当前位置:文档之家› 快速成型技术总结

快速成型技术总结

快速成型技术总结
快速成型技术总结

快速成型技术总结

《快速成型技术总结》是一篇好的范文,觉得应该跟大家分享,希望对网友有用。

篇一:快速成型总结报告快速成型总结报告一、快速成型技术的发展及原理快速成形技术(,简称)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术是由模型直接驱动的快速制造任意复杂形状三维物理实体的技术总称,其基本过程是:首先设计出所需零件的计算机三维模型(数字模型、模型),然后根据工艺要求,按照一定的规律将该模型离散为一系列有序的单元,通常在向将其按一定厚度进行离散(习惯称为分层),把原来的三维模型变成一系列的层片;再根据每个层片的轮廓信息,输入加工参数,自动生成数控代码;最后由成形机成形一系列层片并自动将它们联接起来,得到一个三维物理实体。

快速成型技术的原理:快速成型技术()的成型原理是基于离散-叠加原理而实现快速加工原型或零件这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性二、快速成型技术的分类快速成型技术-分类快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(),例如:光固化成型()、最全面的范文写作网站分层实体制造()、选域激光粉末烧结()、形状沉积成型()等;基于喷射的成型技术(),

例如:熔融沉积成型()、三维印刷()、多相喷射沉积()。

下面对其中比较成熟的工艺作简单的介绍。

技术是基于液态光敏树脂的光聚合原理工作的。

这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。

、(光固化成型)工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。

成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。

当一层扫描完成后.未被照射的地方仍是液态树脂。

然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。

方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。

工艺成型的零件精度较高,加工精度一般可达到,原材料利用率近%。

但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。

优点:()成型过程自动化程度高()尺寸精度高。

()表面质量优良。

()可以制作结构十分复杂的模型。

()可以直接制作面向熔模精密铸造的具有中空结构的消失型。

范文缺点:()成型过程中伴随着物理和化学变化,所以制件较易弯曲,需要支撑,()设备运转及维护成本较高。

()可使用的材料种类较少。

()液态树脂具有气味和毒性,并且需要避光保护,以防止提前发生聚合反应,选择时有局限性。

()需要二次固化。

()液态树脂同化后的性能尚不如常用的工业塑料,一般较脆、易断裂,不使进行机加工。

、(,)工艺工艺称叠层实体制造或分层实体制造,由美国公司的于年研制成功。

工艺采用薄片材料,如纸、塑料薄膜等。

片材表面事先涂覆上一层热胶。

原理加工时,热压辊热压片材,使之与下面已成型的工件粘接。

用激光器在刚粘接的新层上切割出零件截面轮廓和工件外框,并在截面轮廓与外框之间多余的区域内切割出上下对齐的网格。

激光切割完成后,工作台带动已成型的工件下降,与带状片材范文写作分离。

供料机构转动收料轴和供料轴,带动料带移动,使新层移到加工区域。

工作合上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚。

再在新层上切割截面轮廓。

如此反复直至零件的所有截面粘接、切割完。

最后,去除切碎的多余部分,得到分层制造的实体零件。

工艺只需在片材上切割出零件截面的轮廓,而不用扫描整个截面。

因此成型厚壁零件的速度较快,易于制造大型零件。

工艺过程中不存在材料相变,因此不易引起翘曲变形。

工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以工艺无需加支撑。

缺点是材料浪费严重,表面质量差。

、()工艺工艺称为选域激光烧结,由美国德克萨斯大学奥斯汀分校的于年研制成功。

工艺是利用粉末状材料成型的。

原理其原理是将材料粉末铺洒在已成型零件的上表面,并刮平,用高强度的激光器在刚铺的新层上扫描出零件截面,材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成型的部分连接。

百度当一层截面烧结完后,铺上新的一层材料粉末,有选择地烧

结下层截面。

烧结完成后去掉多余的粉末,再进行打磨、烘干等处理得到零件。

优点:()精度高。

制件在和方向的精度可达±~,方向的精度可达±~。

()实体制造中无需设计和制作支撑,所以制作效率高、速度快、成本低。

()可采用多种材料。

()制造工艺比较简单。

()高精度。

依赖于使用的材料种类和粒径、产品的几何形状和复杂程度,该工艺一般能够达到工件整体范围内±(~)的公差。

当粉末粒径为以下时,成型后的原型精度可达±%。

()材料利用率高,价格便宜,成本低。

()无需支撑结构。

缺点:()特别是薄壁件的抗拉强度和弹性不够好;()易吸湿膨胀,成型后应尽快进行表面防潮处理;()件表面有台阶纹,其高度等于材料的厚度(通常为左右)工艺的特点是材料适应面广,思想汇报专题不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件,特别是可以制造金属零件。

这使工艺颇具吸引力。

、()工艺三维印刷工艺是美国麻省理工学院-等人研制的。

已被美国的公司以()名义商品化,用以制造铸造用的陶瓷壳体和型芯。

工艺与工艺类似,采用粉末材料成型,如陶瓷粉末、金属粉末。

所不同的是材料粉末不是通过烧结连结起来的,而是通过喷头用粘结剂(如硅胶)将零件的截面印刷在材料粉来上面。

的原理如图所示,左面是原理储粉筒,材料被放置在快速成型过程的起始位置。

零件是由粉末和胶水组成的。

右面就是部件制作的地方。

在工作平台的里面是一个平整的金属盘,上面一层层微细的粉末由滚筒铺开,然后在制作过程中由打印头喷出粘着剂进行粘结其优点:()速度快,()是和制造复杂形状的零件,()可用与制造复合材料或非均匀材料的零件,()可是和制造小批量零件,()无污染,是绿色化的办公室设计。

缺点:()零件精度差,表面粗糙度差()零件易变性甚至出现裂纹。

、()工艺熔融沉积制造()工艺由美国学者于年研制成功。

的材料一般是热塑性材料,如蜡、、尼龙等。

以丝状供料。

材料在喷头内被加热熔化。

喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,

材料迅速凝固,并与周围的材料凝结。

工艺原理如图所示。

原理与上述工艺不同,不采用激光,成型材料为丝状的高分子聚合物;在开始成型之前,丝状材料需要先在液化管中被加热到略高于其软化点以将其熔化。

成型时,喷头在计算机控制下作-联动扫描,同时喷出半流动状的高分子聚合物,高分子聚合物在成型室中冷却成型,并与已经成型的下层牢固地粘结在一起。

工艺的缺点是需要支撑,而且由于物态变化,成型后原型存在变形现象。

优点:()由于热融挤压头系统构造原理和操作简单,维护成本低,系统运行安全。

()成型速度快。

用熔融沉积方法生产出来的产品,不需要中的刮板再加工这一道工序。

()用蜡成型的零件原型,可以直接用于熔模铸造。

()可以成型任意复杂程度的零件,常用于成型具有很复杂的内腔、孔等零件。

()原材料在成型过程中无化学变化,制件的翘曲变形小。

()原材料利用率高,且材料寿命长。

()支撑去除简单,无需化学清洗,分离容易。

缺点:()成型件的表面有较明显的条纹。

()沿成型轴垂直方向的强度比较弱。

()需要设计与制作支撑结构。

()需要对整个截面进行扫描涂覆,成型时间较长。

()原材料价格昂贵。

三、快速成型技术的数据处理、前期数据处理快速成型技术的数据来源主要有一下两大类:()、三维数据由三维实体造型软件(/、-、等)生成产品的三维数据模型,然后对数据模型直接分层的到精确的界面轮廓。

