当前位置:文档之家› 超细二氧化锆制备与表征

超细二氧化锆制备与表征

超细二氧化锆制备与表征
超细二氧化锆制备与表征

氧化锆分析仪原理、结构及安装

氧化锆分析仪 一:产品概述 ZOY-4系列智能氧化锆氧量分析仪是一种实用可靠的自动化分析仪表。能与各种电动单元仪表、常规显示记录仪表及DCS集散控制系统配合作用,可对锅炉、窑炉、加热炉等燃烧设备在燃烧过程中所产生的烟气含量进行快速、正确的在线检测分析。以实现低氧燃烧控制,达到节能目的,减少环境污染。ZOY-系列智能氧化锆氧量分析仪有ZOY型氧化锆探头(一次仪表)和ZOY氧量变送器(二次仪表)二部分组成。 二:工作原理 氧化锆锆管是一种金属氧化物,在高温下形成固态电解质具有传导氧离子的特性。被测气体(烟气)通过探头过滤器,进入氧化锆锆管的内侧,参比气体(空气)通过自然对流进入探头氧化锆锆管的外侧。当锆管内外侧氧浓度不同时,在氧化锆锆管内外两侧间会产生氧浓差电动势。 三:型号规格及技术指标

①基本误差:<±2%F·S,仪表精度1级 ②量程:0~5%O2;0~10%O2;0~20%O2;0~25%O2 ③本底修正:-20mV~+20mV ④被测烟气温度:ZOY-4型低于700℃(低温型)ZOY-5型700~1000℃(高温型) ⑤输出信号:可扩展双路隔离输出,0~10mADC和4~20mADC,采取光电隔 离,直接和计算机联网。 ⑥负载能力:0 ~1.2ΚΩ或0~600Ω ⑦环境条件:0~50℃;相对湿度<90% ⑧电源:220V±10%,50Hz ⑨功耗:变送器约8W,加热炉平均约50W ⑩响应时间:90%约3秒 四:安装方式 1、安装点的选择安装点的烟气温度应符合相关要求,一般来说,烟气温度低,检测器使用寿命长,烟气温度高,使用寿命短。检测器不能安装在烟气不流动的死角,也不能安装在烟气流动很快的地方

氧化锆陶瓷的制备工艺

氧化锆陶瓷的制备工艺 一氧化锆陶瓷的原料 氧化锆工业原料是由含锆矿石提炼出来的。 斜锆石(ZrO2) 自然界锆矿石 锆英石(ZrO2 ·SiO2) 二氧化锆陶瓷的提炼方法 氯化和热分解 碱金属氧化物分解法 石灰溶解法 等离子弧法 提炼氧化锆的主要方法 沉淀法 胶体法 水解法 喷雾热分解法 ㈠氯化和热分解法 ZrO2?SiO2+4C+4Cl2→ZrCl4+SiCl4+4CO 其中ZrCl4和SiCl4以分馏法加以分离,在150–180℃下冷凝出ZrCl4然后加水水解形成氧氯化锆,冷却后结晶出氧氯化锆晶体,经焙烧就得到氧化锆。 ㈡碱金属氧化物分解法 ZrO2?SiO2+NaOH→Na2ZrO3 +Na2SiO4+H2O

ZrO 2?SiO 2+Na 2CO 3→Na 2ZrSiO 3+CO 2 ZrO 2?SiO 2+Na 2C03→Na 2ZrO 3+Na 2Si03+CO 2 ①反应后用水溶解,滤去Na 2Si03; ②Na 2Zr03→水合氢氧化物→用硫酸进行钝化→Zr 5O 8(SO 4)2·x H 20→ 氧化锆粉 ㈢石灰熔融法 CaO+ZrO 2·SiO 2→ZrO 2+CaSiO 3 焙烧后用盐酸浸出除去CaSiO3 ㈣等离子弧法 锆英石砂(ZrO 2?SiO 2) ㈤沉淀法 沉淀法是在羧基氯化锆等水溶性锆盐与稳定剂盐的混合水溶液中加入氨水等碱性类物质,以获得氢氧化物共沉淀的方法。将共沉淀物干 焙烧 氨 水 调 整 PH 值 用水水解 ZrO2 SiO2 注入高温等离子弧中 熔化并离解 凝固后SiO 2粘在ZrO 2结晶表面 用液体NaOH 煮沸可除SiO 2 ZrO 2和硅酸铀 氧化锆 洗涤

纳米氧化锆汇总

二氧化锆纳米材料 一.用途:纳米氧化锆本身是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,由于其卓越的耐热绝热性能,20世纪20年代初即被应用于耐火材料领域。 自1975年澳大利亚学者K.C.Ganvil首次提出利用ZrO2相变产生的体积效应来达到增韧陶瓷的新概念以来,对氧化锆的研究开始异常活跃。——利用其高硬度、抗磨损、耐刮擦、不燃的特性,极大的提高涂料的耐磨性和耐火效果。由于其导热系数低、并具备特殊光学性能,可用于军事、航天领域的热障涂料及隔热涂料。纳米复合氧化锆具备特殊光学性能,对紫外长波、中波及红外线反射率达85%以上;且其自身导热系数低,可提高其隔热性能。——由于不同晶型纳米氧化锆体积不同,可制备具备自修复功能的功能性涂料。 纳米复合氧化锆行业主要企业产能分布

