当前位置:文档之家› 化工原理练习题

化工原理练习题

化工原理练习题
化工原理练习题

20oC 的水在内径为50mm 的管内流动,流速为2m/s , 计算Re 数的数值。

解:SI 制计算:从附录五查得20oC 时, ρ=998.2kg/m3,μ=1.005mPa.s

管径d =0.05m ,流速u =2m/s ,

如图所示,某厂为了控制乙炔发生炉内的压强不超过 10.7×103Pa (表压),需在炉外装有安全液封,其作用是 当炉内压强超过规定,气体就从液封管口排出,试求此炉 的安全液封管应插入槽内水面下的深度h 。

确定流体的流量

例:20℃的空气在直径为80mm 的水平管流过,现于管路中接一文丘里管,如本题附图所示,文丘里管的上游接一水银U 管压差计,在直径为20mm 的喉径处接一细管,其下部插入水槽中。空气流入文丘里管的能量损失可忽略不计,当U 管压差计读数R=25mm ,h=0.5m 时,试求此时空气的流量为多少m3/h? 当地大气压强为101.33×103Pa 。

解:取测压处及喉颈分别为截面1-1’和截面2-2’ 截面1-1’处压强 :

截面2-2’处压强为

流经截面1-1’与2-2’的压强变化为:

在截面1-1’和2-2’之间列柏努利方程式。以管道中心线作基准水平面。 由于两截面无外功加入,We =0。 能量损失可忽略不计Σhf =0。

解:过液封管口作基准水平面 o-o’,在其上取1,2两点。

压强炉内

1=P 3

107.10?+=a P gh

P P a ρ+=22

1P P = gh

P P a a ρ+=?+∴3

107.10m

h 9.10=μρdu =Re 310

005.12.998205.0-???=99320=gR

P Hg ρ=1025.081.913600??=表压)(3335Pa =gh P ρ-=25.081.91000??-=表压)(4905Pa -=)3335101330()490510330()3335101330(121+--+-

=-绝压

绝压

绝压P P P 079.0=%9.7=%20<

柏努利方程式可写为: 式中: Z1=Z2=0

P1=3335Pa (表压) ,P2= - 4905Pa (表压 )

化简得:

由连续性方程有:

联立(a)、(b)两式

)确定容器间的相对位置

例:如本题附图所示,密度为850kg/m3的料液从高位槽送入塔中,高位槽中的液面维持恒定,塔内表压强为9.81×103Pa ,进料量为5m3/h ,连接 管直径为φ38×2.5mm ,料液在连接 管内流动时的能量损失为30J/kg(不包

括出口的能量损失),试求高位槽内液面应比塔内的进料口高出多少?

解:

取高位槽液面为截面1-1’,连接管出口内侧为截面2-2’, 并以截面2-2’的中心线为基准水平面,在两截面间列柏努利 方程式:

ρρ22

2

2121122P u gZ P u gZ +

+=++0

04.22TP P T M m

m ==ρρ101330293)]49053335(2/1101330[2734.2229?-+?=3/20.1m

kg =2.1490522.1333522221-=+∴u u (a)

137332122=-u u 2211A

u A u =2

211

2???

?

?

?=d

d u u 2102.008.0??? ??=u (b)

1612u u =()137********=-u u s

m u /34.71=1214

3600u

d V h π

?

=34.708.0436002

???=πh m /8.1323=∑+++=+++f

e h p u gZ W p u gZ 2

2221211

式中: Z2=0 ;Z1=?

P1=0(表压) ; P2=9.81×103Pa(表压)

由连续性方程

∴u1<

沉降速度的计算

例:拟采用降尘室除去常压炉气中的球形尘粒。降尘室的宽和长分别为2m 和6m ,气体处理量为1标m3/s ,炉气温度为427℃,相应的密度ρ=0.5kg/m3,粘度μ=3.4×10-5Pa.s ,固体密度ρS =4000kg/m3操作条件下,规定气体速度不大于0.5m/s ,试求: 1.降尘室的总高度H ,m ;

2.理论上能完全分离下来的最小颗粒尺寸; 3. 粒径为40μm 的颗粒的回收百分率;

4. 欲使粒径为10μm 的颗粒完全分离下来,需在降降尘室内设置几层水平隔板?

解:1)降尘室的总高度H

2)理论上能完全除去的最小颗粒尺寸

Wu

V H S

=

5

.02564.2?=

m

564.2=A

V u S =224d V S π=2033.04

36005

??=πs m /62.1=∑=kg

J h f /3081.9/)30850

1081.9262.1(3

21+?+=z m

37.4=s m t V V S /564.2273

427

273127327330

=+?=+=s m /214.06

2564

.2=?=

WL

V u s

t =

用试差法由ut 求dmin 。假设沉降在斯托克斯区

核算沉降流型

∴原假设正确

3、粒径为40μm 的颗粒的回收百分率

粒径为40μm 的颗粒定在滞流区 ,其沉降速度

气体通过降沉室的时间为:

直径为40μm 的颗粒在12s 内的沉降高度为:

假设颗粒在降尘室入口处的炉气中是均匀分布的,则颗粒在降尘室内的沉降高度与降尘室高

度之比约等于该尺寸颗粒被分离下来的百分率。

直径为40μm 的颗粒被回收的百分率为: 4、水平隔板层数

由规定需要完全除去的最小粒径求沉降速度,

再由生产能力和底面积求得多层降尘室的水平隔板层数。 粒径为10μm 的颗粒的沉降必在滞流区,

【例4-7】 有一碳钢制造的套管换热器,内管直径为φ89mm ×

3.5mm ,流量为2000kg/h 的苯在内管中从80℃冷却到50℃。冷却水在环隙从15℃升到35℃。苯的对流传热系数αh =230W/(m 2·K ),水的对流传热系数αc =290W/(m 2·K )。忽略污垢热阻。试求:①冷却水消耗量;②并流和逆流操作时所需传热面积;③如果逆流操作时所采用的传热面积与并流时的相同,计算冷却水出口温度与消耗量,假设总传热系数随温度的变化忽略不计。

()g

u d s t ρρμ-=

18min ()807

.95.04000214.0104.3185?-???=

-m

51078.5-?=1-=t

S

LWu V N 1104.662564.23

-???=-3.32=取33层 1182.01014.35.0214.01078.5Re 5

5<=????==--μρt du ()()

()s m g d u s t /103.0104.318807.95.040001040185

2

6

2=???-?=-='--μρρs

u H t 12214

.0564.2===θm

u H t 234.112103.0'=?='

=θ%13.48%100564

.2234

.1'=?=H H ()()

()s m g d u s t

/1041.6104.318807.95.040001011836

2

5

2---?=???-?=-=μρρ板间距为 1

+=N H

h m 0754.0133564.2=+=

解:①苯的平均温度652

5080=+=T ℃,比热容c ph =1.86×103J/(kg ·K )

苯的流量W h =2000kg/h ,水的平均温度252

3515=+=t ℃,比热容

c pc =4.178×103J/(kg ·K )。热量衡算式为

)()(1221t t c W T T c W Q pc c ph h -=-= (忽略热损失) 热负荷 43101.3)5080(1086.13600

2000

?=-???=

Q W 冷却水消耗量 1335)

1535(10178.43600

101.3)(3

412=-????=-=t t c Q W pc c kg/h ②以内表面积A i 为基准的总传热系数为K i ,碳钢的导热系数

λ=45W/(m ·K )

089.0290082

.00855.045082.00035.0230111?+??+=++=o c i m i h i d d d bd K αλα =4.35×10-3+7.46×10-5+3.18×10-3

=7.54×10-3m 2·K/W K i =133W/(m 2·K ),本题管壁热阻与其它传热阻力相比很小,可忽略不计。

并流操作

80 50 2.3415

65

ln

1565=-=并m t ?℃

传热面积 81.62

.34133101.34

=??=?=

并并m i i t K Q A m 2 逆流操作 80 402

35

45=+=

逆m t ?℃ 传热面积 83.540

133101.34

=??=?=

逆逆m i i t K Q A m 2 因逆并逆并

故i i m m A A t t >

?

