当前位置:文档之家› 第十章的静电场中地导体与电介质2015版答案详解

第十章的静电场中地导体与电介质2015版答案详解

第十章的静电场中地导体与电介质2015版答案详解
第十章的静电场中地导体与电介质2015版答案详解

第十章 静电场中的导体和电介质

一.选择题

[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的

有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度

为+ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A)

1

= -,

2

= +. (B)

1

=

σ2

1

-,

2

=σ2

1

+

. (C) 1 =σ21-, 1 =σ2

1

-. (D)

1

= -,

2

= 0.

【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出

1S+ 2S=0

02220

2010=-+εσεσεσ

[B ]2、(基训5)两个同心的薄金属球壳,半径为R 1,R 2(R 1

(A)V 1 (B) V 2 (C)V 1+V 2 (D) (V 1+V 2)/2 【解析】原来两球壳未连起来之前,内、外球的电势分别为

202

1011π4π4R q R q V εε+

=

202

2

012π4π4R q R q V εε+=

用导线将两球壳连起来,电荷都将分布在外球壳,现在该体系等价于一个半径为R 2的均匀带电球面,因此其电势为

2

2

02

1π4V R q q V =+=

ε

[C ]3、(基训6)半径为R 的金属球与地连接。在与球心O 相距d =2R 处有一电荷为q 的点电荷。如图16所示,设地的电势为零,则球上的感生电荷q '为:

(A) 0. (B)

2q . (C) -2

q

. (D) q .

【解析】利用金属球是等势体,球体上处电势为零。球心电势也为零。

A

B

+σσ1σ2

O

R

d

q

0442q o o dq q

R R πεπε'

'+=? R q

R q d o q o

o 244πεπε-='?'

R

q

R q 2-=' 2

q

q -='∴

[C ]4、(基训8)两只电容器,C 1 = 8 F ,C 2 = 2

F ,分别把它们充电到 1000 V ,

然后将它们反接(如图10-8所示),此时两极板间的电势差为:

(A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V 【解析】 C U C U C Q Q Q 32121106-?=-=-=

V F

C C C Q C Q U 600101106''5

321=??=+==-- [A ]5、(自测6)一平行板电容器充满相对介电常数为r ε的各向同性均匀电介质,已知介质表面极化电荷面密度为σ'±。则极化电荷在电容器中产生的电场强度的大小为: (A)

0εσ' (B) r εεσ0' (C) 02εσ' (D) r

εσ'

【解析】 介质表面的极化电荷可以看成两个电荷面密度为σ'±的无限大平行平面,由叠加原理,它们在电容器中产生的电场强度大小为

0022εσεσεσ'=

'+'=

'E

[B ]6、(自测9)三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为1σ和2σ,如图所示.则比值1σ/2σ为: (A)d 1/d 2 (B)d 2/d 1 (C) 1 (D) d 2

2/d 2

1 【解析】外面两板相连时为等势体,

02

2011εσεσd d Ed U ==

=

二、填空题

1、(基训11)在静电场中有一立方形均匀导体,边长为a .已知立方导体中心O 处的电势为U 0,则立方体顶点A 的电势为0U 。 【解析】静电场中的导体为等势体。

2、(基训14)一空气平行板电容器,电容为C ,两极板间距离为d .充电后,两极板间相互作用力为F .则两极板间的电势差为

C Fd /2,极板上的电荷为

FdC 2.

【解析】求两极板间相互作用力对应的电场强度E 是一个极板的电场强

度,而求两极板间的电势差对应的电场强度E ’是两个极板的电场强度叠加。

000,2'S

q F Eq q C S

d

q

U E d d S

εεε==

=

==

根据公式可求得极板上的电荷;

根据公式可求得两极板的电势差。

3、(自测13)带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和

r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度是

)

4/(30r r q πε,若用

导线将A 和B 连接起来,则A 球的电势为

)

4/(0C r q πε。(设无穷远处电势

为零)