二.目前的制备方法:化学气相沉积(CVD)法,液相法(包括醉盐水解法,沉淀法,水热法,徽乳液法,溶液姗烧法等),徽波诱导法及超声波法等几大类。 三.具体介绍方法:利用溶胶-凝胶法制备出高度有序的二氧化锆纳米管 简介:溶胶一凝胶法是指金属醉盐或无机盐经水解形成溶胶,然后使溶胶一凝胶化再将凝胶固化脱水,最后得到无机材料.在无机材料的制备中通常应用溶胶—凝胶方法,与传统的合成方法相比,具有高纯度、多重组分均匀以及易对制备材料化学掺杂等优点.该方法要使前驱体化合物水解形成胶体粒子的悬浮液(溶胶)后,成为聚集溶胶粒子组成凝胶,凝胶经过热处理得到所需的物质.溶胶—凝胶沉积法广泛用于在模板的纳米通道中制备纳米管或线.本文主要结合溶胶—凝胶法和模板合成法制备二氧化锆纳米管.由于锆的无机盐价格便宜且对大气环境不敏感[,我们利用锆的无机盐(氯化氧锆)作为前驱体溶液制备稳定的溶胶. 具体过程:

氧化锆行业研究

氧化锆研究报告 1、氧化锆简介 氧化锆(ZrO2)本身是一种耐高温、耐腐蚀、耐磨损和低热膨胀系数的无机非金属材料,氧化锆瓷具有高韧性、高抗弯强度和高耐磨性,优异的隔热性能,热膨胀系数接近于钢等优点。 2、锆行业发展历程 自1975年澳大利亚学者K.C.Ganvil首次提出利用ZrO2相变产生的体积效应来达到增韧瓷的新概念以来,对氧化锆的研究开始异常活跃。尤其是1983年东(Tosoh)首家成功产业化的纳米复合氧化锆,由于卓越的物理性能、化学性能,各国竟相加大投入研发纳米复合氧化锆系列产品,其应用逐步扩展到结构材料、功能材料等多个领域,目前正广泛地被应用于各个行业中。 3、锆行业发展现状与趋势 (1)全球锆行业发展现状与趋势 锆英砂主产地在澳大利亚、南非、美国等地,国省、省等地也生产锆英砂。根据2009国际锆业大会资料,在锆英砂的供应方面,澳大利亚和南非占全球出口量的91%,在需求方面,中国是最大的消费国。 发达国家目前基本不参与初级锆产品的生产加工,90%氯氧化锆在中国生产加工,其中85%以上出口,主要出口美国、日本,其次是欧洲,用于瓷、二氧化锆制品和核级海绵锆的生产。 2003-2008年全球锆行业的年增长率达到9.3%,2009年由于金融危机的原因,锆行业市场需求大幅萎缩,但是预计经济复后直至2020年,预计年均增长率稳定在4.4%左右。 (2)中国锆行业发展现状与趋势 进入21世纪以来,基础建设、房地产以及家居装潢等行业的需求持续旺盛,导致瓷行业对锆产品的使用量直线上升,瓷行业主要消耗的上游材料是氯氧化锆、硅酸锆。此外,随着我国居民消费升级进程的加速,含锆特种瓷在燃料电池、高级特种瓷、光通讯器件、氧化传感器等高科技领域的材料应用中占据重要的地位,同时氧化锆结构瓷由于其优越的物理性质目前已经在刀具、手表等民用领域得到了大力的推广,除此之外,其在工业领域中作为重要的新材料已被大量应用于阀门、采油钻井缸套等部件的制作中。 2003年以来随着锆产品的需求不断提升,我国锆行业产能大幅扩,2009年金融危机后,锆产品需求锐减,两方面因素造成锆业市场行情低迷,2010开始锆行业陷入低谷,2013年由于国瓷、锆宝石、汽车尾气净化催化剂等终端应用行业需求增加,推动二氧化锆、复合氧化锆、碳酸锆等氧氯化锆深加工产品产量较2012年将有所提升,这也带动了氧氯化锆国需求量的回升。 (3)新兴锆制品需求强劲,利润率较高 新兴锆制品包括复合氧化锆和氧化锆结构瓷。氧化锆结构瓷是指以氧化锆为主要成分的瓷材料,它不仅具有耐高温、耐腐蚀、耐磨损、高强度等优点,而且还具有优良的热性能和电性能。氧化锆结构瓷性能的决定因素在于其原料——复合氧化锆。 复合氧化锆稳定性提升,用途得到极大拓展。复合氧化锆需求快速增长。高

【CN109809482A】一种单分散、多形貌氧化锆粉体的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910274034.2 (22)申请日 2019.04.08 (71)申请人 西安工业大学 地址 710021 陕西省西安市未央区学府中 路2号 (72)发明人 高玲 张浩 谢美娇  (74)专利代理机构 北京德崇智捷知识产权代理 有限公司 11467 代理人 贾凯 (51)Int.Cl. C01G 25/02(2006.01) (54)发明名称 一种单分散、多形貌氧化锆粉体的制备方法 (57)摘要 本发明公开了一种单分散、多形貌氧化锆粉 体的制备方法,通过向氧氯化锆溶液中加入氟硼 矿化剂后,通过调控矿化剂浓度,于反应釜中经 水热法合成多形貌的氧化锆粉体,粉体分散性 好,晶粒均匀、不团聚,尺寸处于50-2000nm,本发 明合成方法简单,反应条件温和,易于实现,重复 性好,成本低。本发明适用于制备单分散、多形貌 氧化锆粉体。权利要求书1页 说明书6页 附图6页CN 109809482 A 2019.05.28 C N 109809482 A

权 利 要 求 书1/1页CN 109809482 A 1.一种单分散、多形貌氧化锆粉体的制备方法,其特征在于按照如下的步骤顺序依次进行: (1)配置0.05-1.5 mol/L的氧氯化锆水溶液,记为A; (2)向A中加入氟硼矿化剂,搅拌均匀后得B,所述氟硼矿化剂与氧氯化锆的摩尔比为1:2-50; (3)将B置于水热反应釜中,水热处理得C; (4)将C依次进行水洗和醇洗后,于110℃下干燥24h,得氧化锆粉体。 2.根据权利要求1所述的一种单分散、多形貌氧化锆粉体的制备方法,其特征在于:步骤(2)中,所述氟硼矿化剂为氟硼酸盐。 3.根据权利要求1所述的一种单分散、多形貌氧化锆粉体的制备方法,其特征在于:步骤(2)中,所述氟硼矿化剂为摩尔比为1:0.5-4的H3BO3和NH4F复配矿化剂。 4.根据权利要求1所述的一种单分散、多形貌氧化锆粉体的制备方法,其特征在于:步骤(3)中,所述水热处理的温度为160-250℃,水热处理时间为1-72h。 5.根据权利要求1-4中任意一项所述的一种单分散、多形貌氧化锆粉体的制备方法,其特征在于:所述氧化锆粉体粒径为50-2000nm,形貌为孔状柱形结构、层状南瓜子结构或层状盘片结构中的一种。 2