逆并m m i i t t A A

③逆流操作 A i =6.81m

2

,2.3481

.6133101.34

=??==?i i m A K Q t ℃ 设冷却水出口温度为t '2,则

80 2.342

35

'=+=

t t m ??,='t ?33.4℃,

t '2=80-33.4=46.6℃

冷却水的平均温度t '=(15+46.6)/2=30.8℃,c'pc =4.174×103J (kg ·℃)

冷却水消耗量846)

156.46(10174.43600101.3)'('3

4

12=-????=-=t t c Q W pc c kg/h 逆流操作比并流操作可节省冷却水:%6.361001335

8461335=?-

若使逆流与并流操作时的传热面积相同,则逆流时冷却水出口温度由原来的35℃变为46.6℃,在热负荷相同条件下,冷却水消耗量减少了36.6%。

【例4-8】 有一台运转中的单程逆流列管式换热器,热空气在管程由120℃降至80℃,其对流传热系数α1=50W/(m 2·K )。壳程的冷却水从15℃升至90℃,其对流传热系数α2=2000W/(m 2·K ),管壁热阻及污垢热阻皆可不计。当冷却水量增加一倍时,试求①水和空气的出口温度t '2和T '2,忽略流体物性参数随温度的变化;②传热速率Q'比原来增加了多少?

解:①水量增加前 T 1=120℃,T 2=80℃,t 1=15℃,t 2=90℃, α1=50W/(m 2·K ),α2=2000W/(m 2·K ), K)W/(m 8.482000

1

501111122

1

?=+

=

+=

ααK

C 3.451580ln )

1580()90120(ln )()(1

22

11221?=----=----=

?t T t T t T t m m pc c ph h t KA t t c W T T c W Q ?=-=-=)()(1221

A c W c W pc c ph h 3.458.487540

?== (a ) 水量增加后,见书p143页4-19有 28.02

2'αα=

)K W/(m 3.492000

215011211

1'28

.02

8.01

?=?+=

+

=

ααK

15

''120ln )15'()'120(''ln )'()'('222212211221-----=

-----=

?T t T t t T t T t T t T t m

m pc c ph h t A K t t c W T T c W Q '')'(2)'(1221'?=-=-=

15

''120ln 15''1203.49)15'(2)'120(22

2222-----?=-=-T t T t A t c W T c W pc c ph h (b)

由式(a)与(b)中的物料衡算式,求得

)15'(275

'1204022-=

-t T 或

)'120(80

75

15'22T t -=

- (c)

由式(a)与(b)中的第一与第三项的比值,求得

15

''120ln

)

15'('1203.493

.458.48'1204022222-----??=

-T t t T T (d)

式(c )代入式(d ),得0558.015

''120ln 22=--T t ,

057.115

''12022

=--T t (e) 由式(c )与(e )得 t '2=61.9℃ T '2=69.9℃ ②25.180

1209

.69120)

()'('2121=--=

--=

T T C W T T C W Q

Q ph h h p h 即传热速率增加了

25%。

例题3:

Φ50×5的不锈钢管,导热系数λ1为16W/(m.K),外包厚 30mm 的石棉,导热系数λ2为0.2 W(m.K)。若管内壁温度为 350℃,保温层外壁温度为100 ℃,试计算每米管长的热损失。 解:

不锈钢管内半径r1=40/2=20mm ,外半径r2=50/2=25mm 。 r2/r1<2,故可按其算术平均值计算每米管长的平均面积: Am1=2πrm1×1= 2π[(0.025+0.02)/2]×1=0.141(m2)

对于石棉层,内半径r2为25mm ,而外半径r3为(25+30)=55mm, r3 / r2>2,需按对数平均半径计算导热面积。

)(038.025

.055.0ln 25

.055.0ln 2

3

232m r r r r r m =-=-=

则每米管长的热损失为:

例题4:

有一换热器,水在管径为φ25mm ×2.5mm 、管长为2m 的管 内从30被加热到50℃。其对流传热系数α=2000W/(m2.K),传 热量为Q=2500W,试求管内壁平均温度tw 。 解:

d=0.025-2×0.0025=0.02(m),管长l=2m ,管内表面积(传热面积) A=πdl= π×0.02×2=0.126(m2) 水的平均温度tm=(ti+to)/2=(30+50)/2=40℃ 根据

例:有一列管换热器,由φ25×2.5的钢管组成。CO2在管内流动,冷却水在管外流动。已知管外的α1=2500W/m2·K ,管内的α2= 50W/m2·K 。 (1)试求传热系数K ;

(2)若α1增大一倍,其它条件与前相同,求传热系数增大的百分率; (3)若α2增大一倍,其它条件与(1)相同,求传热系数增大的百分率。 解:

(1)求以外表面积为基准时的传热系数 取钢管的导热系数λ=45W/m·K ,

冷却水测的污垢热阻Rs1=0.58×10-3 m2·K/W CO2侧污垢热阻Rs2=0.5×10-3 m2·K/W 则:

(2)α1增大一倍,即α1 =5000W/m2·K 时的传热系数K’

)/(397239.02.003

.0141.016005.01003502

22

111m W A b A b t

L

Q m m =?+?-=?+

??=

λλ)

(t t A Q w -=α=+?=+=40126

.020002500m w t A Q t α2

1

2212111111d d d d R d bd R K s m s αλα++++=20255012025105.05.2225450025.01058.02500133?+?+?+?+=--025.0000625.0000062.000058.00004.0++++=K m W K ?=2/5.37025

.0000625.0000062.000058.00002.01++++='K W

K m /0265.02?=K

m W K ?='2

/7.37

例:在一单壳单管程无折流挡板的列管式换热器中,用冷却水将热流体由100℃冷却至40℃,冷却水进口温度15℃,出口温度30℃,试求在这种温度条件下,逆流和并流的平均温度差。 逆流时:100-30=70 40-15=25

并流时:100-15=85 40-30=10

可见:在冷、热流体初、终温度相同的条件下,逆流的平均温度差大。

例:通过一单壳程双管程的列管式换热器,用冷却水冷却热流体。两流体进出口温度与上例相同,问此时的传热平均温差为多少?又为了节约用水,将冷却水的出口温度提高到35℃,平均温差又为多少? 解:

又冷却水终温提到350C ,逆流时:

K 值增加的百分

%

100?-'=K

K K %1005

.375

.377.37?-=

(3)α2增大一倍,即α2 =100W/m 2·K 时的传热系数 K '

'2

12

1,ln

t t t t m ??-?=

?∴逆25

70ln 2570-=

C

07.43=2

1

21,ln t t t t m ??-?=?并

1085ln 10

85-=C 035=1

11

2t T t t P --=

15

10015

30--=

176

.0=1

221t t T T R --=153040100--=%

53.0=0125.0000625.0000062.000058.00004.01

++++='

