由无色变浅红色,易于观察,故选择酚酞。 若酸与碱中有一方是弱的,则要根据中和后所得的盐溶液的pH来确定选择哪一种指示剂。一般说来:强酸中和弱碱时,选择甲基橙(变色范围pH在3.1~4.4之间,生成的强酸弱碱盐显酸性);强碱中和弱酸时,选择酚酞(变色范围pH在8.2~10.0之间,生成的强碱弱酸盐显碱性)。 一、选择指示剂 的水溶液的pH=3.9,则可推断用标【例题1】已知常温、常压下,饱和CO 2 准盐酸溶液滴定碳酸氢钠水溶液时,适宜选择的指示剂及滴定终点时颜色变化的情况是()。 A. 石蕊,由蓝变红 B. 甲基橙,由橙变黄 C. 酚酞,红色褪去 D. 甲基橙,由黄变橙

金属材料与热处理名词解释解析

名词解释 沸腾钢: 1 只用一定量的弱脱氧剂锰铁对钢液脱氧,因此钢液含氧量较高。 2 在沸腾钢的凝固过程中,钢液中碳和氧发生反应而产生大量气体,造成钢液沸腾,这种钢由此而得名。 3 沸腾钢钢锭宏观组织的特点是,钢锭内部有大量的气泡,但是没有或很少有缩孔。钢锭的外层比较纯净,这纯净的外层包住了一个富集着杂质的锭心。 4 沸腾钢钢锭的偏析较严重,低温冲击韧性不好,钢板容易时效,钢的力学性能波动性较大。 镇静钢: 1 镇静钢在浇注之前不仅用弱脱氧剂锰铁而且还使用强脱氧剂硅铁和铝对钢液进行脱氧,因而钢液的含氧量很低。 2 强脱氧剂硅和铝的加入,使得在凝固过程中,钢液中的氧优先与强脱氧元素铝和硅结合,从而抑制了碳氧之间的反应,所以镇静钢结晶时没有沸腾现象,由此而得名。 3 在正常操作情况下,镇静钢中没有气泡,但有缩孔和疏松。与沸腾钢相比,这种钢氧化物系夹杂含量较低,纯净度较高。镇静钢的偏析不像沸腾钢那样严重,钢材性能也较均匀。 树枝状偏析:(枝晶偏析) 1依据相图,钢在结晶时,先结晶的枝干比较纯净,碳浓度较低,而迟结晶的枝间部分碳浓度较高。 2研究指出,在钢锭心部等轴晶带中枝晶偏析的特点是,在枝干部分成分变化很小,这部分占有相当宽的范围,在枝晶或者两个相邻晶粒之间,富集着碳、合金元素和杂质元素,而且达到很高的浓度。枝干结晶时,在相当宽的范围内造成碳和合金元素、杂质元素的贫化(选择结晶),这种贫化成了枝晶间浓度特高的前提。 3为减少枝晶偏析的程度,可对铸钢和钢锭进行扩散退火。 区域偏析:在整个钢锭范围内发生的偏析 因为选择结晶,杂质元素和合金元素被富集在晶枝近旁的液相中。在凝固速度不是很高的情况下,枝晶近旁液相中杂质元素能够借扩散和液体的流动而被转移到很远的地方。随着凝固的进展,杂质元素在剩余的钢液中不断富集,各种元素在整个钢锭或铸件的范围内发生了重新分布,即产生了区域偏析。 带状偏析:在钢锭中,有时在某些局部地区,化学成分与周围有差异,形成所谓的带状偏析。