【解析】过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出

异种,但是高斯面内只有电荷q .根据高斯定理可得E 4πr 2

= q /ε0,可得

P 点的电场强度为2

04q E r πε=

当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04c

q U r πε=

4、(自测14)(自测14)有三个点电荷q 1、q 2和q 3,分别静止于圆周上的三个点,如图所示。设无穷远处为电势零点,则该电荷系统的相互作用电势能W =

【提示】 该电荷系统的相互作用电势能等于把这三个点电荷依次从现在的位置搬运到无穷远的地方,电场力所作的功。

5、(自测16)在相对介电常量r = 4的各向同性均匀电介质中,求:与电能密度w e =2×106

J/cm 3

相应的电场强度的大小E =3.36×1011

V/m 。[

真空介电常量0

= 8.85×10-12

C 2

/(N ·m 2

)]

【解析】 202

1

21E DE w r e εε==

r

e

w E εε02=

=3.36×1011

V/m

C 1

C

2

6、(自测20)A 、B 为两个电容值都等于C 的电容器,A 带电量为Q ,B 带电量为2Q ,现将

A 、

B 并联后,系统电场能量的增量W ?=

【解析】

A 、

B 并联后,系统的等效电容为2

C ,带电量为3Q ,因此,系统电场能量的增量为

C Q C Q C Q C Q W W W 42)2(22)3(212

222-

=??

????+-?=-'=? 三、计算题

1、(基训20)一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2cm ,R 2 = 5cm ,其间充满相对介电常量为r ε的各向同性、均匀电介质。电容器接在电压U=16V 的电源上,试求距离轴线R =3.5cm 处的A 点的电场强度和A 点与外筒间的电势差。 【解析】

设内外圆筒的电荷线密度为+λ和-λ,由高斯定理得两圆筒间的电场强度为

r E r εελ

02π=

两圆筒的电势差为

12

00ln 22d d 212

1

R R r r r E U r R R r

R R εελεελπ=π=?=???

因此

)/ln(2120R R U r εελπ=

则A 点的电场强度大小为

V/m

998)/ln(12==

R R R U

E A

方向沿径向向外。

A 点与外筒间的电势差为

V

R R R R U r r R R U r E U R R R R

5.12ln )/ln(d )/ln(d 2

121222

===

='???

2、(基训21)如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷

Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷.(2) 球心O 点处,由球壳内表面上电荷产生的电势.(3) 球心O 点处的总电势. 【解析】

(1)球壳内空间点电荷q 偏离圆心,使得球壳内表面电荷分布不均匀,但球壳内表面上感应生成的负电荷总量由静电平衡条件得知应为-q ,球壳外表面处电荷分布不均匀,外表面处总电量为Q+q 。

(2)球心O 点处,由球壳内表面上电荷产生的电势为:

C

Q 4/2-

04q U a

πε-=

(3)球心O 点处的总电势是由点电荷q ,球壳内、外表面电荷在O 点产生的电势叠加。

0000,,44414q q q Q q U U U r

a

b

q q Q q U r a b πεπεπεπε-+=

=

=

+??=-+ ?

??

外内

3、(基训25)三个电容器如图联接,其中C 1 = 10×10-6

F ,C 2 = 5

×10-6 F ,C 3 = 4×10-6

F ,当A 、B 间电压U =100 V 时,试求: (1) A 、B 之间的电容; (2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?

【解析】

(1)

F C C C C C C C C C C C AB μ16.3)(3

213

21312312=++++=+=

(2)如果当C 3被击穿而短路,则电压加在C 1 和C 2上,

3

1111100,110U V q CU C -===?

4、(基训27)一圆柱形电容器,内圆柱的半径为R 1,外圆柱的半径为R 2,长为L [L >> (R 2 – R 1)],两圆柱之间充满相对介电常量为r 的各向同性均匀电介质.设内外圆柱单位长度上带电荷(即电荷线密度)分别为和-,求:(1) 电容器的电容;(2) 电容器储存的能量. 【解析】

(1)圆柱体的场强分布为

r

E r επελ

02=

两极板间电势差为

1

202

1

0ln 22R R dr r U r R R r επελ

επελ==?