'K W K m /0142.02

?=K

m W K ?=''2

/4.70%

8.87=K 值增加的百分%100?-''=K K K %1005

.375.374.70?-=逆流时 C

t m 07.43=?,逆0

.4=92

.0=?t ?查校正系数

逆,m t m t

t ?=?∴??C

02.40=7

.4392.0?=

【例】 有一碳钢制造的套管换热器,内管直径为φ89mm ×3.5mm ,流量为2000kg/h 的

苯在内管中从80℃冷却到50℃。冷却水在环隙从15℃升到35℃。苯的对流传热系数αh =230W/(m2·K ),水的对流传热系数αc =290W/(m2·K )。忽略污垢热阻。试求:①冷却水消耗量;②并流和逆流操作时所需传热面积;③如果逆流操作时所采用的传热面积与并流时的相同,计算冷却水出口温度与消耗量,假设总传热系数随温度的变化忽略不计。 解: ①苯的平均温度 ℃,比热容cph =1.86×103J/

(kg ·K )苯的流量Wh =2000kg/h ,水的平均温度 ℃,比

热容cpc =4.178×103J/(kg ·K )。热量衡算式为

(忽略热损失)

热负荷 W

冷却水消耗量 kg/h

②以内表面积Ai 为基准的总传热系数为Ki ,碳钢的导热系数=45W/(m ·K )

=4.35×10 -3 +7.46×10-5 +3.18×10-3 =7.54×10-3 m2·K/W

并流操作 80-15=65 50-35=15

逆流操作 80-35=45 50-35=15

25

65153540100←→25

65ln 25

65,-=

?逆m t C

09.41=15

10025

35--=

P 235

.0=15

3540100--=

R 0

.3=查图得: 86

.0=?t ?9

.4186.0?=?m t C 0

6.31=)

()(1221t t c W T T c W Q pc c ph h -=-=1335)1535(10178.43600

101.3)(3

412=-????=-=t t c Q W pc c 43101.3)5080(1086.136002000

?=-???=Q 252

3515=+=t 65

2

5080=+=T 089.0290082

.00855.045082.00035.0230111?+??+=++=o c i m i h i d d d bd K αλα)./(1332K m W K i =2.341565ln 15

65=-=?并m t 81.62.3413310

1.34=??=?=并并m i i t K Q A 40

35

45=+=?逆

m t 83

.540

133101.34

=??=

?=

逆m i i t K Q A 逆

并逆并故i i m m A A t t >?

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对 流向),观测并记录各测压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化?这一现象说明了什 么?这一高度的物理意义是什么? 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度?为什么? 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观 察其的液位高度H / 并回答以下问题: (1) 各H / 值的物理意义是什么? 答:当测压管小孔转到正对流向时H / 值指该测压点的冲压头H / 冲;当测压管小孔转到垂直流向时H / 值指该测压点的静压头H / 静;两者之间的差值为动压头H / 动=H / 冲-H / 静。 (2) 对同一测压点比较H 与H / 各值之差,并分析其原因。

答:对同一测压点H >H /值,而上游的测压点H / 值均大于下游相邻测压点H / 值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H / 差值越大? (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可 以看出2 2 u d l H f ? ?=λ与管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u = 22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和 全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145 .036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145.036004 16.0360042 2=???=???= ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???=ππd Vs u c 半 (m/s ) C 点全开时的流速: 393.0012.036004 16.0360042 2=???=???= ππd Vs u c 全 (m/s ) 实验二:雷诺实验 1. 根据雷诺实验测定的读数和观察流态现象,列举层流和湍流临界雷诺准数的计算过程,并提供数据完整的原始数据表。 答:根据观察流态,层流临界状态时流量为90( l/h )

化工原理期末考试试题(2013年版) 2

1 化工原理期末考试试题 一.填空题 1.精馏操作的目的是 使混合物得到近乎完全的分离 ,某液体混合物可用精馏方法分离的必要条件是 混合液中各组分间挥发度的差异 。 2.进料热状态参数q 的物理意义是 代表精馏操作线和提馏段操作线交点的轨迹方程 ,对于饱和液体其值等于 0 ,饱和蒸汽q 等于 1 。 3.简单蒸馏与平衡蒸馏的主要区别是 简单蒸馏是非定态过程 。 4.吸收操作的目的是 分离气体混合物 ,依据是 组分在溶剂中溶解度之差异 。 5.连续精馏正常操作时,增大再沸器热负荷,回流液流量和进料量和进料状态不变,则塔顶馏出液中易挥发组成的摩尔组成X D 将 增大 ,塔底采出液中易挥发组成的摩尔组成X W 将 减小 。(减小,增大,不变,变化不确定) 6.平衡蒸馏(闪蒸)的操作温度是在操作压力下混合物的泡点和露点温度之间。 (泡点温度,露点温度,泡点和露点温度之间) 7.液-液萃取操作中,操作温度 ,有利于分离。(降低,升高,保持恒定)。 8.多级逆流萃取操作,减少溶剂用量,完成规定的分离任务所需的理论级数 。(增 大、减小、不变) 9.实际生产中进行间歇精馏操作,一般将 和 两种操作方式结合起来。(恒定回流比,恒定产品组成) 10.请写出两种常用的解吸操作方法: 和 。升温,气提,降压(三写二) 11.在吸收塔的设计中,气体流量,气体进出口组成和液相进口组成不变,若减少吸收剂用量,则传质推动力 减小 ,设备费用 增多 。(减小,增多) 12.当温度升高时,溶质在气相中的分子扩散系数 升高 ,在液相中的分子扩散系数 升高 。(升高,升高) 13.吸收操作的基本依据是 组分在溶剂中溶解度之差异 ,精馏操作的基本依据是 各组分间挥发度的差异 。 14.蒸馏是分离 均相液体混合物 的一种方法,蒸馏分离的依据是 挥发度差异 。 15.恒沸精馏与萃取精馏都需加入第三组分,目的分别是 使组分间相对挥发度增大 、 改变原组分间的相对挥发度 。 16.如果板式塔设计不合理或操作不当,可能产生 严重漏液 、 严重泡沫夹带及 液泛 等不正常现象,使塔无法工作。 17.板式塔的类型有 泡罩塔 、 浮阀塔 、 筛板塔 (说出三种);板式塔从总体上看汽液两相呈 逆流 接触,在板上汽液两相呈 错流 接触。 18.易溶气体溶液上方的分压 小 ,难溶气体溶液上方的分压 大 ,只要组份在气相

化工原理思考题汇总

实验五,填料塔 1.风机为什么要用旁通阀调节流量? 答:因为如果不用旁通阀,在启动风机后,风机一开动将使系统内气速突然上升可能碰坏空气转子流量计。所以要在风机启动后再通过关小旁通阀的方法调节空气流量。 2. 根据实验数据分析吸收过程是气膜控制还是液膜控制? 答:实验数据表明,相平衡常数m很小,液相阻力m/kx也很小,导致总阻力1/k y 基本上为气相阻力1/k y 所决定,或说为1/k y 所控制,称为气膜控制。 3. 在填料吸收塔塔底为什么必须有液封装置?液封装置是如何设计的? 答:塔底的液封主要为了避免塔内气体介质的逸出,稳定塔内操作压力,保持液面高度。 填料吸收塔一波采用U形管或液封罐型液封装置。 液封装置是采用液封罐液面高度通过插入管维持设备系统内一定压力,从而防止空气进入系统内或介质外泄。 U形管型液封装置是利用U形管内充满液体,依靠U形管的液封高度阻止设备系统内物料排放时不带出气体,并维持系统内一定压力。 4. 要提高氨水浓度(不改变进气浓度)有什么方法?又会带来什么问题? 答:要提高氨水浓度,可以提高流量L,降低温度T a 吸收液浓度提高,气-液平衡关系不服从亨利定律,只能用公式 进行计算。 5. 溶剂量和气体量的多少对传质系数有什么影响?Y2如何变化(从推动力和阻力两方面分析其原因)? 答:气体量增大,操作线AB的斜率LS/GB随之减小,传质推动力亦随之减小,出口气体组成上升,吸收率减小。