超细氧化锆的制备及应用

超细氧化锆的制备及应用 罗振勇,刘志宏 中南大学冶金科学与工程学院,长沙 (410083) E-mail:yi012@https://www.doczj.com/doc/4c14271582.html, 摘要:本文介绍了目前国内外超细氧化锆的制备方法和超细氧化锆的应用现状。 关键词:二氧化锆,制备,应用 ZrO2的优良的热稳定性和化学稳定性及其突出的机械性能,使其成为重要的功能材料之一。二氧化锆是一种具有高熔点、高沸点、导热系数小、热膨胀系数大、耐磨性好、抗腐蚀性能优良的无机非金属材料,在许多不同的领域,诸如陶瓷颜料、工程陶瓷、宝石业、压电元件、离子交换器以及固体电解质等方面有着广泛的用途[1]。近年来,郭景坤、冯楚德等还发现了纳米二氧化锆陶瓷的超塑性行为及特异表面行为这些使得二氧化锆的应用十分广泛[2]。有关二氧化锆的研究已成为当今研究界的一大热点[3]。 1. 超细氧化锆的制备技术 超细粉体的制备一般分为物理法和化学法。物理法包括机械研磨、固相法等;化学法包括湿化学法(包括沉淀法、水热法、微乳液法等)、CVD法、溶剂蒸发法等。下面简要介绍国内外制备超细氧化锆的方法[4~9]。 1.1 固相法 固相法是通过在研钵内研磨,使固相的氧氯化锆分别与固相的氢氧化钠或六次甲基四胺或氢氧化钠和碳酸锂的混合研磨物发生发应,生成纳米氧化锆粉体的前驱体-氢氧化锆,然后中温烧结制得纳米二氧化锆粉体[10]。王焕英、宋秀芹等人用这种方法成功制得了粒径约为10nm左右的超细ZrO2[11]。此法的一个显著特点是能在低温下合成通常要求高温加工才能制备的材料,但在球磨过程中易引入杂质,仅适于制备金属材料[12]。 1.2 化学气相法 化学气相法是让一种或数种气体通过热、光、电、磁和化学等作用而发生热分解、还原或其他反应,从气相中析出纳米粒子,此法适合制备金属纳米粉末以及金属和非金属的氧、氮、碳化物的纳米粉末。可分为:激光诱导化学气相沉积法、等离子体诱导化学气相沉积法和热化学气相沉积法三种方法。用颗粒大小为小为1 cm的球状或板状单晶ZrCl4做原料,通入氮气、氧气,于240℃~250℃下ZrCl4升华,加热到600℃,可得0.04-0.08μm的四方晶型ZrO2超细粉末。该法制备的纳米颗粒纯度高,分散性好,粒度分布窄;缺点是设备要求较高,产量相对较低,导致成本较高,不易实现工业化生产[13、14]。 1.3 沉淀法 沉淀法是在包含一种或多种阳离子的可溶性盐溶液中,加入沉淀剂使一种或多种阳离子同时沉淀,或在一定温度下使溶液发生水解、形成不溶性的氢氧化物或盐类从溶液中析出,然后将溶液中的阴离子洗去,最后经热分解即得所需的氧化物粉末。它包括直接沉淀法、均匀沉淀法、共沉淀法和水解沉淀法等。河北师范大学的王焕英、宋秀芹等人,以NH3·H2O 和 ZrOCl2·8H2O为反应原液成功得到纳米ZrO2粉体[15]。沉淀法的共同特点是操作简单,可以

氧化锆

22m31700℃氧化锆制品梭式窑设计 计算说明书 专业班级:材料0903班 姓名学号:赵春阳23# 指导教师:高里存 摘要:梭式窑也称往复窑或台车式窑,是从传统的倒焰窑演变而来,在烧制小批量、高附加值、高科技陶瓷产品以及实验室规模或试验规模陶瓷新产品的小试、中试等方面有一定的优势。本次设计的22m3氧化锆制品梭式窑,最高烧成温度为1700℃,内高1.2米,内宽2.436米,采用60度的拱中心角,窑体总长度为8.26米。窑墙由三种耐火材料组成,从内到外分别为刚玉砖、轻质硅砖、红砖,厚度分别为232mm、580mm、232mm。窑顶从内到外分别为刚玉砖、泡沫氧化铝砖、高炉矿渣和红砖,厚度分别为272mm、136mm、108mm、53mm。选用3个长为2.5米的窑车,设置3对先进的高速调温烧嘴,高速调温烧嘴采用立体交错的方式布置在窑体的侧墙上,在窑体高度方向上,高速烧嘴往往是设置在梭式窑的偏上部,这样的布置就在窑内形成一个循环旋转气流,使气流温度分布更均匀。 关键词:氧化锆,梭式窑,窑墙,窑顶,烧嘴

目录 1窑体结构及主要尺寸的设计计算 (4) 1.1梭式窑内高的确定 (4) 1.2梭式窑内宽的确定 (4) 1.3拱中心角的选择 (4) 1.4梭式窑总长度的确定 (4) 2窑体砌筑体的设计 (5) 2.1砌筑体材质的选择 (5) 2.1.1窑墙 (5) 2.1.2窑顶 (5) 2.1.3窑车 (5) 2.2砌筑体尺寸的确定 (6) 2.2.1窑墙尺寸的确定 (6) 2.2.2窑顶尺寸的确定 (7) 2.3膨胀缝 (8) 2.4砌砖数量的确定 (9) 2.5加砂管 (9) 3燃料燃烧计算及燃料设备的选择 (9) 3.1燃烧计算 (9) 3.2烧嘴的选型及布置设计计算 (12) 4小结 (13) 参考文献 (13)