电容器的电容为

1

20ln 2R R L

U

q C r επε==

(2)电容器储存的能量为

1

202ln 421R R L

Uq W r επελ==

5、(自测21)一空气平行板电容器,极板面积为S , 两极板之间距离为d .试求∶(1) 将

A B

C 1C 2C 3

U

一与极板面积相同而厚度为d / 3的导体板平行地插入该电容器中,其电容将改变多大?(2) 设两极板上带电荷±Q ,在电荷保持不变的条件下,将上述导体板从电容器中抽出,外力需作多少功? 【解析】

(1)设导体板两侧离二极板的距离为d 1和d 2,空隙中场强为E 0,导体板中静电平衡时场强为零。则两极板的电势差为

()()

302102010d d S

q d d d E d E U -=+=

+=εεσ

平行板电容为

d

S U q C 230ε==

(2)两极板上带电荷±Q ,抽出导体板之前S d

Q C Q W 022*******ε=

= 抽出导体板之后 S d

Q C Q W 020222121ε=

= 外力需作功 2016Q d

A W S

ε?=外=

6、(自测25)如图,有两根半径都是R 的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d ≥2r),沿轴线方向单位长度上分别带有+λ和-λ的电荷.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差。 【解析】

设远点O 在左边导线的轴线上,x 轴通过两导线轴线并与之垂直,在两轴线组成的平面上,在R

()

x d x E E E -+

=

+=-+0022πελ

πελ 则两导线间的电势差

()dx x d x Edx U R

d R

R

d R

?

?

--??

????-+==0022πελ

πελ

[]R

R d x d x R

d R

-=

--=

-ln )ln(ln 200

πελπελ

附加题:

1、(基训28)一接地的"无限大"导体板前垂直放置一"半无限长"均匀带电直线,使该带电直线的一端距板面的距离为d .如图所示,若带电直线上电荷线密度为,试求垂足O 点处的感生电荷面密度.

【解析】

如图取坐标,导体板内O 点左边邻近一点,半无限长带点直线产生的场强为:

i d

i x dx E d

020044πελ

πελ-=-=?

导体板上的感应电荷产生的场强:i E 0

'

02εσ-

= 由场强叠加和静电平衡条件,该点合场强为零,即04-2-

00=d

πελεσ。

即d

πλσ20-=。

2、(自测28)如图,将两极板间距离为d 的平行板电容器垂直地插入到密度为ρ、相对介电常量为εr 的液体电介质中.如维持两极板之间的电势差

U 不变,试求液体上升的高度h 。 【解析】 设极板宽度为L ,液体未上升时的电容为

d HL C /00ε= 液体上升到h 高度时的电容为

在U 不变下,液体上升后极板上增加的电荷为

电源作功

液体上升后增加的电能

液体上升后增加的重力势能

H

d h

()

d hL d L h H C r

εεε00+-=()

011C H h r ?????

?-+=ε()d

hLU U C CU Q

r /100-=-=?εε()d

hLU QU A r /12

0-==?εε()d hLU r /12

1

20-=εε20212121U C CU W -=?2

2

2

1

gdh

L W ρ=?()22

01gd

U h r

ρεε-=

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

导体和电介质习题

第六章静电场中的导体与电介质 6 -1 将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将() (A)升高(B)降低(C)不会发生变化(D)无法确定

分析与解不带电的导体B相对无穷远处为零电势。由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。 6 -2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。若将导体N的左端接地(如图所示),则() (A)N上的负电荷入地(B)N上的正电荷入地 (C)N上的所有电荷入地(D)N上所有的感应电荷入地

分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d q v E 04,0πε= = (B )d q v d q E 02 04,4πεπε= = (C )0,0==v E (D )R q v d q E 02 04,4πεπε= =

分析与解达到静电平衡时导体内处处各点电场强度为零。点电荷q在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O点的电势等于点电荷q在该处激发的电势。因而正确答案为(A)。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关

第6章 静电场中导体和电介质

第6章 静电场中的导体与电介质 一、选择题 1. 当一个导体带电时, 下列陈述中正确的是 (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ] 2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 [ ] 3. 当一个带电导体达到静电平衡时 (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 [ ] 4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将 (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定 [ ] 5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为 (A) 23R V r (B) V r (C) 2RV r (D) V R [ ] 6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后 (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ] 7. 在某静电场中作一封闭曲面S .若有 ??=?s S D 0d ? ρ, 则S 面内必定 (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷 (C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ] 8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为 (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对 [ ] 9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 q 图1

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球 A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有 ∑=0q 而导体的电势V ≠0。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答:必须注意以下两点: (1)这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2)静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答:不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6为什么不能使一个物体无限制地带电? 答:所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答:当施感电荷Q接近于一导体时,导体上出现等量异号的感应电荷±q′。其分布一方面与导体的表面形状有关,另一方面与施感电荷Q有关,导体靠近Q的一端,将出现与