实验六精馏塔 (a)在精馏操作过程中,回流温度发生波动,对操作会产生什么影响? 答:馏出物的纯度可能不高,降低塔的分离效率。 (b)在板式塔中,气体、液体在塔内流动中,可能会出现几种操作现象? 答:4种:液泛,液沫夹带,漏液 网上答案:5种 a、沸点气相Δ=0 b、沸点液相Δ=1 c、气-液相 0<Δ<1 d、冷液Δ>1 e、过热蒸汽Δ<0 (c)如何判断精馏塔内的操作是否正常合理?如何判断塔内的操作是否处于稳定状态?答:1)看显示的温度是否正常 2)塔顶温度上升至设定的80摄氏度后,在一个较小的范围内波动,即处于稳定状态(d) 是否精馏塔越高,产量越大? 答:否 (e)精馏塔加高能否得到无水酒精? 答:`不能, (f)结合本实验说明影响精馏操作稳定的因素有哪些? 答:主要因素包括操作压力、进料组成和热状况、塔顶回流、全塔的物料平衡和稳定、冷凝器和再沸器的传热性能,设备散热情况等 第二种答案:1.进料组份是否稳定2、塔釜加热器热源是否稳定键; 3、塔压控制是否稳定 (g)操作中加大回流比应如何进行?有何利弊? 答:加大回流比的措施,一是减少馏出液量,二是加大塔釜的加热速率和塔顶的冷凝速率. 加大回流比能提高塔顶馏出液组成xD,但能耗也随之增加。 (h)精馏塔在操作过程中,由于塔顶采出率太大而造成产品不合格时,要恢复正常的最快最有效的方法是什么?降低采出率,即减小采出量 答:降低采出率,即减少采出率. 降低回流比 (1)什么是全回流?特点? 在精馏操作中,若塔顶上升蒸汽经冷凝后全部回流至塔内,则这种操作方法称为全回流。全回流时的回流比R等于无穷大。此时塔顶产品为零,通常进料和塔底产品也为零,即既不进料也不从塔内取出产品。显然全回流操作对实际生产是无意义的。但是全回流便于控制,因此在精馏塔的开工调试阶段及实验精馏塔中,常采用全回流操作。 (3)在精馏实验中如何判断塔的操作已达到稳定? 当出现回流现象的时候,就表示塔的操作已稳定。就可以测样液的折射率了。 (4)什么叫灵敏板?受哪些因素影响? 一个正常操作的精馏塔当受到某一外界因素的干扰(如回流比、进料组成发生波动等),全塔各板的组成发生变动,全塔的温度分布也将发生相应的变化。因此,有可能用测量温度的方法预示塔内组成尤其是塔顶馏出液的变化。 在一定总压下,塔顶温度是馏出液组成的直接反映。但在高纯度分离时,在塔顶(或塔底)相当高的一个塔段中温度变化极小,典型的温度分布曲线如图所示。这样,当塔顶温度有了可觉察的变化,馏出液组成的波动早已超出允许的范围。以乙苯-苯乙烯在8KPa下减压

化工原理期末考试真题及答案

填空题 1.(3分)球形粒子在介质中自由沉降时,匀速沉降的条件是_粒子所受合力的代数和为零_ 。滞流沉降时,其阻力系数=_24/ Rep_. 2.在静止的、连续的同种流体内,位于同一水平面上各点的压力均相等。 3.水在内径为φ105mmX2.5mm的只管内流动,已知水的粘度为1.005mPa*s,密度为1000kg*m3,流速为1m/s,则Re=99502,流动类型为湍流。 4.流体在圆形管道中作层流流动,如果只将流速增加一倍,则阻力损失为原来的2 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的1/4 倍. 5.求取对流传热系数常采用因次分析法,将众多影响因素组合成若干无因次数群,再通过实验确定各特征数数之间的关系,即得到各种条件下的关联式。 6.化工生产中加热和冷却的换热方法有_直接换热_, 间壁换热和蓄热换热. 7.在列管式换热器中,用饱和蒸气加热空气,此时传热管的壁温接近饱和蒸汽侧流体的温度,总传热系数K 接近空气侧流体的对流给热系数。 8.气液两相平衡关系将取决于以下两种情况: (1) 若pe〉p 或C 〉Ce则属于解吸过程 (2) 若p 〉pe 或Ce〉C 则属于吸收过程 9.计算吸收塔的填料层高度,必须运用如下三个方面的知识关联计算:_平衡关系_,_物料衡算,_传质速率._. 10.在一定空气状态下干燥某物料能用干燥方法除去的水分为_自由水分首先除去的水分为_非结合水分不能用干燥方法除的水分为_平衡水分。 11.,当20℃的水(ρ=998.2kg/m3,μ=1.005厘泊)在内径为100mm的光滑管内

22.对于间壁式换热器:m1Cp1 (T1-T2 ) =m2Cp2 (t2-t1)=K.A.△tm 等式成立的条件是_稳定传热、_无热变化、_无相变化。 选择题 1.从流体静力学基本方程了解到U型管压力计测量其压强差是( A ) A. 与指示液密度、液面高度有关,与U形管粗细无关 B. 与指示液密度、液面高度无关,与U形管粗细有关 C. 与指示液密度、液面高度无关,与U形管粗细无关 2.为使U形压差计的灵敏度较高,选择指示液时,应使指示液和被测流体的密度 差(ρ指-ρ)的值(B )。 A. 偏大 B. 偏小 C. 越大越好 3. 若将20℃硫酸用φ48×3.5mm的无缝钢管输送,则硫酸达到湍流的最低流速 为(D )。已知20℃时,硫酸的密度为1831 kg/m3粘度为25.4cP。 A. 0.135m/s B. 1.5m/s C. 0.15m/s D. 1.35m/s 4. 层流与湍流的本质区别是:( D )。 A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 5.离心泵的性能曲线中的H--Q线是在( C )情况下测定的。 A. 效率一定; B. 功率一定; C. 转速一定; D. 管路(l+∑l)一定。