最常用的方法是将三维数据模型转换为三角形网格形式的文件数据资料,然后对其进行分层,从而得到系统专用加工路径。

()、逆向工程数据主要是借助逆行工程相关软件,借助逆向工程测量设备(如三维扫描仪)对已有零件进行三维实体扫描,从而获得实体的点云数据资料;再对这些点云数据资料进行相关的处理:对数据点进行三角网格化生产文件,再进行分层数据处理货对三维点云数据点直接进行分层处理。

()、数据格式的预处理数据格式的出发点就是用小三角形面片的形式去逼近三维实体的自由曲面。

在每个三角形片面中都可由三角形的三个顶点、指向模型外部的三角片面、中期数据处理将所得的三维造型数据进行优化、切片以及转化成系统可以识别的文件格式,通常采用格式。

三维软件与软件系统之间的数据接口可分为两大类:利用中间格式文件进行切片和直接切片。

四、工艺的工艺过程()三维模型的构造:按图纸或设计意图在三维设计软件中设计出该零件的实体文件。

一般快速成型支持的文件输出格式为模型,即对实体曲面做近似的所谓面型化处理,是用平面三角形面片近似模型表面。

以简化模型的数据格式。

便于后续的分层处理。

由于它在数据处理上较简单,而且与系统无关,所以很快发展为快速成型制造领域中系统与快速成型机之间数据交换的标准,每个三角面片用四个数据项表示。

即三个顶点坐标和一个法向矢量,整个模型就是这样一个矢量的集合。

在一般的软件系统中可以通过调整输出精度控制参数,减小曲面近似处理误差。

如/软件是通过选定弦高值(-)作为逼近的精度参数。

()三维模型的离散处理(切片处理):在选定了制作(堆积)方向后,通过专用的分层程序将三维实体模型(一般为模型)进行一维离散,即沿制作方向分层切片处理,获取每一薄层片截面轮廓及实体信息。

分层的厚度就是成型时堆积的单层厚度。

由于分层破坏了切片方向模型表面的连续性,不可避免地丢失了

模型的一些信息,导致零件尺寸及形状误差的产生。

所以分层后需要对数据作进一步的处理,以免断层的出现。

切片层的厚度直接影响零件的表面粗糙度和整个零件的型面精度,每一层面的轮廓信息都是由一系列交点顺序连成的折线段构成。

所以,分层后所得到的模型轮廓已经是近似的,层与层之间的轮廓信息已经丢失,层厚越大丢失的信息越多,导致在成型过程中产生了型面误差。

()成型制作:把分层处理后的数据信息传至设备控制机,选用具体的成型工艺,在计算机的控制下,逐层加工,然后反复叠加,最终形成三维产品。

()后处理:根据具体的工艺,采用适当的后处理方法,改善样品性能。

篇二:快速设计及成型技术-总结快速成型概念部分:快速成型:简称,即将计算机辅助设计\计算机辅助制造\计算机数字控制、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层截面的二维轮廓信息,快速成型机的成形头按照这些轮廓信息在控制系统的控制下,选择性地固化或切割一层层的成形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。

快速成形的基本原理:是叠层制造,快速成形机在—平面内通过扫描形成原型件的截面轮廓形状,而在坐标作间断的层厚位移,最终

形成三维的原型件。

快速成形机:包括扫描路径及成形运动机构、能源部件(激光器、加热头)、材料供应机构和控制系统大部分。

快速成形与传统制造方法的区别?传统方法根据零件成形过程分为两大类:一类是以成型过程中材料减少为特征,通过各种方法将零件毛胚上多余材料去除,即材料去除法,二类是材料的质量在成型过程中基本保持不变,成型过程主要是材料的转移和毛胚形状的改变即材料转移法,但此类方法生产周期长速度慢。

快速成型技术可以以最快的速度、最低的成本和最好的品质将新产品迅速投放市场。

快速成型制造技术是由数字模型驱动的通过特定材料采用逐层累积方式制作三维物理模型的先进制造技术。

快速原型的用途:快速成型技术制作的原型(模型)可用于新产品的外观评估、装配检验及功能检验等,作为样件可直接替代机加工或者其他成形工艺制造的单件或小批量的产品,也可用于硅橡胶模具的母模或熔模铸造的消失型等,从而批量地翻制塑料及金属零件。

快速原型的优势:()可按用户要求快速的进行产品外形设计。

()便于产品进行功能测试和评价。

()将设计与装配方面出现的问题消灭在开模之前。

()缩短产品的研制开发周期。

()大大提高新产品的一次成功率。

()降低产品复杂程度对制造的限制。

()制造周期大大缩短,成本大大降低。

快速成型的发展:、快速成型向着多种材料复合成型方向发展,无需装配一次制造。

、快速成型向低成本、提高效率、简化工艺的方向发展。

、提高成型件的精度、表面质量、力学和物理性能。

快速成型技术发展到目前阶段,主要存在两大局限:()由于成型材料种类和成本的限制,原型多为模型而非实际需要的工作零件;()因数据处理及制作工艺等限制,快速成型系统制作的原型很难达到与设计相同的尺寸精度和实际使用要求的表面质量。

快速成形技术的发展:年,第台光固化(商业用途),年,非商业用途。

快速成型的特点:()快速性()设计制造一体化()自由成型制造()高度柔性()材料的广泛性()技术的高度集成()与反求工程、技术、网络技术、虚拟现实技术等相结合,成为产品快速开发的有力工具。