导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='='='q q q R R q V 0d π41π4d 0 0εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε='+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( ) 00002 . D . C 2 . B 2 .A εd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且 高斯面内电荷为S 2σ,可得 0εσ=E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体 一、导体的静电平衡 1、金属导体的电结构及静电感应 (1)金属导体:由带正电的晶格和带负电的自由电子组成. 带电导体:总电量不为零的导体; 中性导体:总电量为零的导体; 孤立导体:与其他物体距离足够远的导体. “足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略. (2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程. (3)静电平衡状态:导体中自由电荷没有定向移动的状态. 2、导体静电平衡条件 (1)从场强角度看: ①导体内任一点,场强; ②导体表面上任一点与表面垂直. 证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直. 说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面; (2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体. ①导体内各点电势相等; ②导体表面为等势面. 证明:在导体上任取两点A,B,.由于=0,所以. (插话:空间电场线的画法. 由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.) 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为: 导体静电平衡时其内, , 即. S面是任意的,导体内无净电荷存在. 结论:静电平衡时,净电荷都分布在导体外表面上. 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况 如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。试求: (1) 球壳内外表面上的电荷; (2) 球心O 点处,由球壳内表面上电荷产生的电势; (3) 球心O 点处的总电势。 习题10-1图 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。 (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 0d 4q q U a πε-= ?a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= 04q r πε= 04q a πε- 04Q q b πε++ 01114()q r a b πε=-+04Q b πε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。试求: (1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。 习题10-2图 解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为 . 在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理, ()22 0cos 024P q E r b θσ επε⊥= +=+ ∴ () 2 /32 22/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ( ) 32 2 2d d d //Q S qbr r r b σ==-+ q Q a b O r

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电 场中的导体和电介质课后习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球 上电荷分布的影响。试证明:R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+= =??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π41 00εε+ ? 03π4π400=+'=R q R q εε

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

静电场中的导体和电介质

第六章 静电场中的导体和电介质 将一个带电物体移近一个导体壳,带电体单独在导体空腔内激发的电场是否等于零静电屏蔽的效应是如何体现的 答:带电体单独在导体空腔内激发的电场不为零。静电屏弊效应体现在带电体的存在使导体腔上的电荷重新分布(自由电子重新分布),从而使得导体空腔内的总电场为零。 将一个带正电的导体 A 移近一个接地的导体 B 时,导体 B 是否维持零电势其上面是否带电 答:导体B 维持零电势,其上带负电。 在同一条电场线上的任意两点 a 、b ,其场强大小分别为a E 及b E ,电势分别为a V 和b V ,则以下结论正确的是: (1 ) b a E E =; (2 ) b a E E ≠; (3) b a V V = ; (4) b a V V ≠ 。 答:同一条电场线上的两点,电场强度可以相同,也可以不同,但沿着电场线电势降低,所以选(4)。 电容器串、并联后的等值电容如何决定在什么情况下宜用串联什么情况下宜用并联 解:串: ∑=i i c c 1 1 并:∑=i i c c 当手头的电容器的电容值比所需要的电容值小,宜用并联。当手头的电容器的耐压值比所需要的大,宜采用电容器串联。 两根长度相同的铜导线和铝导线,它们两端加有相等的电压.问铜线中的场强与铝线中的场强之比是多少铜线中的电流密度与铝线中的电流密度之比是多少(已知 m 1082m,104487?Ω?=ρ?Ω?=ρ--..铝铜) 答:电压V 相同和导线长度l 相同,则电场强度E 相同; 由 ρ σE E j = = 得:1107 10 4410827 8=??=ρρ= ? ρ=ρ--..铜 铝铝 铜铝铝铜铜j j j j