化工原理课后答案

第一章 3.答案:p= 30.04kPa =0.296atm=3.06mH2O 该压力为表压 常见错误:答成绝压 5.答案:图和推算过程略Δp=(ρHg - ρH2O) g (R1+R2)=228.4kPa 7.已知n=121 d=0.02m u=9 m/s T=313K p = 248.7 × 103 Pa M=29 g/mol 答案:(1) ρ = pM/RT = 2.77 kg/m3 q m =q vρ= n 0.785d2 u ρ =0.942 kg/s (2) q v = n 0.785d2 u = 0.343 m3/s (2) V0/V =(T0p)/(Tp0) = 2.14 q v0 =2.14 q v = 0.734 m3/s 常见错误: (1)n没有计入 (2)p0按照98.7 × 103 pa计算 8. 已知d1=0.05m d2=0.068m q v=3.33×10-3 m3/s (1)q m1= q m2 =q vρ =6.09 kg/s (2) u1= q v1/(0.785d12) =1.70 m/s u2 = q v2/(0.785d22) =0.92 m/s (3) G1 = q m1/(0.785d12) =3105 kg/m2?s G2 = q m2/(0.785d22) =1679 kg/m2?s 常见错误:直径d算错 9. 图略 q v= 0.0167 m3/s d1= 0.2m d2= 0.1m u1= 0.532m/s u2= 2.127m/s (1) 在A、B面之间立柏努利方程,得到p A-p B= 7.02×103 Pa p A-p B=0.5gρH2O +(ρCCl4-ρH2O)gR R=0.343m (2) 在A、B面之间立柏努利方程,得到p A-p B= 2.13×103 Pa p A-p B= (ρCCl4-ρH2O)gR R=0.343m 所以R没有变化 12. 图略 取高位储槽液面为1-1液面,管路出口为2-2截面,以出口为基准水平面 已知q v= 0.00139 m3/s u1= 0 m/s u2 = 1.626 m/s p1= 0(表压) p2= 9.807×103 Pa(表压) 在1-1面和2-2面之间立柏努利方程Δz = 4.37m 注意:答题时出口侧的选择: 为了便于统一,建议选择出口侧为2-2面,u2为管路中流体的流速,不为0,压力为出口容器的压力,不是管路内流体压力

化工原理思考题答案

化工原理思考题答案 第一章流体流动与输送机械 1、压力与剪应力的方向及作用面有何不同 答:压力垂直作用于流体表面,方向指向流体的作用面,剪应力平行作用于流体表面,方向与法向速度梯度成正比。 2、试说明粘度的单位、物理意义及影响因素 答:单位是N·S/m2即Pa·s,也用cp,1cp=1mPa·s,物理意义为:分子间的引力和分子的运动和碰撞,与流体的种类、温度及压力有关 3、采用U型压差计测某阀门前后的压力差,压差计的读数与U型压差计放置的位置有关吗?答:无关,对于均匀管路,无论如何放置,在流量及管路其他条件一定时,流体流动阻力均相同,因此U型压差计的读数相同,但两截面的压力差却不相同。 4、流体流动有几种类型?判断依据是什么? 答:流型有两种,层流和湍流,依据是:Re≤2000时,流动为层流;Re≥4000时,为湍流,2000≤Re≤4000时,可能为层流,也可能为湍流 5、雷诺数的物理意义是什么? 答:雷诺数表示流体流动中惯性力与黏性力的对比关系,反映流体流动的湍动状态 6、层流与湍流的本质区别是什么? 答:层流与湍流的本质区别是层流没有径向脉动,湍流有径向脉动 7、流体在圆管内湍流流动时,在径向上从管壁到管中心可分为哪几个区域? 答:层流内层、过渡层和湍流气体三个区域。 8、流体在圆形直管中流动,若管径一定而流量增大一倍,则层流时能量损失时原来的多少倍?完全湍流时流体损失又是原来的多少倍? 答:层流时W f∝u,流量增大一倍能量损失是原来的2倍,完全湍流时Wf∝u2 ,流量增大一倍能量损失是原来的4倍。 9、圆形直管中,流量一定,设计时若将管径增加一倍,则层流时能量损失时原来的多少倍?完全湍流时流体损失又是原来的多少倍? 答:

贵州大学化工原理考试题

贵州大学化工原理考试 题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

化工原理考试题 姓名学号 一.填空题 1.(2分) 雷诺准数的表达式为________________。当密度ρ= 1000kg/m3,粘度μ=1厘泊的水,在内径为d=100mm,以流速为1m/s在管中流动时,其雷诺准数等于__________,其流动类型为______。 2.(2分) 当地大气压为750mmHg时,测得某体系的表压为100mmHg,则该体系的绝对压强为_________mmHg,真空度为_______mmHg。 3.(3分) 测量流体流量的流量计主要有如下四种:___________, ________________, ______________, _______________, 测量管内流体点的速度,则用____________。 4.(4分) 列柏努利方程所选取的截面所必须具备的条件 是,,___________,___________。 5.(2分) 在列管式换热器中,用饱和蒸气加热空气,此时传热管的壁温接近________流体的温度,总传热系数K接近______流体的对流给热系数。 6.(3分) 热量传递的方式主要有三种:____ _、_____ __、 __________。 7.(2分) 在常压下,20℃时氨在空气中的分压为50mmHg,此时氨在混合气中的摩尔分率y=________,比摩尔分率Y=_______。

8.(3分) 用亨利系数E表达的亨利定律表达式为_______.在常压下,20℃时, 氨在空气中的分压为50mmHg, 与之平衡的氨水浓度为 7.5(kgNH 3/100kgH 2 O).此时亨利系数E=________,相平衡常数m=______。 9.(2分) 用清水吸收空气与A的混合气中的溶质A,物系的相平衡常数 m=2,入塔气体浓度y b =0.06,要求出塔气体浓度y a =0.006,则最小液气比为 _________。 11.(2分) 在汽-液相平衡的t-x-y图中,沸点与液相组成的关系曲线,称为________,沸点与汽相组成的曲线,称为____________。 12.(2分) 在汽-液相平衡的t-x-y图中, 液相线与汽相线将图平面平分为三个区:汽相线以上的区域称为________,液相线以下的区域称为 _________,汽.液相线之间的区域为___________。 13.(2分) 某连续精馏塔,已知其精馏段操作线方程为y=0.714x+0.271,则该塔的回流比R=________.馏出液组成x=________。 二.选择题 1.(2分)如图1,若水槽液位不变①、②、③点的流体总机械能的关系为 ( )。 A. 阀门打开时①>②>③ B. 阀门打开时①=②>③ C. 阀门打开时①=②=③ D. 阀门打开时①>②=③ 2.(2分)流体在管路中作稳态流动时,具有()特点。

王志魁《化工原理》课后思考题参考答案

第二章 流体输送机械 2-1 流体输送机械有何作用? 答:提高流体的位能、静压能、流速,克服管路阻力。 2-2 离心泵在启动前,为什么泵壳内要灌满液体?启动后,液体在泵内是怎样提高压力的?泵入口的压力处于什么状体? 答:离心泵在启动前未充满液体,则泵壳内存在空气。由于空气的密度很小,所产生的离心力也很小。此时,在吸入口处所形成的真空不足以将液体吸入泵内。虽启动离心泵,但不能输送液体(气缚); 启动后泵轴带动叶轮旋转,叶片之间的液体随叶轮一起旋转,在离心力的作用下,液体沿着叶片间的通道从叶轮中心进口位置处被甩到叶轮外围,以很高的速度流入泵壳,液体流到蜗形通道后,由于截面逐渐扩大,大部分动能转变为静压能。 泵入口处于一定的真空状态(或负压) 2-3 离心泵的主要特性参数有哪些?其定义与单位是什么? 1、流量q v : 单位时间内泵所输送到液体体积,m 3/s, m 3/min, m 3/h.。 2、扬程H :单位重量液体流经泵所获得的能量,J/N ,m 3、功率与效率: 轴功率P :泵轴所需的功率。或电动机传给泵轴的功率。 有效功率P e :gH q v ρ=e P 效率η:p P e =η 2-4 离心泵的特性曲线有几条?其曲线的形状是什么样子?离心泵启动时,为什么要关闭出口阀门? 答:1、离心泵的H 、P 、η与q v 之间的关系曲线称为特性曲线。共三条; 2、离心泵的压头H 一般随流量加大而下降 离心泵的轴功率P 在流量为零时为最小,随流量的增大而上升。 η与q v 先增大,后减小。额定流量下泵的效率最高。该最高效率点称为泵的设计点,对应的值称为最佳工况参数。 3、关闭出口阀,使电动机的启动电流减至最小,以保护电动机。 2-5 什么是液体输送机械的扬程?离心泵的扬程与流量的关系是怎样测定的?液体的流量、泵的转速、液体的粘度对扬程有何影响? 答:1、单位重量液体流经泵所获得的能量 2、在泵的进、出口管路处分别安装真空表和压力表,在这两处管路截面1、2间列伯努利方程得: f V M H g u u g P P h H ∑+-+-+=221220ρ 3、离心泵的流量、压头均与液体密度无关,效率也不随液体密度而改变,因而当被输送液体密度发生变化时,H-Q 与η-Q 曲线基本不变,但泵的轴功率与液体密度成正比。当被输送液体的粘度大于常温水的粘度时,泵内液体的能量损失增大,导致泵的流量、扬程减小,效率下降,但轴功率增加,泵的特性曲线均发生变化。 2-6 在测定离心泵的扬程与流量的关系时,当离心泵出口管路上的阀门开度增大后,泵出口压力及进口处的液体压力将如何变化?