纳米氧化锆粉体的合成与表征

纳米氧化锆粉体的合成与表征 李杰119024189 无111 1 引言 二氧化锆是制备特种陶瓷最重要的原料之一,由于其具有优良的机械、热学、电学、光学性质而在高温结构材料、高温光学元件、氧敏元件、燃料电池等方面有着广泛的应用,它是2l世纪最有发展前景的功能材料之一。而控制氧化锆前驱粒子的颗粒尺寸对制备高性能氧化锆陶瓷具有重要意义。 本研究采用水/环己烷/辛基苯基聚氧乙烯醚(Triton X-100)/正己醇四元油包水体系,通过反相微乳液法制备了纳米ZrO2粉体,用TEM,XRD等对所制备的纳米粉体进行了表征,研究了煅烧温度、pH值、陈化时间对ZrO2纳米粒子结构与性能的影响。结果表明,以单斜相为主的ZrO2纳米粉体,其晶粒尺寸可控制在20 nm左右;随着煅烧温度的提高,ZrO2的结晶程度逐渐提高;随着pH值的提高,少量四方相ZrO2全部转化为单斜相;随着陈化时间的增加,ZrO2颗粒尺寸变大。 2 结构性质 自然界的氧化锆矿物原料,主要有斜锆石和锆英石。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。通常含有少量的氧化铪,难以分离,但是对氧化锆的性能没有明显的影响。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。 3 用途 3.1 ZrO2在特种陶瓷中的应用 由于高纯ZrO2具有优良的物理化学性质,当其与某些物质复合时,在不同条件下又具有对电、光、声、气和温度等的敏感特性,使其广泛用于电子陶瓷、功能陶瓷和结构陶瓷等高新技术领域。 3.1.1 电子陶瓷 ZrO2在电子陶瓷中的应用主要有压电元件(如发火元件、助听器、拾音器等),滤波器(用于电视机、收录机、共电式无线电收发机等),超声波振荡器(用于潜艇音纳、鱼群探测器和测深仪等),蜂鸣器(用于电子计算机输入功率鉴定信号机、曲调桌式电子计算机、数字显示手表及闹钟等)及高温导体等。

氧化锆

氧含量在线分析系统 使用说明书 福州福光百特自动化设备有限公司https://www.doczj.com/doc/4c14271582.html,

FB-OSP01,FB-OSP02氧含量在线分析系统 ★ 概述: FB-OSP系统由FBP氧探头,XMOA系列氧含量分析变送仪组成。氧探头和变送器可以一起安装在测量现场,通过4-20mA 将检测的氧含量值远传(FB-OSP01系统),也可以将氧探头和氧含量分析仪分别安装在现场和控制室(FB-OSP02 系统)。 主要应用于:冶金行业的均热炉、热风炉、加热炉等;石化行业的加热炉,萃取炉,反应炉等工业加热装置中,以及电厂锅炉,热力锅炉,焚烧炉等工业锅炉中。 ★ 综合技术参数: 1、氧探头测量气氛温度:0-700℃(氧探头采用316材质采样管), 0-900℃(氧探头采用310S材质采样管), 2、变送器输出类型:0-10mA,4-20mA,0-5v,1-5v隔离变送输出 3、变送器报警输出:两路报警输出 4、变送器通讯:RS485隔离通讯 5、系统量程范围:0.01-20.9 O2% 6、系统响应时间:在探头测量端被测气氛变化时: 1-5秒,与样气流速有关。 在探头标定孔输入标气时:3秒内达到95%响应值 7、系统安装环境:氧探头安装环境温度:-10—60℃(标准型)或-20—120℃(高温环境型); 变送器及氧探头维护仪安装环境温度:-10—50℃; 湿度<90% 8、结构:氧探头采用防爆接线盒,防水设计,可露天安装;变送器及维护仪均为壁挂形式,均为防水设计,可 露天安装。 9、氧探头有效长度:1000mm,1500mm,2000mm,特殊定制长度。 10、氧探头采样管材料:SUS316,SUS310S ★ 系统配置: FB-OSP01系统配置 该系统为现场变送系统,包含FBP氧探头,XMOA5000现场氧含量变送器,以及吹扫及维护装置,系统配置图见图(1)。 ★ 系统主要设备介绍: 1、FBP氧探头: FBP氧探头采用成套进口的澳大利亚SIRO2(二氧化锆)氧传感器和陶瓷加热器,测量精度高,使用寿命长。 低电压加热(12V),无高压,现场使用维护安全可靠。

氧化锆测氧工作原理

氧化锆测氧工作原理 CE-系列氧化锆探头是利用氧化锆浓差电势来测定氧含量的传感器,其核心的氧化锆管安置在一微型电炉内,位于整个探头的顶端。 氧化锆管是由氧化锆材料掺以一定量的氧化钇或氧化钙经高温烧结后形 成的稳定的氧化锆陶瓷烧结体。由于它的立方晶格中含有氧离子空穴,因此在高温下它是良好的氧离子导体。因其这一特性,在一定高温下,当锆管两边的氧含量不同时,它便是一个典型的氧浓差电池,在此电池中,空气是参比气,它与烟气分别位于内外电极。在实际的氧探头中,空气流经外电极,烟气流经内电极,当烟气氧含量P小于空气氧含量P0(20.6%O2)时,空气中的氧分子从外电极上夺取4个电子形成2个氧离子,发生如下电极反应: O(P0)+4e-→2O-2 氧离子在氧化锆管中迅速迁移到烟气边,在内电极上发生相反的电极反应: 2O-2 →O(P0)+4e- 由于氧浓差导致氧离子从空气边迁移到烟气边,因而产生的电势又导致氧离子从烟气边反向迁移到空气边,当这两种迁移达到平衡后,便在两电极间产生一个与氧浓差有关的电势信号E,该电势信号符合"能斯特"方程: E=(RT/4F)Ln(P0 /P) (1) 式中R、F分别是气体常数和法拉第常数,T是锆管绝对温度(K), P0是空气氧含量(20.6%O2), P 是烟气含量。由(1)式可见,在一定的高