快速成型技术的分类:基于激光或其它光源的成型技术,如:光固化成型法()、叠成分层实体制造()、选择性激光烧结()等;基于喷射的成型技术,如:熔融沉积制造()。

快速成形技术常用的文件格式:有、、和四种。

(文件格式有码和二进制码两种输出形式,二进制码形式所占用的文件空间比码形式的小得多,一般是/。

但是,可以阅读,并能进行直观检查。

)快速成型的数据来源类型:(直接,转化,反求))三维模型:三角网格模型())逆向工程数据:三角化生成)数学几何数据:数学公式和几何数据)医学/体素数据:人体断层扫描和核磁共振)分层数据:直接获得分层活截面轮廓快速成型的工艺过程:)产品三维模型的构建)三维模型的近似处理)三维模型的切片处理)成型加工)成型零件的后处理快速成型材料的分类、按材料的物理状态分类:液体、薄片、粉末和丝状、按材料化学性能分类:树脂类、石蜡类、金属、陶瓷和其它复合材料、按材料成型方法分类:材料、材料、材料、材料、那材料成型步骤分类:直接成型(反映型聚合物、非反应型聚合物、纸、金属、砂、陶瓷);间接复制用材料(硅橡胶、金属基复合材料、陶瓷基复合材料、反应成型塑料)快速成型工艺对材料性能的总体要求、有利于快速精确地加工原型零件。

、用快速成型系统直接制造功能件的材料要接近最终用途对强度、刚度、耐潮性、热稳定性等要求。

、当原型间接使用时,其性能要有利于后续处理工艺、当原型间接使用时,要有利于后续处理工艺。

主要快速成形系统选用原则::成形件的用途(检查并核实形状、尺寸用的样品性能考核用的样品模具小批量和特殊复杂零件的直接生产新材料的研究):成形件的形状:成形件的尺寸大小成本(设备购置成本设备运行成本人工成本)技术服务(保修期软件的升级换代技术

研发力量)用户环境快速成形技术全过程步骤:前处理分层叠加成型后处理快速成形制造流程:模型→面型化处理→分层→层信息处理→层准备→层制造→层粘接→实体模型快速成形的全处理主要包括:三维模型的构建、三维模型格式化以及三维模型的切片处理等构造三维模型的主要方法:应用计算机三维设计软件,根据产品的要求设计三维模型,应用计算机三维设计软件,将已有产品的二维三视图转换为三维模型,仿制产品时,应用反求设备和反求软件,得到产品的三维模型,利用网络将用户设计好的三维模型直接传输到快速成形工作站在快速成型的前处理阶段为什么要把三维模型转化为文件格式?格式文件的规则和常见错误有哪些?由于产品上有一些不规则的自由曲面,为方便的获得曲面每部分的坐标信息,加工前必须对其进行近似处理,此近似处理的三维模型文件即为格式文件规则:()共顶点规则(一点公共)。

()取向规则(同矢量方向)。

()取值规则(坐标值为正)。

()合法实体规则(布满无遗漏)。

快速成形中工件前处理环节选择零件的成形方向应注意哪些问题?将格式文件所表达的三维模型加以旋转,然后再切片,可获得不同的成形方向。

成形方向对工件的品质(尺寸精度、表面粗糙度、强度等)、材料消耗(成本)和制作时间都有很大的影响。

快速成形中的主要切片形式有哪些?其中那种切片形式精度最高?

为什么?切片容错切片适应性切片直接适应性切片直接切片。

直接切片形式精度最高。

因为能减少快速成形的前处理时间可避免格式文件的检查和纠错过程可降低模型文件的规模能直接采用数控系统的曲线插补功能,从而可提高工件的表面质量能提高制件的精度快速成形的后处理主要有哪些工序:剥离修补、打磨、抛光表面涂覆快速成型技术中采用的数据文件:三维模型数据文件,比如、、-等等;三维面片格式文件,比如、等;层片格式文件,比如、以及等。

快速成型主要工艺方法根据所使用的材料和建造技术的不同,目前应用比较广泛的方法有如下四种:光固化成型法(,):采用光敏树脂材料通过激光照射逐层固化而成型叠层实体制造法(,):采用纸材等薄层材料通过逐层粘结和激光切割而成型选择性激光烧结法(,):采用粉状材料通过激光选择性烧结逐层固化而成型熔融沉积制造法(,):采用熔融材料加热熔化挤压喷射冷却而成型快速成形表面涂覆:喷刷涂料;电化学沉积;无电化学沉积;物理蒸发沉积;电化学沉积和物理蒸发沉积的综合快速成形精度包括软件和硬件两部分。

软件部分指模型数据的处理精度;硬件部分指成型设备的各项精度。

成形件的精度:尺寸精度、形位精度、表面质量。

文件部分:文件:是三维实体模型经过三角化处理之后得到的数据文件。

它将实体表面离散化为大量的三角形面片,依靠这些三角形面片来逼近理想的三维实体模型。

精度不同,三角形网格的划分也不同。

精度越高,网格的划分越细密,三角形面片形成的三维实体就越趋近于理想实体的形状。

其格式有二进制格式与Ⅱ格式两种(精度不能无限提高:受制于机器精度,结果文件过大)文件特点:、生成简单、数据文件广泛、具有简单的分层算法、模型易于分割缺点:、近似性、数据的冗余、信息缺乏、精度损失、错误和缺陷文件的精度:从/软件输出文件时,选取的精度指标和控制参数应该根据模型的复杂程度以及快速原型精度要求的高低进行综合考虑。

常见的文件错误()遗漏()退化面()模型错误()错误法矢面注:(点、边、面和构成的实体数量必须满足如下的欧拉公式:-+=-,其中,()、()、()、()分别指面数、边数、点数和实体中穿透的孔洞数。

)(①点共线。

或者是,不共线的面在数据转换过程中形成了三点共线的面。

②点重合。

或者是,在数据转换运算时造成这种结果。

)文件分割与拼接的意义:在实际快速原型制作过程中,如果所要制作的原型尺寸相对于快速成型系统台面尺寸过大或过小,就必须对模型进行剖切处理或者有必要进行拼接处理。

分割基本算法的分割过程有以下四个基本模块:)分割过程前置处理)轮廓截面的形成)轮廓三角形网格化)一个三角形转化为多个三角形几种技术比较:目前比较成熟的快速成型技术有哪几种?它们的成型原理上分别是什么?液态光固化聚合物选择性固化成形简称,粉末材料选择性烧结成形简称,薄型材料选择性切割成形简称,丝状材料选择性熔覆成形简称原理:利用计算机控制下的紫外激光,按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的光敏树脂薄层产生光聚合反应,从而形成零件的一个薄层截面;当一层固化完毕,移动升降台,在原先固化的树脂表面上再敷上一层新的液态树脂,刮刀刮去多余的树脂;激光束对新一层树脂进行扫描固化,使新固化的一层牢固地粘合在前一层上;重复、步,至整个零件原型制造完毕。