静电场中的导体和电介质

静电场中的导体和电介质 引文: 产生静电场的源电荷通常来自金属导体上的自由电荷和绝缘介质上的极化电荷,当然还有一种空间电荷,它不依赖于任何载体。 静电场的基本规律是普适的,与源电荷的来源和产生机制无关。 一.导体 1.导体中自由电子气概念:经典电子论;原子实按一定秩序构成晶格,价电子 做共有化运动,充满自由电子气 2.导体达到静电平衡状态后,在导体外部,由原外场和附加场叠加而成的总场 一般呈现复杂的分布,这相当程度上源于附加场的复杂性。(附加场不仅在导体内部起到抵消原外场的作用,在导体外部也必定产生场强) 3.导体静电平衡条件 a.静电平衡导体内部体电荷密度处处为零 b.带电的或电中性的导体,其电荷分布于表面,这种自由电荷面分布来保证导体内部合场强为零 注:对于导体静电平衡条件的论证通常总是反证法思辩之。即若其中一条特性不被满足,则必有或违背静电场的高斯定理,或违背的静电场的环路定理,或违背已知的导体静电平衡条件 4. 解决导体静电问题的理论基础:静电平衡条件静电场的高斯定理和环路定理 5. 导体静电平衡的唯一性定理:当导体系中各导体的电量(或电势)被给定,则满足导体静电平衡条件的电荷分布(或电量分布)是唯一的,从而空间电场分布也是唯一的 当然,同任何数学上或物理上的唯一性定理一样,导体静电平衡的唯一性定理仅指明其解是唯一的,并不回答这唯一的解是什么,求解结果有赖于导体静电平衡条件及其他相关的物理定理求得。当然,也可以凭借经验和对称性分析而给出一试探解,若其满足导体内部合场强为零,则这试探解就是唯一正确的解,要注意这种思维方式的运用。 6. 单一导体表面不可能出现异号电荷分布;单一导体表面曲率半径越小处,表面电荷密度越大,其外侧场强越大 7. 一类空腔导体和静电屏蔽的第一种含义:空腔内没有电荷或其他带电体 一类空腔导体静电平衡特性: a.内表面电荷密度处处为零,电荷全部分布在外表面 b.在空腔区域和导体内部(实心区域)合场强为零 c.先前确定的有关导体静电平衡的所有条件 注:一类空腔导体在空腔区域和导体内部(实心区域)合场强为零是依赖其外表面电荷分布来实现的,这与无空腔的实心导体无异。换言之,若在实心导体中挖除一个空腔,则无论其空腔大小,形状和位置如何,都不会改变导体原面电荷分布。 静电屏蔽的第一种含义:一类空腔导体通过自身外表面自由电荷的重新分布,而屏蔽了空间其他带电体对空腔内部场强的影响,使合场强为零得以保证,即

大学物理课后答案第七章静电场中的导体和电介质(精)

习题7 27-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与 C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少? 解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ 2 题7-2图 (1)∵ UAC=UAB,即 ∴ EACdAC=EABdAB ∴ σ1EACdAB===2 σ2EABdAC qA S且σ1+σ2= 得σ2=qA2q, σ1=A 3S3S 而 qC=-σ1S=-2qA=-2?10-7C 3 qB=-σ2S=-1?10-7C (2) UA=EACdAC= σ1dAC=2.3?103V ε0 7-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算: (1)外球壳上的电荷分布及电势大小; (2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势

题7-3图 U=?∞ R2 ∞E?dr=?qdrq= R24πεr24πε0R0 (2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生: U=q 4πε0R2-q4πε0R2=0 (3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且 UA=q' 4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2 得 q'= 外球壳上电势 R1q R2 -q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+ 7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量. 解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势U O=0 7-4图

13静电场中的导体和电介质习题详解(精)

第1页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q,其外部同心地罩一内、外半径分别为r1和 r2的金属球壳。设无穷远处为电势零点,则球壳内半径为r的P点处的场强和电势为[] (A)E= Q4πε0r 2 , U=Q4πε0r Q4πε0r ; (B)E=0, U=(D)E=0, U= Q4πε0r1 Q4πε0r2 ;(C)E=0, U=; 。 答案:D 解:由静电平衡条件得金属壳内E=0;外球壳内、外表面分别带电为-Q和+Q,根据电势叠加原理得

U= Q4πε0r + -Q4πε0r + Q4πε0r2 = Q4πε0r2 2.半径为R的金属球与地连接,在与球心O相距d=2R处有一电量为q的点电荷,如图所示。设地的电势为零,则球上的感应电荷q'为[] (A)0;答案:C 解:导体球接地,球心处电势为零,即U0=球心的距离相等,均为R),由此解得q'=- 3.如图,在一带电量为Q的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为εr,壳外是真空,则在壳外P点处(OP=r)的场强和电位移的大小分别为[](A)E=(C)E=答案:C 解:由高斯定理得电位移 D= 4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半 Q4πr 2 (B) q2 ;(C)- q2 ;(D)-q。 q4πε0dRd +q2 q'4πε0R =0(球面上所有感应电荷到 q=- 。