温条件下(一般)600℃),一定的烟气氧含量便会有一对应的电势输出,在理想状态下,其电势值在高温区域内对应氧含量见附表。 在理想状态下,当被测烟气与参比气浓度一样时,其输出电势E值为 0 mV, 但在实际应用中,锆管实际条件和现场情况均不是理想状态。故事实上的锆管是偏离此值的。实际上,一定氧含量锆管输出的电势为理论值和本底电势的和,我们称为无浓差条件下锆管输出的电势值为本底电势或称为零位电势,此值的大小又在不同温度下呈不同的值,并且随锆管使用期延长而变化。因此,如不对此情况处理,会严重影响整套测氧仪的准确和探头寿命。鉴于此,CE系列氧分析仪采取了"双参数校正法",对探头本底电势作特殊处理,弥补了锆管的离散性缺陷,延长了探头的使用寿命。

关于齿科二氧化锆材料、CADCAM系列技术说明及工作计划

关于齿科二氧化锆材料、CAD/CAM系列技术说明及工作计划 齿科二氧化锆材料、CAD/CAM系列技术并不是仅仅开发一个或两个新产品,而是对制作义齿(假牙)这个行业完全的新技术革命,而这项技术革命从问世正在不到10年内从发达国家的应用-普及、走向全世界各个国家。 一、技术优势 应有技术优势是采用现代光电扫描牙模-电脑设计义齿-数控机床加工义齿-烧结技术取代已应用数百年的传统手工制作义齿的工艺,如同现在采用电脑绘图、打字取代传统的手工绘图、写字一样。只不过这项技术在中国刚刚开始,这项技术叫牙科CAD/CAM系统。 在网上输入“二氧化锆全瓷修复”可以看到大批关于这项技术的讨论和应用心得,无需再说,虽然国内受设备的制约现应用很少,但二氧化锆全瓷冠取代传统金属成为齿科占统治地位只是时间问题。 二、关键技术 1、二氧化锆生产及注册 生产技术是一个专有技术,有其特殊性。只要设备和工艺合理,达到世界一流可以办到,该技术自己已成熟。 该产品属于国家二类医疗器械注册产品,检测报告在国家指定机构办理,其余临床、取证均在各省,时间大约一年多一点。该产品出口已形成旺盛需求,需同时办理欧盟CE和美国FDA。 2、牙科CAD/CAM系统

⑴、CAD(光电扫描牙模-电脑设计义齿),该技术领域国内外差别很大,应以引进代理、逐步国产为主,为此自已已出国N次,也做过世界第一品牌的代理,了解了国内外各个品牌的技术特点,技术协调问题,技术漏洞,已有了最佳解决办法。 ⑵、CAM(专用数控机床),自己已开发了国内第一台机床,加工出了合格的义齿产品,但第一台问题很多,需要重新改进设计制造,通过改进可以达到进口机床1/3价格,同等性能的机床。 3、齿科加工钛 钛是在金属中人体生物相容性最好的材料(当然低于二氧化锆),但由于铸造性能很差应用传统铸造法很难制作出合格的义齿,以前在齿科很少应用,但采用现代牙科CAD/CAM系统后这种问题得到了圆满的解决,对仍然希望用金属做义齿的用户提供了很好的解决方案。 齿科加工钛注册等同二氧化锆。 4、应用技术 采用全瓷修复是齿科的一个新技术,在应用方面同原来的金属材料修复有相同处、也有不同处,需要相应的技工技术的配合,自己在这方面已大致掌握,当然还需提高,这是口腔医生及技工的知识。 三、市场状况 口腔义齿(假牙)市场之大超乎一般人的想象,比骨科器械大的多。 目前在发达国家牙科CAD/CAM系统已在技工所普及,封闭式(指定瓷块)和开放式(各种瓷块均可加工)系统并存。

氧化锆纳米粉体的制备及其烧结性能研究

氧化锆纳米粉体的制备及其烧结性能研究

目录 第1章前言 (1) 1.1纳米材料概述 (1) 1.2纳米氧化锆及其陶瓷材料概述 (2) 1.2.1二氧化锆的结构与性质 (2) 1.2.2氧化锆纳米材料的研究进展 (5) 1.2.3纳米氧化锆粉体的制备 (6) 1.2.4氧化锆陶瓷材料的成型 (9) 1.2.5氧化锆陶瓷的烧结 (10) 1.2.6纳米氧化锆及其陶瓷的应用 (12) 1.3本课题研究目的及主要研究内容 (14) 1.3.1课题研究目的 (14) 1.3.2课题研究内容 (14) 第2章实验材料及方法 (16) 2.1实验试剂与仪器 (16) 2.2粉体制备实验步骤与流程 (17) 2.2.1实验步骤 (17) 2.2.2实验流程 (18) 2.3氧化锆陶瓷试样的制备 (20) 2.4纳米氧化锆粉体的测试与表征手段 (20) 2.4.1物相组成(X射线衍射)分析 (21) 2.4.2热重-差热(TG-DTA)分析 (21) 2.4.3红外光谱(FT-IR)分析 (21) 2.4.4形貌(TEM)分析 (22) 2.5烧结试样的性能测试 (22) 2.5.1密度的测定 (22) 2.5.2收缩率的测定 (22) 2.5.3抗弯强度的测定 (23) 2.5.4显微结构分析 (23) 第3章氧化锆纳米粉体合成工艺条件的研究与机理分析 (24) 3.1常压水热法制备氧化锆纳米粉体 (24) 3.1.1实验内容 (24)