原理:在先开始加工之前,先将充有氮气的工作室升温,温度保持在粉末的熔点之下;成型时,送料筒上升,铺粉滚筒移动,先在工作台上铺一层粉末材料;激光束在计算机控制下,按照截面轮廓对实心部分所在的粉末进行烧结,使粉末融化并相互黏结,继而形成一层固体轮廓,未经烧结的粉末仍留在原处,作为下一层粉末的支撑;第一层烧结完成后,工作台下降一截面层的高度,再铺上一层粉末,进行下一层烧结,如此循环,直至完成整个三维模型原理:加热喷头正在计算机的控制下,可根据界面轮廓的信息作—平面运动和高度方向的运动丝状热塑性材料由供丝机构送至喷头,并在喷头中加热至熔融态,然后被选择性涂覆在工作台上,快速冷却后形成界面轮廓。

一层截面完成后,喷头上升一截面层的高度在进行下一层的涂覆,如此循环,最终形成三维产品。

原理:快速成形系统由计算机原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台、数控系统、模型取出装置和机架等组成。

计算机用于接受和存储工件的三维模型沿模型的成型方向截取一系列的截面轮廓信息发出控制指令原材料存储及送进机构将存于其中的原材料。

热黏压机构将一层层成形材料粘合在一起。

可升降工作台支撑正在成型的工件并在每层成形完毕之后,降低一个材料厚度以便送进、粘合和切割新的一层成形材料。

数控系统执行计算机发出的指令,使材料逐步送至工作台的上方,然后粘合、切割,最终形成三维工件。

哪些成形方法需要支撑材料?为什么?、需要制作支撑,、不需要制作支撑。

原因:在成形过程中为了确保制件的可靠固定,同时减少制件的翘曲变形,必须设计并在加工中制作一些柱状或筋状的支撑结构;:工件外框与截面轮廓间的多余材料在加工中起支撑作用,无需支撑;:未烧结的松散粉末可以作为自然支撑,故不需要支撑材料。

光固化快速成形()有那几种形式的支撑?角板支撑投射特征边支撑单臂板支撑臂板结构支撑柱形支撑常用的快速成形技术所用的成

形材料分别是什么?分别有什么要求?:材料为光固化树脂。

要求:成形材料易于固化,且成形后具有一定的粘接强度成形材料的粘度不能太高,以保证加工层平整并减少液体流平时间成形材料本身的热影响区小,收缩应力小成形材料对光有一定的透过深度,以获得具有一定固化深度的曾片。

:材料为所有受热后能相互粘结的粉末材料或表面覆有热塑(固)性黏结剂的粉末。

要求:具有良好的烧结成形性能,即无需特殊工艺即可快速精确地成形原理对直接用作功能零件或模具的原型,其力学性能和物理性能要满足使用要求当原型间接使用时,要有利于快速、方便的后续处理和加工工艺。

:薄层材料多为纸材,黏结剂一般多为热熔胶。

对纸材要求:抗湿性良好的浸润性收缩率小一定的抗拉强度剥离性能好易打磨稳定性好。

对热熔胶的要求:良好的热熔冷固性在反复熔化-固化条件下,具有较好的物理化学稳定性熔融状态下与纸材具有良好的涂挂性与涂匀性与纸具有足够的粘结强度良好的废料分离性能:材料为丝状热塑性材料。

材料要求:黏度低熔融温度低黏结性要好收缩率对温度不能太敏感这四种快速成形技术的优缺点分别是什么?优点:技术成熟应用广泛,成形速度快精度高,能量低。

缺点:工艺复杂,需要支撑结构,材料种类有限,激光器寿命短原材料价格高。

优点:不需要支撑结构,材料利用率高,选用的材料的力学性能比较好,材料价格便宜,无气味。

缺点:能量高,表面粗糙,成形原型疏松多孔,对某些材料需要单独处理。

优点:对实心部分大的物体成形速度快,支撑结构自动的包含在层面制造中,低的内应力和扭曲,同一物体中可包含多种材料和颜色。

缺点:能量高,对内部空腔中的支撑物需要清理,材料利用率低,废料剥离困难,可能发生翘曲优点:成形速度快,材料利用率高,能量低,物体中可包含多种材料和颜色。

缺点:表面光洁度低,粗糙。

选用材料仅限于低熔点的材料。

几种典型技术的特点及用途篇三:快速成型技术复习小结快速成型技术复习小结快速成型:简称,即将计算机辅助设计\计算机辅助制造\计算机数字控制、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层截面的二维轮廓信息,快速成型机的成形头按照这些轮廓信息在控制系统的控制下,选择性地固化或切割一层层的成形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。

.快速成形技术全过程步骤:前处理分层叠加成型后处理快速成

快速成型

快速成型 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 目录 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。

它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP 技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造业产生的革命性意义。 具体是如何成形出来的呢? 形象地比喻:快速成形系统相当于一台"立体打印机"。 它可以在没有任何刀具、模具及工装卡具的情况下,快速直接地实现零件的单件生产。根据零件的复杂程度,这个过程一般需要1~7天的时间。换句话说,RP技术是一项快速直接地制造单件零件的技术。 RP系统的基本工作原理 RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。 每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理