化工原理期末考试试题及答案

1.(20分)有立式列管式换热器,其规格如下:管数30根、管长 3 m、管径由25×2.5 mm,为单管程。今拟采用此换热器冷凝冷却CS2 饱和蒸汽,从饱和温度46℃冷却到10℃,CS2 走管外,其流量为250 kg/h,其冷凝潜热为356 kJ/kg,液体CS2的比热为 1.05 kJ /(kg·℃ );水走管内与CS2成总体逆流流动,冷却水进出口温度分别为5℃和30℃。已知CS2 冷凝和冷却时传热系数(以外表面积为基准)分别为K1= 232.6和K2= l16.8 W/(m2·℃),问此换热器是否适用? 1.解:CS2冷凝的热负荷:Q冷凝=250×356=89000kJ/h=24.72 KW CS2冷却的热负荷:Q 冷凝=250×1.05×(46-10)=9450kJ/h =2.6 KW 总热负荷Q 为:Q=24.7+2.63=27.3 KW 冷却水用量q m2 为:q m2=27.3 =0.261kg/s=940kg/h 4.187×(30-5) 设冷却水进入冷却段的温度为t k,则有:0.261×4.187×(t k- 5)=2.6KW 解之得:t k=7.38℃,则:(5 分) 冷凝段对数平均温差:Δ t m=(46-30)-(46-7.38) =25.67℃ ln46 -30 46-7.38 所需传热面积: A 冷凝=24.7/232.6×10-3×25.67= 4.14m2,(5 分) 冷却段对数平均温差:Δ tm=(46-7.38)-(10-5)= 16.45℃ ln 46-7.38 (5 分)10-5 所需传热面积: A 冷却= 2.6/116.8×10-3×16.45= 1.35m2, 冷凝、冷却共需传热面积:Σ A i=4.14+ 1.35=5.49m2, 换热器实际传热面积为:A0=30×3.14×0.025×3=7.065>ΣA i ,所以适宜使用。(5分) 2.(20 分)某列管换热器由多根Φ 25×2.5mm的钢管组成,将流量为15×103kg/h 由20℃加热到55℃, 苯在管中的流速为0.5m/s ,加热剂为130℃的饱和水蒸汽在管外冷凝,其汽化潜热为2178kJ/kg ,苯的比热容cp为1.76 kJ/kg ·K,密度ρ 为858kg/m3,粘度μ为0.52 ×10-3Pa·s,导热系数λ为0.148 W/m·K,热损失、管壁热阻及污垢热阻均忽略不计,蒸汽冷凝时的对流传热系数α 为10×104 W/m2·K。试求: (1)水蒸汽用量(kg/h );(4分) (2)总传热系数K(以管外表面积为准);(7 分) (3)换热器所需管子根数n及单根管子长度L。(9 分)

化工原理实验—超全思考题答案

实验6 填料吸收塔流体力学特性实验 ⑴ 流体通过干填料压降与式填料压降有什么异同? 答:当气体自下而上通过填料时产生的压降主要用来克服流经填料层的形状阻力。当填料层上有液体喷淋时, 填料层内的部分空隙为液体所充满,减少了气流通道截面,在相同的条件下,随液体喷淋量的增加,填料层所持有的液量亦增加,气流通道随液量的增加而减少,通过填料层的压降将随之增加。 ⑵ 填料塔的液泛和哪些因素有关? 答:填料塔的液泛和填料的形状、大小以及气液两相的流量、性质等因素有关。 ⑶ 填料塔的气液两相的流动特点是什么? 答:填料塔操作时。气体由下而上呈连续相通过填料层孔隙,液体则沿填料表面 流下,形成相际接触界面并进行传质。 ⑷ 填料的作用是什么? 答:填料的作用是给通过的气液两相提供足够大的接触面积,保证两相充分接触。 ⑸ 从传质推动力和传质阻力两方面分析吸收剂流量和吸收剂温度对吸收过程的影响? 答:改变吸收剂用量是对吸收过程进行调节的最常用的方法,当气体流率G 不变时,增加吸收剂流率,吸收速率A N 增加,溶质吸收量增加,则出口气体的组成2y 减小,回收率增大。当液相阻力较小时,增加液体的流量,传质总系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力m y ?的增大引起,此时吸收过程的调节主要靠传质推动力的变化。当液相阻力较大时,增加液体的流量,传质系数大幅度增加,而平均推动力可能减小,但总的结果使传质速率增大,溶质吸收量增加。对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力a k m a K y y = 1将随之减小,结果使吸收效果变好,2y 降低,而平均推动力m y ?或许会减小。对于气膜控制的过程,降低操作温度,过程阻力a k m a K y y = 1不变,但平均推动力增大,吸收效果同样将变好 ⑹ 从实验数据分析水吸收氨气是气膜控制还是液膜控制、还是兼而有之? 答:水吸收氨气是气膜控制。 ⑺ 填料吸收塔塔底为什么要有液封装置? 答:液封的目的是保证塔内的操作压强。 ⑻ 在实验过程中,什么情况下认为是积液现象,能观察到何现象? 答:当气相流量增大,使下降液体在塔内累积,液面高度持续上升,称之为积液。 ⑼ 取样分析塔底吸收液浓度时,应该注意的事项是什么? 答:取样时,注意瓶口要密封,避免由于氨的挥发带来的误差。 ⑽ 为什么在进行数据处理时,要校正流量计的读数(氨和空气转子流量计)? 答:流量计的刻度是以20℃,1atm 的空气为标准来标定。只要介质不是20℃,