3.1.2实验结果与讨论 (25) 3.2有机网络凝胶法制备ZrO2纳米粉体 (34) 3.2.1实验内容 (34) 3.2.2实验原理 (34) 3.2.3实验结果与讨论 (35) 3.3本章小结 (46) 第4章氧化锆纳米粉体的烧结性能研究 (47) 4.1烧结试样的密度测试与分析 (48) 4.2烧结试样收缩率的测试与分析 (50) 4.3烧结试样的抗弯强度测试与分析 (51) 4.4烧结试样的显微结构测试与分析 (52) 4.5本章小结 (57) 第5章结论 (58) 参考文献 (59) 致谢 (63) 攻读硕士期间发表论文及专利情况 (65)

氧化锆粉体制备及其应用

氧化锆粉体制备及其应用摘要: 本文重点介绍了氧化锆陶瓷原料制备工艺和性能覆其在蛄构瓷、功 能瓷、颜料与宝石、涂层、纤堆和耐火材料等方面的应用。对如何使氧化铬畸瓷产 业化远一问题,提出了自己的见解。 关键词:氧化锆;高性能陶瓷;制备;应用 Abstract:This paper focuses on the zirconia ceramic material preparation process and performance review of its structure in the mantis porcelain, functional ceramics, pigments and precious stones, coating, fiber and other aspects of heap and refractory applications. Chromium oxide on how to make porcelain produced abnormal Much a problem of industry, put forward their own views. Keywords: zirconia; high-performance ceramics; preparation; application 一、引言 随着科学技术的发展,人们对材料的需求也在不断地提高。当今世界新型陶瓷的发展趋向是:原料超细化(含纳米级细度),发展了材料复台、成型与烧结工艺、制品的后处理(包括制品后加工及其与其他材料联接等)和相应的测试方法。氧化锆陶瓷也与其他新型陶瓷一样,随着新工艺、新技术的运用,进一步充分发挥了它高熔点、比重大、耐腐蚀、耐磨损、低导热、半导体及相变等特点,世界各国都给予高度重视,在功能和结构等各个领域中,都起着重大作用。下面就ZrO2陶瓷材料及倒品的有关情材料多功能化、轻质高强化和材料结构梯度化。为此也相应地况作简单概述,供有关人士参阅。 ZrO2具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。上个世纪二十年代开始就被用来作为熔化玻璃、冶炼钢铁等的耐火材料,从上个世纪七十年代以来,随着对ZrO2有了更深刻的了解,人们进一步研究开发ZrO2作为结构材料和功能材料。1975年澳大利亚R.G.Garvie以CaO为稳定剂制得部分稳定氧化锆陶瓷(Ca-PSZ),并首次利用ZrO2马氏体相变的增韧效应提高了韧性和强度,极大的扩展了ZrO2在结构陶瓷领域的应用。1973年美国R.Zechnall, G.Baumarm,H.Fisele制得ZrO2电解质氧传感器,此传感器能正确显示汽车发动机的空气、燃料比,1980年把它应用于钢铁工业。1982年日本绝缘子公司和美国Cummins发动机公司共同开发出ZrO2节能柴油机缸套。自此,ZrO2高性能陶瓷的研究和开发获得了许多进展。 二、ZrO2粉体的制备方法 2.1 微粉制备

氧化锆氧传感器原理及应用

氧化锆氧传感器原理及应用 摘要:氧探头是利用氧化锆陶瓷敏感元件来测量各类应用环境下的氧含量的,通过它以求实现工业加热炉燃烧过程自动控制,以及热处理可控气氛炉对零件的质量控制。 关键词:氧化锆氧传感器,氧传感器,测氧原理,传感器 一、序言 人们早就知道,某些固体氧化物、卤化物、硫化物等具有离子导电性能,其中最著名的是1989年Nernst发现的稳定氧化锆在高温下呈现的离子导电现象。在此后的一段时期内,尽管人们对这种具有离子导电性能的物质——固体电解质进行了种种研究,但始终进展不大。直到1957年,K.kiukkala和C.Wagner首次用固体电解质组装原电池并从理论上阐明其原理以后,这方面的研究和应用才得以迅速发展。在所有固体电解质,氧化锆是目前研究和开发应用得最普遍的一种。它不仅用来作高温化学平衡,热力学和动力学研究,而且已在高温技术,特别是高温测试技术上得到广泛应用。氧探头这种以氧化锆固体电解质为敏感元件,用以测定氧浓度的装置就是一个典型的例子。1961年,J.Weissbart和R.Ruka研制成功的第一个氧化锆浓差电池测氧仪。七十年代初出现商业用氧化锆氧探头以后,引起科学界和工业界的普遍重视,特别是西德、日本、美国等国都进行了深入的研究和产品开发工作。到七十年代中期,氧探头的理论和实践已趋成熟,开发出了多种结构形式的氧探头。 由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1-0.2秒),测量范围宽(从ppm到百分含量),使用温度高(600~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。 二、氧传感器测氧原理 氧探头是利用氧化锆陶瓷敏感元件来测量各类应用环境下的氧含量的,通过它以求实现工业加热炉燃烧过程自动控制,以及热处理可控气氛炉对零件的质量控制。下面介绍氧化锆陶瓷是如何来完成测氧功能的。 1.ZrOa锆头的导电机制 ZrO2是典型的离子晶体,ZrO2中添加的二价或三价立方对称氧化物,如CaO、MgO、Y2O3和其它三价稀土氧化物时,在适当的加热和冷却条件下可以使ZrO2在600℃以上时成为氧的快离子导体,人们称它为固体电解质。这种陶瓷材料对氧具有高度的敏感性,选择性亦十分好,用它作成的氧探头(又称氧传感器)广泛应用于工业炉和环境保护。ZrO2固体电解质是离子导电体,它是通过晶格内的氧离子空位来实现导电的,锆的导价金属氧化物的加入在ZrO2 晶格中产生了大量的氧离子空位(如图1所示)。每加入二个钇离子就建立一个氧离子空位,ZrO2的缺陷浓度主要决定于添加剂的加入量,而与温度和环境气氛无关。ZrO2的离子导电就是通过ZrO2内的氧离子的迁移来实现的。