快速成型试题

1、20世纪80年代末期出现了快速成形技术,它涉及CAD/CAM技术、数据处理技术、材料技术、激光技术和计算机软件技术等,是各种高技术的综合。 2、快速成形主要的成形工艺有四种:液态光敏聚合物选择性固化(SLA)、薄型材料选择性切割(LOM)、粉末材料选择性激光烧结(SLS)、丝状材料选择性熔融沉积。 3、快速成形技术、数字原型技术和虚拟原型技术一起,都是产品创新和快速开发的重要手段,他们已成为先进制造技术群的重要组成部分。 4、快速成形技术彻底摆脱了传统的“去除式”加工法,而采用全新的“添加式”加工法。 5、快速成形不必采用传统的加工机床和模具,快速成形建立产品样品或模具的时间和成本中有传统加工方法的10%-30%和20%-35%。 6、三维模型的构造,计算机在描述实体时常用的四种方法:构造实体几何法(CSG)、边界表达法(B-rep)、参量表达法、单元表达法。 7、模型输出常用的文件格式有多种,常用的有IGES、HPGL、STEP、DXF、STL等。 8、IGES是大多数CAD系统采用的一种美国标准,可以支持不同文件格式间的转换。 9、HPGL是HP公司开发的一种用来控制自动绘图机的语言格式,它以被广泛地接受,成为一项事项标准。这种表达格式的基本构成是描述图形的矢量,用X和Y坐标来表示矢量的起点和终点,以及绘图笔相应的抬起或放下。一些快速成型系统也用HPGL来驱动它们的成形头。10、STEP是一种正在逐步国际标准化的产品数据交换标准。目前,典型的CAD系统都能输出STEP格式文件,有些快速成形技术的研究者正试图借助STEP格式,不经STL格式的转换,直接对三维CAD模型进行切片处理,以便提高快速成形的精度。 11、DXF是用于AutoCAD输出的一种格式 12、STL格式是快速成形系统经常采用的一种格式 13、常用的扫描机有传统的坐标测量机、激光扫描机、零件断层扫描机、CT扫描机、磁共振扫描机等。 14、STL文件格式的规则有:共定点规则、取向规则、取值规则、充满规则 15、迄今为止,在国际市场上出现了很多与逆向工程相关的,主要有Imageware、Geomagic Studio、CopyCAD和RapidForm四大软件。 16、Geomagic Studio主要包括Quality、Shape、Wrape、Decimate、Capture五个模块。 17、RP 扫描填充方式发展到现在,主要有以下几种方式:单向扫描,多向扫描,十字网格扫描,Z 字型扫描和沿截面轮廓偏置扫描等。 18、快速成型的全过程包括三个阶段:前处理、自由成型、后处理。 19、光固化成型工艺中用来刮去每层多余树脂的装置是刮刀。 20、用于FDM的支撑的类型为:水溶性支撑和易剥离性支撑 21、快速成型技术建立在新材料技术、计算机技术、激光技术和数控技术四大技术之上的。 22、叠层实体制造工艺涂布工艺包括涂布形状和涂布厚度 叠层实体制造工艺常用激光器为 CO2激光器 四种成型工艺不需要激光系统的是 FDM。四种成型工艺不需要支撑结构系统的是 SLS 光固化成型工艺树脂发生收缩的原因主要是树脂固化收缩和热胀冷缩。 就制备工件尺寸相比较,四种成型工艺制备尺寸最大的是 LOM SLS周期长是因为有预热段和后冷却时间。(√)SLA过程有后固化工艺,后固化时间比一次固化时间短。(×)SLS工作室的气氛一般为氧气气氛。(×)SLS在预热时,要将材料加热到熔点以下。(√)LOM胶涂布到纸上时,涂布厚度厚一点效果会更好。(×) FDM中要将材料加热到其熔点以上,加热的设备主要是喷头。(√)FDM一般不需要支撑结构。(×) LOM生产相同的产品速度比光固化速度要快。(√)RP技术比传统的切

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

快速成型技术与试题---答案讲课讲稿

试卷 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表面外),导致原型产生形状和尺寸上的误差。

快速成型件

样品、CNC加工中心手板、快速成型件的概念 --Mission Vision Mold & Plastic (MVMP; Sino Vision Vehicle & Service Co., Limited)米微模具塑料厂转摘Date: 20091010 关键词:金属铸造件、塑料件;什么是快速成型件;什么是CNC加工手板;手板种类;快速成型件的优势 在产品的设计过程中,我们完成了设计图纸以后,最想做的一件事便是想知道自己设计的东西做成实物什么样、外观和自己的设计思想是否吻合、结构设计是否合理等等?手板制造便是应这种需求而产生的。通俗点讲,手板就是在没有开模具的前提下,根据产品外观图纸或结构图纸先做出的一个或几个,用来检查外观或结构合理性的功能样板。 手板的分类 早期的手板因为受到各种条件的限制,主要表现在其大部分工作都是用手工完成的,使得做出的手板工期长而很难严格达到外观和结构图纸的尺寸要求,因而其检查外观或结构合理性的功能也大打折扣。 随着科技的进步,CAD和CAM技术的快速发展,为手板制造提供了更加好的技术支持,使得手板的精确成为可能。 另一方面,随着社会竞争的日益激烈,产品的开发速度日益成为竞争的主要矛盾,而手板制造恰恰能有效地提高产品开发的速度。 正是在这种情况下,手板制造业便脱颖而出,成为一个相对独立的行业而蓬勃发展起来。 手板按照制作的手段分,可分为手工手板和数控手板: (1)手工手板:其主要工作量是用手工完成的。 (2)数控手板:其主要工作量是用数控机床完成的,而根据所用设备的不同,又可分为激光快速成形(RP,Rapid Prototyping)手板和加工中心(CNC)手板。 A: RP手板:主要是用激光快速成型技术生产出来的手板。 B: CNC手板:主要是用加工中心生产出来的手板。 RP手板同CNC手板相比较各有千秋: RP手板的优点主要表现在它的快速性上,但是它主要是通过堆积技术成型,因而RP手板一般相对粗糙,而且对产品的壁厚有一定要求,比如说壁厚太薄便不能生产。 CNC手板的优点体现在它能非常精确的反映图纸所表达信息,而且CNC 手板表面质量高,尤其在其完成表面喷涂和丝印后,甚至比开模具后生产出来的产品还要光彩照人。因此,CNC手板制造愈来愈成为手板制造业的主流手板按照制作所用的材料分,可分为塑胶手板和金属手板: (1)塑胶手板:其原材料为塑胶,主要是一些塑胶产品的手板,比如电视机、显示器、电话机等等。 (2)金属手板:其原材料为铝镁合金等金属材料,主要是一些高档产品的手板. 比如笔记本电脑、高级单放机、MP3播放机、CD机等等。