化工原理下必考题

化工原理下 1.常压下,用煤油从苯蒸汽和空气混合物中吸收苯,吸收率为99%,混合气量为53kmol/h。入塔气中含苯2%(体积%),入塔煤油中含苯0.02%(摩尔分率)。溶剂用量为最小用量的1.5倍,在操作温度50℃下,相平衡关系为y* = 0.36x,总传质系数K y a=0.015kmol/(m3?s),塔径为1.1米。试求所需填料层高度。 2 .在逆流操作的填料吸收塔中,对某一低浓气体中的溶质组分进行吸收,现因故 (1)吸收剂入塔浓度变大, (2)吸收剂用量变小, 而其它操作条件均不变,试分析出塔气体、液体浓度如何变化? 3. 气膜控制的逆流吸收过程,其它操作条件不变,将气液流量同比例减小,试分析出塔气体、液体浓度如何变化? 4某吸收塔在101.3kPa、293K下用清水逆流吸收丙酮-空气混合气体(可视为低浓气体)中的丙酮。当操作液气比为2.1时,丙酮回收率可达95%。已知物系平衡关系为y=1.18x,吸收过程大致为气膜控制,气相总传质系数K y a ∝G0.8。今气体流量增加20%,而液量及气液进口浓度不变,试求: (1)回收率变为多少? (2)单位时间内被吸收的丙酮量增加多少倍? 5吸收-解吸联合操作系统如图所示。两塔填料层高度均为 7m,G=1000kmol/h,L=150kmol/h,解吸气量G'=300kmol/h, 组分浓度为:y b=0.015,y'a=0.045,y'b=0,x b=0.095(均为摩 尔分率),且知:吸收系统相平衡关系为y = 0.15x,解吸系 统相平衡关系为y = 0.6x。 试求: (1) 吸收塔气体出口浓度y a,传质 单元数N OG; (2) 解吸塔传质单元数N'OG; 6.对解吸因数S=0.6的系统进行逆流吸收,y*=mx,当塔高为无穷大时,而L、V与进口组成均不变,则此时气体入口组成y b将(> = <) y b*

化工原理期末试题-2-答案

徐州工程学院试卷 — 学年第 学期 课程名称 化工原理 试卷类型 考试形式 闭卷 考试时间 100 分钟 命 题 人 年 月 日 教研室主任(签字) 年 月 日 使用班级 教学院长(签字) 年 月 日 班 级 学 号 姓 名 一、单选题(共15题,每题2分,共计30分) 1. 滞流内层越薄,则下列结论正确的是 D A 近壁面处速度梯度越小 B 流体湍动程度越低 C 流动阻力越小 D 流动阻力越大 2. 判断流体流动类型的准数为___ A ____。 A . Re 数 B. Nu 数 C . Pr 数 D . Gr 数 3. 在一水平变径管路中,在小管截面A 和大管截面B 连接一U 形压差计,当流体流过该管 段时,压差计读数R 值反映的是 A A A 、 B 两截面间的压强差 B A 、B 两截面间的流动阻力 C A 、B 两截面间动压头变化 D 突然扩大或缩小的局部阻力 4. 离心泵铭牌上标出的流量和压头数值是 A 。 A. 最大流量下对应值 B. 操作点对应值 C. 计算值 D. 最高效率点对应值 5. 离心泵在一定管路系统下工作时,压头与被输送液体的密度无关的条件是 D A Z 2-Z 1=0 B Σh f = 0 C 22 21022 u u -= D p 2-p 1 = 0 6. 含尘气体,初始温度为30℃,须在进入反应器前除去尘粒并升温到120℃,在流程布置 上宜 A A. 先除尘后升温 B. 先升温后除尘 C. 谁先谁后无所谓 7. 穿过2层平壁的稳态热传导过程,已知各层温差为△t 1=100℃, △t 2=25℃,则第一、二层 的热阻R 1、R 2的关系为_____D______。 A. 无法确定 B. R 1 = 0.25R 2 C. R 1 = R 2 D. R 1 = 4R 2 8. 在蒸汽-空气间壁换热过程中,为强化传热,下列方案中那种在工程上最有效 B A 提高蒸汽流速 B 提高空气流速 C 采用过热蒸汽以提高蒸汽流速 D 在蒸汽一侧管壁上装翅片,增加冷凝面积并及时导走冷凝热。 9. 在吸收操作中,吸收塔某一截面上的总推动力(以气相组成表示)为 A A. Y -Y* B. Y*- Y C. Y -Yi D. Yi - Y 10. 含低浓度溶质的气体在逆流吸收塔中进行吸收操作,若进塔气体流量增大,其他操作条 件不变,则对于气膜控制系统,其出塔气相组成将 A A. 增大 B. 变小 C. 不变 D. 不确定 题号 一 二 三 四 五 六 七 八 总分 总分 30 15 15 40 100 得分

化工原理在高考题中的渗透

化工原理在高考题中的渗透 黄明建 高考化学命题“注重测量考生自主学习的能力,重视理论联系实际,关注与化学有关的科学技术、社会经济和生态环境的协调发展,以促进考生在知识与技能、过程与方法、情感态度与价值观等方面的全面发展。”在《2014年普通高等学校招生全国统一考试北京卷考试说明》中涉及联系“生产”实际的要求就超过了5处,结果在今年的高考卷中就出现了26、27两道相关的大题。 那么,在高考中,化工原理的相应考点如何呈现?考生如何应对?这是我们需要关注的问题。 目前,在高考题中,化工原理的呈现主要有两种形式:一是以生产流程为基本信息;二是以模拟化工生产的实验装置和过程为基本素材。考查考生对一些化学反应基本原理、生产流程、操作方法的理解和灵活处理问题的思维能力。 【例1】2014北京卷26 NH3经一系列反应可以得到HNO3和NH4NO3,如下图所示。 (1)Ⅰ中,NH3和O2在催化剂作用下反应,其化学方程式是________________________。(2)Ⅱ中,2NO(g) +O2(g) 2NO2(g) 。在其他条件相同时,分别测得NO的平衡转化率在不同压强(p1、p2)下随温度变化的曲线(如右图)。 ①比较p1、p2的大小关系_____________。 ②随温度升高,该反应平衡常数变化的趋势是__________。 (3)Ⅲ中,将NO2(g)转化成N2O4(l),再制备浓硝酸。 ①已知:2NO 2(g) N 2O4(g) ΔH1 2NO2(g) N2O4(l) ΔH2

②N2O4与O2、H2O化合的化学方程式: ______________________________________。 (4)Ⅳ中,电解NO制备NH4NO3,其工作原理 如右图所示,为使电解产物全部转化为NH4NO3, 需补充物质A,A是________,说明理由: __________________________________________ ______________________________________。 【解析】 本题以硝酸工业生产的主要流程为载体。联系其主要反应考查了相关的化学方程式、化学平衡原理、热化学、电解原理与氧化还原理论的应用。体现了北京高考化学命题的一个重要指导思想——“试题的选材不在枝节问题上或非主干知识上设置陷阱,突出基础必会知识、主干核心知识和内化的学习能力的考查”。 (1)氨的催化氧化及其方程式是考生所熟悉的,属于基础知识。 (2)要求考生能通过图象分析化学平衡条件(温度和压强)对NO平衡转化率的影响。由于2NO(g) +O2(g) ?2NO2(g)是一个气体物质计量数减小的可逆反应,故增大压强有利于提高NO转化率。再从图象看,当温度一定(如400℃),p2对应的NO转化率比p1高,所以,p2>p1;当压强一定(如p2),NO转化率随温度升高而减小。所以,平衡常数K=c2(NO2) /c2(NO)·c(O2)会随温度升高而减小。 本题间接介绍了硝酸工业中NO氧化的条件:在工业操作条件(800℃~900℃)下,NO不能氧化成NO2(转化率为0)。只有降温到约150℃以下,才有利于NO的氧化。也可以帮助我们理解:为什么“氨的催化氧化”与“NO氧化成NO2”要分别在Ⅰ、Ⅱ两个不同的生产环节完成,而不是在同一环节中进行。 (3)NO2转化为N2O4是一个放热过程(即物质能量降低的过程),这个知识点在高中《化学反应原理》模块的学习以及2014年北京高考说明中的样题(16)均有明确的要求。 (4)要求考生能将电解原理的知识应用到“电解NO制备NH4NO3”的实际问题中,通过阴、阳极转移电子量相等(或氧化剂、还原剂之间转移的电子数相等的原则),推 知从电解槽出来的溶液中含有HNO3,进而得知:需要补充的物质A应该是NH3。 高温 【答案】26.(1)4NH3+5O2 =4NO+6H2O(2)①p2>p1②减小 (3)①A ②2N2O4+O2+2H2O=4HNO3 (4)NH3根据反应:8NO + 7H2O=3NH4NO3 + 2HNO3,电解产生的HNO3。(或通过电极反应产物中n(NH4+)∶n(NO3-) ∶n(H+) =3∶5∶2,也可以说明。)