金属材料学名词解释总

二.名词解释 1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。3)奥氏体形成元素: 在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。如:V,Nb, Ti 等。 5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr: ε-FexC→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。如V,Nb, Ti等都属于此类型。 7)液析碳化物:由于碳和合金元素偏析,在局部微小区域内从液态结晶时析出的碳化物。8)网状碳化物:过共析钢在热轧(锻)加工后缓慢冷却过程中由二次碳化物以网状析出于奥氏体晶界所造成的。 9)合金渗碳体:渗碳体内经常固溶有其他元素,在碳钢中,一部分铁为锰所置换;在合金钢中为铬、钨、钼等元素所置换,形成合金渗碳体。 10)二次硬化:淬火钢在较高温度下回火,硬度不降低反而升高的现象称为二次硬化 11)变质处理:就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒。 12)回火稳定性:淬火钢对回火过程中发生的各种软化倾向(如马氏体的分解,碳化物的析出与铁素体的再结晶)的抵抗能力。 13)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。 14)红硬性:指材料在一定温度下保持一定时间后所能保持其硬度的能力。 15)微合金钢:指化学成分规范上明确列入需加入一种或几种碳氮化物形成元素。 16)蠕变极限:在某温度下,在规定时间达到规定变形时所能承受的最大应力。 17)固溶强化:通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。 18)细晶强化:通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化 19)晶间腐蚀:晶界上析出连续网状富铬的Cr23C6引起晶界周围基体产生贫铬区,贫铬区成为微阳极而发生的腐蚀。

酸碱滴定分析中指示剂的选择

酸碱滴定分析中指示剂的选择 摘要:滴定分析法,又叫容量分析法,将已知准确浓度的标准溶液,滴加到被测溶液中(或者将被测溶液滴加到标准溶液中),直到所加的标准溶液与被测物质按化学计量关系定量反应为止,然后测量标准溶液消耗的体积,根据标准溶液的浓度和所消耗的体积,算出待测物质的含量。这种定量分析的方法称为滴定分析法,它是一种简便、快速和应用广泛的定量分析方法,在常量分析中有较高的准确度.一般来说,由于在计量点是试液的外观并无明显变化,应此我们需要加入合适的指示剂,使滴定分析时滴定至颜色发生突变来指示终点,这就要求我们应该寻求什么样的指示剂来指示终点,才能减少滴定误差. 关键词:酸碱滴定、指示剂、突变 滴定分析法是将一种已知准确浓度的试剂溶液,滴加到被测物质的溶液中,直到所加的试剂与被测物质按化学计量定量反应为止,根据试剂溶液的浓度和消耗的体积,计算被测物质的含量.这种已知准确浓度的试剂溶液称为滴定液.将滴定液从滴定管中加到被测物质溶液中的过程叫做滴定.当加入滴定液中物质的量与被测物质的量按化学计量定量反应完成时,反应达到了计量点。在滴定过程中,指示剂发生颜色变化的转变点称为滴定终点。滴定终点与计量点不一定恰恰符合,由此所造成分析的误差叫做滴定误差。 适合滴定分析的化学反应应该具备以下几个条件: (1)反应必须按方程式定量地完成,通常要求在99.9%以上,这是定量计算的基础。 (2)反应能够迅速地完成(有时可加热或用催化剂以加速反应)。 (3)共存物质不干扰主要反应,或用适当的方法消除其干扰。 (4)有比较简便的方法确定计量点(指示滴定终点)。

指示剂是化学试剂中的一类,在一定介质条件下,其颜色能发生变化 、能产生混浊或沉淀,以及有荧光现象等。常用它检验溶液的酸碱性;滴定分析中用来指示滴定终点;环境检测中检验有害物。一般分为酸碱指示剂、氧化还原指示剂、金属指示剂、吸附指示剂等。 另一种说法是指示剂是一种用以指示滴定终点的试剂,在各类滴定 过程中,随着滴定剂的加入,被滴定物质和滴定剂的浓度都在不断变化,在等当点附近,离子浓度会发生较大变化,能够对这种离子浓度变化作出显示(如改变溶液颜色,生成沉淀等)的试剂就叫指示剂。如果滴定剂或被滴定物质是有色的,它们本身就具有指示剂的作用,如高锰酸钾。 指示剂的分类一般分为以下几种: 4、沉淀滴定指示剂。主要是Ag+与卤素离子的滴定,以铬酸钾、铁铵矾或荧光黄作指示剂。 实验室中常用的酸碱指示剂 通用指示剂是多种酸碱指示剂的混合物,它指在不同的pH值下显示相应不同的颜色下表是一些实验室中常用的酸碱指示剂。指示剂通常会在一些pH值范围显示过渡颜色转变。 例如:酚红在低pH值时呈现黄色,在高pH值时呈现红色,但在pH6.6至8.0间会呈现橙色。其过渡、转变颜色的pH范围会受指示剂的浓度或温度的影响而出现轻微的变化。

相关主题
文本预览
相关文档 最新文档