快速成型技术及应用论文

基于激光快速成型技术的金属快速成型技术 摘要:文章详细介绍了金属粉末快速成型的研究现状 ,分析了金属粉末选择性激光烧结的工艺特点,对这些工艺的影响因素进行了讨论。 关键词:选区激光烧结;金属零件;影响因素。 引言 快速制造 (Rapid Manufacturing) 金属零件一直受到国内外的广泛重视 , 是当今快速成型领域的一个重要研究方向。到目前为止 ,用于直接成型金属材料、制备三维金属零件的技术主要有激光近形制造与金属粉末的选择性激光烧结技术。激光近形制造(LENS) ,又称激光熔覆制造或熔滴制造 ,它将激光熔覆工艺与激光快速成型技术相结合 , 利用激光熔覆工艺逐层堆积累加材料,形成具有三维形状的三维结构。在该方面 ,美国的Aeromet、德国的汉诺威激光中心以及清华大学激光加工研究中心等均进行了大量的研究 , 并得到了具有一定形状的三维实体零件。有异于激光近形制造 ,选择性激光烧结则有选择地逐层烧结固化粉末金属得到三维零件。在这一领域,美国的DTM丶德国的汉诺威激光中心等进行了多元金属的烧结研究。就选区激光烧结(SelectiveLaser Sintering , SLS)而言 ,根据成型用金属粉末的不同 , 人们又开发出多种工艺途径来实现金属零件的烧结成型 ,主要有三种途径:一是利用金属粉末与有机粘结剂粉末共混粉体的间接烧结,金属粉末与有机粘结剂粉末均匀共混,烧结中,低熔点的粘结剂粉末熔化并将高熔点的金属粉末粘结,形成原型(“绿件”),经后处理,烧失粘结剂,形成“褐件”,最后通过金属熔渗工艺得到致密的金属件;二是利用金属混合粉末的直接烧结 , 其中一种粉末具有较低的熔点(如铜粉) ,另一种粉末熔点较高 (如铁粉) ,烧结中低熔点的金属粉末铜熔化并将难熔的铁粉粘结在一起 , 这种方法同样需要较大功率激光器;三是利用单一成分金属粉末的直接烧结,这种方法目前主要用于低熔点金属粉末的烧结,对熔点高的金属粉末,需采用大功率激光器。本文分别对上述的间接和直接烧结成型工艺进行了初步的研究。 1 SLS的烧结原理 激光选择性烧结快速成型技术是使用激光束熔化或烧结粉末材料 ,利用分层的思想 ,把计算机中的 CAD 模型直接成型为三维实体零件。它的创新之处在于将激光、光学、温度控制和材料相联系。SLS烧结原理如图1所示,烧结过程可分为三部分: (1)首先在粉体床上铺一薄层粉体 , 并压实 , 可以根据需要 ,在激光烧结前进行预热; (2)激光照射粉体层 ,烧结粉体,形成所设计零件一层的形状;(3) 粉体床下降一个薄层厚度的距离;重复上面的过程 ,直到原型零件完成。 SLS对粉末烧结的明显优势在于: (1) 和其它的加工方法比较,能获得优良的材料性能,同时,它的加工材料范围比较宽 (聚合物、金属、陶瓷、铸造砂等);(2) 易于实现液相烧结 , 烧结周期比较短; (3) 比传统的烧结方法更易得到密实的以粉末金属为原料的产品;(4)工艺比较简单 , 烧结路线、烧结温度便于控制。

3D打印快速成型技术

特种加工论文 题目3D打印快速成型技术 姓名 专业 班级 学号

3D打印快速成型技术 摘要: 本文主要介绍了特种加工中3D打印快速成型技术,首先介绍它的加工原理,然后分析它的特点、加工方式,然后说明其在实际生产中的主要应用以及发展方向。 关键词:特种加工技术,3D打印快速成型,特点,应用。 Abstract: This article mainly introduced the special processing of 3 d printing rapid prototyping technology, introduces its processing principle, and analyzes its characteristics, processing methods, and then explain the main application in practical production and the development direction. Key words:Special processing technology, 3 d printing rapid prototyping, characteristics, application. 一、引言 3D打印(3D PRINTING )即3D打印技术,又3D打印制造是20世纪80年代才兴起的一门新兴的技术,是21世纪制造业最具影响的技术之一。随着计算机与网络技术的发展,信息高速公路加快了科技传播的速度,产品的生命周期越来越短,企业之间的竞争不再只是质量和成本上的竞争,而更重要的是产品上市时间的竞争。因此,通过计算机仿真和3D打印增加产品的信息量,以便更快的完成设计及其制造过程,将产品设计和制造过程的时间周期尽量缩短,防止投产后发现问题造成不可挽回的损失。 3D打印技术是由CAD模型直接驱动的快速制造复杂形状的三维实体的技术总称。简单的讲,3D打印制造技术就是快速制造新产品首版样件的技术,它可以在没有任何刀具、模具及工装夹具的情况下,快速直接的实现零件的单件生产。该技术突破了制造业的传统模式,特别适合于新产品的开发、单件或少批量产品试制等。它是机械工程、计算机CAD、电子技术、数控技术、激光技术、材料科学等多学科相互渗透与交叉的产物。它可快速,准确地将设计思想转变为具有一定功能的原型或零件,以便进行快速评估,修改及功能测试,从而大大缩短产品的研制周期,减少开发费用,加快新产品推向市场的进程。 自从美国3D公司在1987年推出世界上第一台商用快速原形制造设备以来,快速原形技术快速发展。投入的研究经费大幅增加,技术成果丰硕。原形化系统产品的销量高速增长。在这方面美国,日本一直处于领先地位,我国在这方面起步较晚,但是奋起直追,开展研究并取得一定成果,国内也有些成熟的产品问世,他们正在各种生产领域上发挥着作用。 二、打印系统的工作原理 3D打印技术是一种逐层制造技术,它采用离散/堆积成型原理,其过程是:先得到所需零件的计算机三维曲面或实体模型;然后根据工艺要求,将其按一定厚度进行分层,将原来的三维模型变成二维平面信息,即离散过程;再将分层后的数据进行一定的处理,加入加工参数,产生数控代码;在微机控制下,数控系