四方相氧化锆粉体制备工艺研究

四方相氧化锆粉体制备工艺研究 摘要:以ZrOC l2·8H2O和Y2O3为主要原料,采用醇-水溶液加热结合共沉淀法制备出Y2O3稳定的纳米ZrO2复合粉体。利用X射线衍射(XRD)分析和扫描电子显微镜(SEM)研究了复合粉体的物相组成和晶粒大小。结果显示,当Y2O3含量为2mol%时,复合粉体由单斜相ZrO2和少量四方相ZrO2组成;当Y2O3含量为3mol%、4mol%时,粉体全部由四方相ZrO2组成。750℃~900℃煅烧时,复合粉体的物相组成变化不大,但四方相ZrO2的晶粒尺寸随煅烧温度升高而增大。 关键词:醇-水溶液加热法,共沉淀法,t-ZrO2 Press of Preparation of Tetragonal Zirconia Powder ABSTRACT:Using ZrOC12?8H2O and Y2O3 as the main raw materials, the nanometer-size ZrO2(Y2O3) powder was prepared by heating of alcohol-aqueous salt solutions combined with co-precipitation method. XRD and SEM were performed to investigate the phase composition and the grain size of the ZrO2(Y2O3) powder. The results show that the composite powder with 2 mol% Y2O3 was composed of monoclinic zirconia (m-ZrO2) and a small amount of tetragonal zirconia (t-ZrO2). However, only t-ZrO2 existed in the ZrO2(Y2O3) powder when the content of Y2O3 increased to 3mol% and 4mol%. The phase composition of the composite powder changes little when the calcining temperature increased from 750℃to 900℃. However, the size of t-ZrO2 grain increased with the calcining temperature. KEY WORDS: heating of alcohol-aqueous salt solutions,co-precipitation methods,t-ZrO2 引言 二氧化锆早已广泛应用于陶瓷材料和多相催化剂中。ZrO2有3种不同的晶相结构,即单斜、四方和立方晶系。前者是热力学稳定结构,后两者是亚稳定结构。但是,对于不同单一结构的制备,特别是亚稳结构的制备,依然停留在实验室的摸索阶段。在80年代,一些人[1-5]曾研究了用制备烷基氧化锆再水解的办法,试图得到纯四方二氧化锆。这一途径不仅制备步骤繁琐、成本昂贵,而且还往往得不到单一晶相的产品。Sriniv asan[6]报道了他的研究结果,认为二氧化锆晶相的组成极大地依赖于制备原料。而在所有锆盐原料中,没有一种原料可制得纯晶相。其中硫酸锆倾向转化为高比例的四方晶相,而卤化锆倾向高比例的单斜晶相。在陶瓷基体中引入四方相氧化锆(t-ZrO2),利用其转变成单斜相氧化锆(m-ZrO2)的马氏体相变过程,是提高陶瓷材料韧性的有效途径。为了得到室温下稳定的t-ZrO2,常需引入Y2O3、CeO2、MgO或CaO等稳定剂。其中,利用液相法制备ZrO2(Y2O3)粉体的研究报道[7-21]已有许多。但是,由于Y2O3添加量、制备工艺和t-ZrO2晶粒性能特征之间的关系非常密切,因此一直是研究的重点。本文研究了以ZrOCl2·8H2O 和Y2O3为主要原料,采用醇-水溶液加热法结合共沉淀过程制备ZrO2(Y2O3)粉体,探讨了t-ZrO2粉体的最佳制备工艺。 1 实验 1.1 实验原料 氧氯化锆(ZrOC l2?8H2O≥99.0%),氧化钇(Y2O3,99.99%),盐酸(分析纯),聚乙二醇(PEG-4000,化学纯),无水乙醇(分析纯) ,氨水(分析纯)。 1.2 实验过程 实验选取三个配方,即稳定剂Y2O3的含量分别为2mol%,3mol%和4mol%,所制复合粉体相应地以ZrO2(n-Y2O3)(n = 2,3 ,4)表示。将Y2O3与盐酸反应制得一定浓度的YCl3溶液。根据拟合成ZrO2(n-Y2O3)