化工原理课后题答案部分

化工原理第二版 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一组绘平 衡t-x图数据。 以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa 下该溶液的平衡数据。 温度C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3

化工原理期末试题及答案

模拟试题一 1当地大气压为 745mmHg 测得一容器内的绝对压强为 350mmHg 则真空度为395 mmH?测得另一容器内的表压 强为1360 mmHg 则其绝对压强为 2105mmHg _____ 。 2、 流体在管内作湍流流动时,在管壁处速度为 _0 _______,临近管壁处存在层流底层,若 Re 值越大,则该层厚度 越薄 3、 离心泵开始工作之前要先灌满输送液体,目的是为了防止 气缚 现象发生;而且离心泵的安装高度也不能 够太高,目的是避免 汽蚀 现象发生。 4 、离心泵的气蚀余量越小,则其抗气蚀性能 越强 。 5、 在传热实验中用饱和水蒸汽加热空气,总传热系数 K 接近于 空气 侧的对流传热系数,而壁温接近于 饱和水蒸汽 侧流体的温度值。 6、 热传导的基本定律是 傅立叶定律。间壁换热器中总传热系数K 的数值接近于热阻 大 (大、小)一侧的:?值。 间壁换热器管壁温度t w 接近于:.值 大 (大、小)一侧的流体温度。由多层等厚平壁构成的导热壁面中,所用材料的 导热系数愈小,则该壁面的热阻愈 大 (大、小),其两侧的温差愈 大 (大、小)。 7、 Z= (V/K v a. Q ) .(y 1 -丫2 )/ △ Y m 式中:△ Y m 称 气相传质平均推动力 ,单位是kmol 吸 收质/kmol 惰气;(Y i — Y 2) / △ Y m 称 气相总传质单元数。 8、 吸收总推动力用气相浓度差表示时,应等于 气相主体摩尔浓度 和同液相主体浓度相平衡的气相浓度之 差。 9、 按照溶液在加热室中运动的情况,可将蒸发器分为循环型和非循环型两大类。 10、 蒸发过程中引起温度差损失的原因有:溶液蒸汽压下降、加热管内液柱静压强、管路阻力。 11、工业上精馏装置,由精馏^_塔、冷凝器、再沸器等构成。 12、分配系数k A 是指y A /X A ,其值愈大,萃取效果 量传递相结合的过程。 1、气体在直径不变的圆形管道内作等温定态流动,则各截面上的( 6、某一套管换热器,管间用饱和水蒸气加热管内空气(空气在管内作湍流流动) 13、萃取过程是利用溶液中各组分在某种溶剂中 溶解度的差异 而达到混合液中组分分离的操作。 14、在实际的干燥操作中,常用 干湿球温度计来测量空气的湿度。 15、对流干燥操作的必要条件是 湿物料表面的水汽分压大于干燥介质中的水分分压 ;干燥过程是热量传递和质 越好。 A. 速度不等 B.体积流量相等 C. 速度逐渐减小 D.质量流速相等 2、装在某设备进口处的真空表读数为 -50kPa ,出口压力表的读数为 100kPa , 此设备进出口之间的绝对压强差为 A. 50 B . 150 C . 75 D .无法确定 3、离心泵的阀门开大时,则( B )。A ?吸入管路的阻力损失减小 .泵出口的压力减小 C .泵入口处真空度减小 .泵工作点的扬程升高 4、下列(A )不能实现对往复泵流量的调节。 A .调节泵出口阀的开度 ?旁路调节装置 C .改变活塞冲程 ?改变活塞往复频率 5、已知当温度为 T 时,耐火砖的辐射能力大于铝板的辐射能力,则铝的黑度( )耐火砖的黑度。 A.大于 .等于 C .不能确定 D .小于 ,使空气温度由20 C 升至80 C,

化工原理实验思考题答案汇总

流体流动阻力的测定 1.在测量前为什么要将设备中的空气排尽?怎样才能迅速地排尽?为什么?如何检验管路中的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U 形管顶部的阀门,利用空气压强使U 形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 2.以水为介质所测得的?~Re关系能否适用于其他流体? 答:能用,因为雷诺准数是一个无因次数群,它允许d、u、、变化 3?在不同的设备上(包括不同管径),不同水温下测定的?~Re数据能否关联在同一条曲线上? 答:不能,因为Re二du p仏与管的直径有关 离心泵特性曲线的测定 1.试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?本实验中,为了得到较好的实验效果,实验流量范围下限应小到零,上限应到最大,为什么? 答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机 (2)启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什么? 答:离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 (3)泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?随着流量的增大,泵进、出口压力表分别有什么变化?为什么? 答:当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受

外网特性曲线影响造成的 恒压过滤常数的测定 1.为什么过滤开始时,滤液常常有混浊,而过段时间后才变清? 答:开始过滤时,滤饼还未形成,空隙较大的滤布使较小的颗粒得以漏过,使滤液浑浊,但当形成较密的滤饼后,颗粒无法通过,滤液变清。? 2.实验数据中第一点有无偏低或偏高现象?怎样解释?如何对待第一点数据? 答:一般来说,第一组实验的第一点△ A A q会偏高。因为我们是从看到计量桶出现第一滴滤液时开始计时,在计量桶上升1cm 时停止计时,但是在有液体流出前管道里还会产生少量滤液,而试验中管道里的液体体积产生所需要的时间并没有进入计算,从而造成所得曲线第一点往往有较大偏差。 3?当操作压力增加一倍,其K值是否也增加一倍?要得到同样重量的过滤液,其过滤时间是否缩短了一半? 答:影响过滤速率的主要因素有过滤压差、过滤介质的性质、构成滤饼的 颗粒特性,滤饼的厚度。由公式K=2I A P1-s, T=qe/K可知,当过滤压强提高一倍时,K增大,T减小,qe是由介质决定,与压强无关。 传热膜系数的测定 1.将实验得到的半经验特征数关联式和公认式进行比较,分析造成偏差的原因。 答:答:壁温接近于蒸气的温度。 可推出此次实验中总的传热系数方程为 其中K是总的传热系数,a是空气的传热系数,02是水蒸气的传热系数,3是铜管的厚度,入是铜的导热系数,R1、R2为污垢热阻。因R1、R2和金属壁的热阻较小,可忽略不计,则Tw- tw,于是可推导出,显然,壁温Tw接近于给热系数较大一侧的流体温度,对于此实验,可知壁温接近于水蒸气的温度。

相关主题
文本预览
相关文档 最新文档