快速成型技术在口腔修复中的应用

快速成型技术在口腔修复中的应用 发表时间:2014-06-23T11:25:55.607Z 来源:《医药前沿》2014年第9期供稿作者:邓伟开[导读] 三维重建技术和快速成型技术在口腔颌面外科领域中的应用越来越广泛、为疾病的诊断、治疗带来了重大的变化。邓伟开 (罗定市人民医院 527200) 【摘要】快速成型技术(rapid prototyping,RP)体现了计算机辅助设计模型、快速激光加工制造、新材料和数据开发等技术的综合应用,与传统方法相比,快速成型技术以材料的逐层堆积为主要手段,有快速、精确、自动化等优点,在口腔修复领域的应用越来越广泛。本文就快速成型技术原理、分类、在口腔修复中的应用以及存在的问题作一综述。 【关键词】快速成型技术口腔修复计算机辅助设计 【中图分类号】R78 【文献标识码】A 【文章编号】2095-1752(2014)09-0070-02 前言 近年来,三维重建技术和快速成型技术在口腔颌面外科领域中的应用越来越广泛、为疾病的诊断、治疗带来了重大的变化。快速成型技术是指在计算机的控制下,根据物体的计算机CT数据,精确堆积材料,制造原型基于离散、堆积成型原理的数字化成型技术[1]。在口腔修复领域,RP技术颠覆传统的修复体制作工艺,改变了传统的去除成型技术制作方式,克服了去除成型技术加工耗时长、材料浪费、每次只能加工一个部件的限制[2]。本文就快速成型技在口腔修复中的应用进行综述。 1 快速成型技术的原理和分类 快速成型技术的原理是使用计算机生成物体三维CAD(计算机辅助设计)模型,用螺旋CT或MR等影像学方法扫描物体,获得各层面的数据信息以STL 数据格式输出,再将信息转换成数控加工命令,控制快速成型机完成生物仿真模型的制作加工,并叠加成三维实体模型[3]。 目前较为成熟的快速成型方法有6种:液态光敏树脂选择性固化、粉末材料选择性激光烧结、分层实体制造、烧结沉积制造、光掩膜及直接型壳制造。应用于口腔医学领域的主要是液态光敏树脂选择性固化和烧结沉积制造两种技术[4]。 1.1 液态光敏树脂选择性固化:是以液态光固化树脂为成型材料,计算机控制激光束照射液槽中的液体光固化树脂材料,使其树脂固化,之根据扫描层重复照射固化,直至制造过程结束,得到一个三维实体模型。这种工艺的优势在于精度非常高,可以制造十分细小的模型或清晰的表面特征。该技术存在的主要问题是日常保养维护困难,使用材料成本较为昂贵。液态光敏树脂选择性固化技术目前主要用于制作临时冠桥、种植手术导板及失蜡铸造的树脂熔模。 1.2 烧结沉积制造:是应用最广泛的快速成型技术,是痛过计算机控制加热喷头根据数据信息做X-Y平面运动和Z方向垂直运动,将丝材在喷头中溶化,然后涂在工作台上,快速冷却层层叠加形成一个三维模型。该工艺的优点在于使用和维护简单,成本较低,速度快,模型可根据需求有不同色区。主要缺点是精度低,所制作的模型表面质量较差,适用来于制作种植手术导板、血管管腔、骨和软组织。 2 快速成型技术在口腔修复中的应用 随着CT扫描、图像处理技术的发展,快速成型技术在口腔修复领域应用迅速拓展,临床上应用于模型复制、个体化植入假体制作、组织工程器官制作,都取得了良好的效果[5]。快速成型技术经过近些年来的发展已逐渐成熟,可制作的修复体类型丰富,修复材料来源广泛,正逐步替代传统修复体制作工艺,成为口腔颌面外科修复技术的核心。 2.1 冠桥的制作:在冠桥的制作方面,快速成型技术通过将牙体、桩道、邻牙的外形精确的扫描,设计出相对完美的方案,然后根据设计数据使用快速成型技术制作牙冠的模型,使用全瓷或金属材料来制作最终修复体。使用该技术制作的冠桥具有更好的表面质量和机械性能,并且该技术的加工效率远远高于传统制作工艺。 2.2 局部义齿金属支架的制作:在可摘局部义齿支架制作方面,快速成型技术也有着明显的优势。通过对患者口腔进行数据扫描获得口内模型数据,再根据牙齿的外形和高点设计金属支架和义齿,与传统方法相比该技术可以精确地分析牙齿的表面特征,测量牙齿外形的高点,能更制作出更薄、形状更复杂的可摘局部义齿的金属支架[6]。 2.3 可植入假体制作:是指植入医师将颌骨CT扫描数据转换为3D模型,然后再其引导下采用的黏膜支持导板技术将种植导板设计在患者颌骨的黏膜上,与软组织贴合,不用进行翻瓣手术,种植体植入具有较高的精度。通过计算机辅助设计和快速成型技术制作种植导板,提高了手术操作的精确度、降低了手术的风险、提高了手术效果。 3 前景 快速成型技术是一种新兴工程制造技术,集计算机辅助设计、激光技术、数控技术及材料科学为一体,可以制造出与骨缺损高度匹配的修复体,使颌骨缺损的三维解剖形态修复及咬牙合功能重建成为可能[7]。尽管在口腔修复中的应用还较少,但不可否认的是快速成型技术已成为口腔修复体制作的又一选择。 快速成型技术对于未来口腔修复的发展起着更为重要的作用,但是也存在一些问题带我们去解决,如昂贵的材料和设备、专业的数据处理系统、复杂的制作过程都影响了该技术的推广应用,同时使用快速成型技术制作修复体时,由于CT 扫描变形,金属物理改变,表面粗糙等问题,在临床试验中的精度会大为降低。 总之,快速成型技术对于未来口腔修复的发展的重要作用不容置疑,我们有理由相信随着科技水平的进步,快速成型技术也将一步步完善,成为数字化口腔修复技术的主流。 参考文献 [1] 钱超.快速成型技术在口腔修复中的应用[J].国际口腔医学杂志 ISTIC,2012,39(3):390-393. [2] Chao Q,Jian S.快速成型技术在口腔修复中的应用[J].国际口腔医学杂志, 39(3):390-393. [3] 徐明明,刘峰.CAD/CAM 技术在口腔修复中的应用—数字印模技术[J]. 中国实用口腔科杂志,2013(6):321-326. [4] 汤炜,龙洁,王杭,等.个体化数字设计及快速成型技术在复杂上,下颌骨缺损修复中的应用[C]第六次中国国际暨第九次全国口腔颌面外科学术会议论文集. 2011. [5] 孙朝霞.浅析快速成型技术在口腔修复中的运用[J].中国保健营养, 2014(1).