二氧化锆的性质

二氧化锆的性质、用途及其发展方向 郑文裕,陈潮钿,陈仲丛 (广东宇田实业有限公司,广东澄海515821) 摘要:简要论述二氧化锆与新型陶瓷材料相关的物理化学性质,并对其在电子陶瓷、功能陶瓷和结构陶瓷等方面的应用作简要介绍,指出了二氧化锆产品必须朝高纯、超微细、复合和溶胶方向发展的趋势。关键词:二氧化锆;性质;用途;发展方向 中图分类号:TQ134.1+2 文献标识码:A 文章编号:1006-4990(2000)01-0018-03 二氧化锆(ZrO2)是一种耐高温、耐磨损、耐腐蚀的无机非金属材料。随着电子和新材料工业的发展,ZrO2除传统应用于耐火材料和陶瓷颜料外,其在电子陶瓷、功能陶瓷和结构陶瓷等高科技领域的 应用引起广大学者的重视,成为当今研究开发的热门课题之一。本文主要就其性质、用途及其发展趋势作简要论述。 1 二氧化锆的物理化学性质[1~4]1.1 物理性质 二氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。 二氧化锆有3种晶型,属多晶相转化的氧化物。稳定的低温相为单斜晶结构(m-ZrO2),高于1000℃时四方晶相(t-ZrO2)逐渐形成,直至2370℃只存在四方晶相,高于2370℃至熔点温度则为立方晶相(c-ZrO2)。ZrO2在加热升温过程中伴随着体积收缩,而在冷却过程中则体积膨胀。因此在使用时为使其不发生体积变化,必须进行晶型稳定化处理。常用的稳定剂有Y2O3、CaO、MgO、CeO2和其它稀土氧化物。这些氧化物的阳离子半径与Zr4+相近(相差在12%以内),它们在ZrO2中的溶解度很大,可以和ZrO2形成单斜、四方和立方等晶型的置换型固溶体。这种固溶体可以通过快冷避免共析分解,以亚稳态保持到室温。快冷得到的立方固溶体保持稳定,不再发生相变,没有体积变化,这种ZrO2称为全稳定ZrO2,写为FSZ(FullyStabilizedZirconia)。 基于ZrO2晶型转变的特征条件和不同类型稳 定剂的作用,通常稳定剂Y2O3、CaO、MgO、CeO2的 有效加入量(摩尔分数)分别为7%~14%,15%~29%,16%~26%,>13%。根据不同的应用条件,稳定剂可以单独使用,也可以混合使用,从而得到具有不同性能的ZrO2产品,这是当前ZrO2复合材料研究、开发和应用的热门课题之一。 1.2 ZrO2化学性质 氧化锆具有良好的化学性质。它是一种弱酸性氧化物,对碱溶液以及许多酸性溶液(热浓H2SO4、HF及H3PO4除外)都具有足够的稳定性。用ZrO2制成的坩埚可熔炼钾、钠、铝和铁等多种金属。它对硫化物、磷化物等也是稳定的。许多硅化物的熔融物及矿渣等对烧结ZrO2亦不起作用。 熔融碱式硅酸盐以及含有碱土金属的熔融硅酸盐,在高温下对烧结ZrO2有侵蚀作用。强碱与ZrO2在高温下反应生成相应的锆酸盐。在高温下(2220℃以上)的真空中,ZrO2和碳作用生成ZrC,和氢或氮气作用生成相应的氢化物或氮化物。2 ZrO2的用途[3~8] 由于ZrO2及其复合材料在不同条件下具有某些独特的性能(如半导体性、敏感功能性和增韧性),因此自80年代以来,随着电子和新材料工业的发展,ZrO2主要作为耐火材料应用已成过去,而在电子陶瓷、功能陶瓷和结构陶瓷等方面的应用迅速发展。这些特种陶瓷(或称新型陶瓷)材料是电子、航天、航空和核工业的基础材料,在高新技术领域中的应用异常活跃。例如某种火箭中用特种陶瓷材料制造的零部件占80%,一台彩电接收机用特种陶瓷材料制造

实验讲义-氧化锆的固相合成

实验2 纳米氧化锆的固相合成 一、目的和要求 1、通过锆盐与氢氧化钠的固相反应,了解固相合成法的特点。 2、掌握固相合成纳米氧化锆的基本原理和制备过程。 二、实验原理 氧化锆由于其固有的化学成分、晶体结构、粒度等基本性质,因而具有化学稳定性好、热传导系数小、硬度大等优点,是一种重要的结构和功能陶瓷材料。普通氧化锆在常温至1170℃以单斜相存在,加热到1170℃~2370℃时转变为四方相,2370℃以上时由四方相转变成立方相(2700℃左右熔融)。由于纯氧化锆的高温相(立方相或四方相)随着温度的降低会转变成低温相(单斜相)。要获得室温下稳定的高温相氧化锆,就需要在氧化锆中掺杂某些其它氧化物,如氧化钇、氧化钙、氧化镁、氧化钪等,形成复合氧化物。这种掺杂的四方相部分稳定或全稳定的氧化锆在相变增韧和微裂纹增韧方面性能优良,具有极高的室温强度和断裂韧性。用氧化钇稳定的四方相氧化锆(Y-TZP),当晶体粒度控制在纳米级(小于100nm)时,可能带来材料性能的突变,如材料强度和断裂韧性的显著提高等。同时,氧化钇稳定的氧化锆还是一种优良的气敏材料(用于氧气传感器)和固体电池材料。 目前制备纳米氧化锆粉体的方法分液相法和气相法。其中液相法有共沉淀法、水热法、溶胶-凝胶法、微乳液法等。这些方法各有其特点,但也存在很多不足。如共沉淀法一般是以氧氯化锆为原料,在锆盐溶液中加入沉淀剂,得到氢氧化物沉淀,再经过滤、洗涤、干燥、煅烧、研磨得到氧化锆粉体。这种方法比较简单易行,可制得粒度小、成分较易控制的多组分纳米粉末,不足之处是制得的粉体往往存在较多的硬团聚体,影响制品的烧结温度和力学性能。为了解决粉体的团聚问题,采用加入分散剂并控制温度在乙醇中陈化的方法,可制备出低温可烧结的纳米氧化锆粉体。水热法制备纳米氧化锆一般以锆的无机或有机化合物为原料,可制得粒径小、高分散的粉体。水热法的不足之处是制备条件较苛刻,成本较高,产量较低。溶胶-凝胶法和醇盐水解法使用锆的有机化合物,同样存在着原料来源困难,价格较高,水解法反应时间长、产率过低、难以工业化生产等缺陷。气相法生产纳米氧化锆粉体,所得产物分散性较好,可以连续制备。但气相法不适用于制备多元组分氧化物粉体,并且组分的可控性也相对较差,而且气相法所使用的原料价格较高,需要高纯的原材料以及昂贵的设备,而产量却较低。例如以四氯化锆为原料,在高温反应器中与水蒸气混合、水解,制备纳米氧化锆粉末。不过,要用这种方法获得四方相稳定的氧化锆粉体,还需要将气相法得到的纯氧化锆粉体浸入金属盐溶液中,蒸发、干燥、焙烧。 尽管这些方法有许多的优点,但是它们都存在能耗大、污染严重、生产周期长等缺

相关主题
文本预览
相关文档 最新文档