Q4πε0εrr 2 ,D= Q4πε0r 2 ;(B)E= Q4πεrr 2 ,D= Q4πr 2 ; Q4πε0r 2 ,D= Q4πr 2 ;(D)E= Q4πε0r 2 ,D= Q4πε0r 2 。 ,而 E= D ε0 = Q4πε0r 2 。 第2页共6页 2 静电场中的导体和电介质习题详解习题册-下-2 为空气,如图所示。当两极板带上恒定的等量异号电荷时,有一个 质量为m、带电量为+q的质点,在极板间的空气区域中处于平衡。此后,若把电介质抽去,则该质点[]

大学物理课后答案 第七章 静电场中的导体和电介质

习题7 7-2 三个平行金属板A ,B 和C 的面积都是200cm 2 ,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题7-2图所示.如果使A 板带正电3.0×10-7 C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题7-2图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ 题7-2图 (1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴ 2d d 21===AC AB AB AC E E σσ 且 1σ+2σS q A = 得 ,32S q A = σ S q A 321=σ 而 711023 2 -?-=- =-=A C q S q σC C 10172-?-=-=S q B σ (2) 30 1 103.2d d ?== =AC AC AC A E U εσV 7-3 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q (1)

(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及 *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势 题7-3图 ? ? ∞ ∞==?=2 2 2 0π4π4d d R R R q r r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为 q -.所以球壳电势由内球q +与内表面q -产生: 0π4π42 02 0=- = R q R q U εε (3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 0π4' π4'π4'2 02 01 0=+-+ - = R q q R q R q U A εεε 得 q R R q 2 1 =' 外球壳上电势 ()2 2 021202 02 0π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+ - = 7-4 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为 R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.

静电场中的导体与电介质作业

静电场中的导体与电介质作业 1.题号:40743001 分值:10分 如图下所示,一半径为1R 的无限长导体,单位长度带电量为λ,外有一半径为2R , 单位长度带电量为λ-的圆筒形导体,两导体同轴,内外圆柱面间充满相对电容率为 r ε的均匀电介质。求:(1)该导体系统内外的电场分布;(2)两导体轴心处的电势(设 外圆筒面外任意一点P 的电势为零,P 点与中心轴的距离为P R );(3)电介质中的极化强度;(4)画出r E -曲线。 2.题号:40743002 分值:10分 半径为1R 的金属球带电荷量Q +,外罩一半径为2R 的同心金属球壳,球壳带电量 Q +,厚度不计,内外两球面间充满相对电容率为r ε的均匀电介 质。求:(1)该球面系统内外的电场分布;(2)球心处的电势;(3)电介质中的极化强度;(4)画出r E -曲线。 3.题号:40743003 分值:10分 一个半径为R 电容率为ε的均匀电介质球的中心放有点电荷q ,求(1)电介质球内、外电位移的分布;(2)电介质球内、外电场强度和电势的分布;(3)球体表面极化电荷的密度。 4.题号:40743004 分值:10分 如图所示,带电量为Q 、半径为0R 的金属球置于介电常量为ε,半径为R 的均匀介质球内。求(1)介质层内、

外的D 、E 的分布;(2)介质层内、外表面上的束缚电荷面密度。 5.题号:40843012 分值:10分 如下图所示,真空中的球形电容器的内、外球面的半径分别为1R 和2R ,所带电荷量为Q ±。求:(1)该系统各区间的场强分布;(2)该系统各区间的电势分布;(3)该系统的电容。 6.题号:40842020 分值:10分 (1).一电荷面密度为σ “无限大”均匀带电平面,若以该平面处为电势零点,试求带电平面 x >0 空间的电势分布。 (2).如图所示,真空中的球形电容器的内、外半径分别为1R 和2R ,所带电荷量为Q ±。求该电容器的电容。 静电场中的导体与电介质作业解答 1.题号:40743001 分值:10分 解答及评分标准: (1)由高斯定理得出电场分布:0 2032 022 1 11 =>= <<=

相关主题
文本预览
相关文档 最新文档