数字制造技术试题

(1)数字制造 在数字化技术和制造技术融合的背景下,并在虚拟现实、计算机网络、快速原型、数据库和多媒体等支撑技术的支持下,根据用户的需求,迅速收集资源信息,对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真以及原型制造,进而快速生产出达到用户要求性能的产品整个制造全过程 通俗地说:数字化就是将许多复杂多变的信息转变为可以度量的数字、数据,再以这些数字、数据建立起适当的数字化模型,把它们转变为一系列二进制代码,引入计算机内部,进行统一处理,这就是数字化的基本过程。计算机技术的发展,使人类第一次可以利用极为简洁的“0”和“1”编码技术,来实现对一切声音、文字、图像和数据的编码、解码。各类信息的采集、处理、贮存和传输实现了标准化和高速处理。数字化制造就是指制造领域的数字化,它是制造技术、计算机技术、网络技术与管理科学的交叉、融和、发展与应用的结果,也是制造企业、制造系统与生产过程、生产系统不断实现数字化的必然趋势,其内涵包括三个层面:以设计为中心的数字化制造技术、以控制为中心的数字化制造技术、以管理为中心的数字化制造技术。 (2)数字工厂; 数字化工厂(DF)以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。 数字化工厂(DF)主要解决产品设计和产品制造之间的“鸿沟”,实现产品生命周期中的设计;制造;装配;物流等各个方面的功能,降低设计到生产制造之间的不确定性,在虚拟环境下将生产制造过程压缩和提前,并得以评估与检验,从而缩短产品设计到生产的转化的时间,并且提高产品的可靠性与成功。 (3)数字营销; 数字营销,就是指借助于互联网络、电脑、通信技术和数字交互式媒体来实现营销目标的一种营销方式。数字营销将尽可能地利用先进的计算机网络技术,以最有效、最省钱地谋求新的市场的开拓和新的消费者的挖掘。 (4)虚拟制造 虚拟制造也可以对想象中的制造活动进行仿真,它不消耗现实资源和能量,所进行的过程是虚拟过程,所生产的产品也是虚拟的。虚拟制造技术将从根本上改变了设计、试制、修改设计、规模生产的传统制造模式。在产品真正制出之前,首先在虚拟制造环境中生成软产品原型(Soft Prototype)代替传统的硬样品(Hard Prototype)进行试验,对其性能和可制造性进行预测和评价,从而缩短产品的设计与制造周期,降低产品的开发成本,提高系统快速响应市场变化的能力。虚拟企业是为了快速响应某一市场需求,通过信息高速公路,将产品涉及到的不同企业临时组建成为一个没有围墙、超越空间约束、靠计算机网络联系、统一指挥的合作经济实体。虚拟企业的特点是企业的功能上的不完整、地域上的分散性和组织结构上的非永久性,即功能的虚拟化、组织的虚拟化、地域的虚拟化。 2、简述数字制造关键技术有那些。(20分) 制造过程中的建模与仿真、网络化敏捷设计与制造、虚拟产品开发

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

快速成型技术及在我国的发展

科学实践 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 0引言 在现代市场经济全球一体化背景下的今天,企业要在竞争日益激烈的市场经济中掌握先机,占据有利地位,需要有技术和产品上的创新,把握并引导市场的发展方向。与此同时,对于市场的需求,企业需要做出快速的响应,切合当前需求,而现有的常规技术手段已经不能对市场的需求做出最快的反应。与此同时快速制造技术的快速发展,体现了现代先进制造技术对全球制造业的支撑,通过应用快速成型技术企业能迅速响应市场需求,最快速度的抢占新兴市场。企业需要通过采用快速成型技术来降低开发、生产成本、缩短研发周期、提高市场快速响应能力,保持强大的市场竞争力。 1快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stere-olithography Apparatus(SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM公司,于1992年开发了基于SLS的商业成形系统Sinter-station。斯科特科瑞普在1988年提出了熔融成形(Fused Deposi-tion Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者通过逆向工程所采集的几何数据,建立数 字化模型,这是完成快速成型制造的一项基本条件,借助现有的主流三维设计软件建立三维模型,再经过三维CAD导出相应的文件格式输入快速成型机当中,通过逐点、逐面进行三维的立体堆积,部件完成后,再经过必要的后续处理,使完成的部件在性能、形状尺寸、外观上等方面达到设计要求。 RP技术的特点 从原理上说,应用RP技术来进行产品制造,可以忽略产品部件的外形复杂程度(这也是与传统机械加工方式制造产品的最大区别之一),原材料的利用率接近100%,制造精度最高可达0.01mm。 RP技术的主要特点有: 2.1制造快速 RP技术是并行工程中进行复杂原型或者零件制造的有效手段,能使产品设计和模具生产同步进行,从而提高企业研发效率,缩短产品设计周期,极大的降低了新品开发的成本及风险,对于外形尺寸较小,异形的产品尤其适用。 2.2CAD/CAM技术的集成 设计制造一体化一直来说是现在的一个难点,计算机辅助工艺(CAPP)在现阶段由于还无法与CAD、CAM完全的无缝对接,这也是制约制造业信息化一直以来的难点之一,而快速成型技术集成CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,使得设计制造一体化的概念完美实现。 2.3完全再现三维数据 经过快速成型制造完成的零部件,完全真实的再现三维造型,无论外表面的异形曲面还是内腔的异形孔,都可以真实准确的完成造型,基本上不再需要再借助外部设备进行修复。 2.4成型材料种类繁多 到目前为止,各类RP设备上所使用的材料种类有很多,树脂、尼龙、塑料、石蜡、纸以及金属或陶瓷的粉末,基本上满足了绝大多数产品对材料的机械性能需求。 2.5创造显著的经济效益 与传统机械加工方式比较,开发成本上节约10倍以上,同样,快速成型技术缩短了企业的产品开发周期,使的在新品开发过程中出现反复修改设计方案的问题大大减少,也基本上消除了修改模具的问题,创造的经济效益是显而易见的。 2.6应用行业领域广 RP技术经过这些年的发展,技术上已基本上形成了一套体系,同样,可应用的行业也逐渐扩大,从产品设计到模具设计与制造,材料工程、医学研究、文化艺术、建筑工程等等都逐渐的使用RP技术,使得RP技术有着广阔的前景。 3现阶段主流的RP工艺方法介绍 3.1SLA(立体光造型技术) 立体光造型技术是典型的逐层制造法,采用光敏树脂(聚丙烯酸脂)为原料,紫外激光在工控机的控制下根据零件的分层截面信息,在光敏树脂等相应材料的液面进行逐点扫描,被扫描区域的树脂经过光聚合反应而固化,形成零件的一个分层截面,一层固化好后工作平台下降一个分层厚的距离,以便在先前固化好的零件分层截面是重新涂抹一层新的液态树脂,然后工控机控制激光再扫描下一分层截面,层与层之间也因此而紧密连接在一起没有缝隙。如此反复直至 快速成型技术及在我国的发展罗庚(贵阳生产力促进中心快速成型服务中心) 第一手的测试数据。树立典型,用第一手的数据和直接的经济效率吸取使用单位,使使用单位对锅炉节能降耗改造工程的作用和意义有更直接的认识,吸引其主动开展改造工程,为以后大规模的节能工作打下坚实的基础。 3.5质监系统应强化对工业锅炉节能降耗工作的监管和技术指导与服务。切实加强锅炉给水水质监管,做好水处理设备投入和水处理人员的培训,保障锅炉给水水质指示达到GB1576《工业锅炉水质》标准要求,防止锅炉结垢。 参考文献: [1]颜曙光.浅析工业锅炉节能减排.中小企业管理与科技.2009.(6). [2]陈听宽.节能原理与技术[M].北京.机械工业出版社.1998. [3]刘茂俊.燃煤工业锅炉节煤实用技术[M].北京.中国电力出版社.2000. (上接第165页) 166

相关主题
文本预览
相关文档 最新文档