当前位置:文档之家› 《中小型三相异步电动机能效限定值和能效等级》电机效率表

《中小型三相异步电动机能效限定值和能效等级》电机效率表

《中小型三相异步电动机能效限定值和能效等级》电机效率表
《中小型三相异步电动机能效限定值和能效等级》电机效率表

目前国家节能电机标准为2006年8月发布的GB 18613-2006《中小型三相异步电动机能效限定值和能效等级》(见附件1),该标准将电动机的效率水平进行了3个等级的分级,即Eff 1(超高效),Eff 2(高效)和Eff 3(普通)。

《中小型三相异步电动机能效限定值和能效等级》电机效率表

额定功率

k W

效率 a / %

1级2级3级

2极4极6极2极4极6极2极4极6极

0.55 ————80.7 75.4 —71.0 65.0

0.75 ———77.5 82.3 77.7 75.0 73.0 69.0

1.1 ———8

2.8 8

3.8 79.9 76.2 76.2 72.0

1.5 ———84.1 85.0 81.5 78.5 78.5 76.0

2.2 ———85.6 86.4 8

3.4 81.0 81.0 79.0

3 ——86.9 86.7 87.

4 84.9 82.6 82.6 81.0

4 89.3 89.9 87.9 87.6 88.3 86.1 84.2 84.2 82.0

5.5 90.1 90.7 89.1 88.6 89.2 87.4 85.7 85.7 84.0 7.5 90.9 91.5 90.6 89.5 90.1 89.0 87.0 87.0 8

6.0 11 91.9 92.2 91.4 90.5 91.0 90.0 88.4 88.4 8

7.5 15 92.5 92.9 92.3 91.3 91.8 91.0 89.4 89.4 89.0 1

8.5 92.9 93.3 92.7 91.8 92.2 91.5 90.0 90.0 90.0 22 93.3 93.6 93.1 92.2 92.6 92.0 90.5 90.5 90.0 30 93.9 94.2 93.6 92.9 93.2 92.5 91.4 91.4 91.5 37 94.2 94.5 94.0 93.3 93.6 93.0 92.0 92.0 92.0 45 94.6 94.8 94.4 93.7 93.9 93.5 92.5 92.5 92.5 55 94.9 95.0 94.7 94.0 94.2 93.8 93.0 93.0 92.8 75 95.4 95.5 95.0 94.6 94.7 94.2 93.6 93.6 93.5 90 95.5 95.7 95.2 95.0 95.0 94.5 93.9 93.9 93.8

额定功率

k W

效率 a / %

1级2级3级

2极4极6极2极4极6极2极4极6极

110 95.8 96.1 95.7 95.0 95.4 95.0 94.0 94.5 94.0 132 96.1 96.1 95.7 95.4 95.4 95.0 94.5 94.8 94.2 160 96.1 96.1 95.7 95.4 95.4 95.0 94.6 94.9 94.5 200 96.1 96.1 95.7 95.4 95.4 95.0 94.8 94.9 94.5 250 96.1 96.1 95.7 95.8 95.8 95.0 95.2 95.2 94.5 315 96.1 96.1 —95.8 95.8 —95.4 95.2 —容差应符合GB755—2000第11章的规定。

机械效率影响因素

机械效率影响因素 Revised as of 23 November 2020

机械效率影响因素 简单机械的机械效率是力学中的重点和难点, 也是中考几乎每年必考的一个知识点。为了较好地理解各种简单机械的做功情况,就要弄清有用功、额外功和总功的概念: (1)有用功:机械对物体做的功,是目的. (2)额外功:不需要但不得不做的功,例如克服机械间的摩擦做功. (3)总功:人(动力)对机械做的功. 最常见的简单机械有三种:滑轮组、杠杆和斜面。 下面就这三种简单机械模型来讨论一下简单机械的机械效率影响因素。 一、探究影响滑轮组机械效率的因素(竖放) 滑轮组的机械效率(不计摩擦) 物 轮轮 物物轮物物额外 有用有用总 有用G G G G G h G h G h G W W W W W + =+= += += = 11η 因此滑轮组的机械效率与物重与轮重有关: (1)滑轮越重,滑轮组的机械效率越低,可以理解为滑轮越重,做的额外功越多; (2)物体越重,滑轮组的机械效率越低,可以理解为做的有用功多,机械效率越高 1.在“探究影响滑轮组机械效率的因素”实验中,某同学用如图所示的同一滑轮组分别做了三次实验,实验数据记录如下: (1)写出表中标有编号①、②和③的空格处的数据 (2)在实验操作中应该怎样拉动弹簧测力计 (3)分析实验数据,同一滑轮组的机械效率主要与什么因素有关为什么 (4)不同滑轮组的机械效率又与其它哪些因素有关呢(列举一例) 答案:(1) 30 (2)竖直向上匀速拉动

(3)物体的重力有关 (4)还与动滑轮重力有关 2.在“测滑轮组机械效率”的实验中,小强按正确方法操作,图9是他实验中的情景,下表是他记录的一组数据。 (1)由表中数据可计算出,滑轮组对钩码做的有用功为,人做的总功为_______J 。 (2)对以上两个计算结果进行比较,其不合理之处是______________;结合弹簧测力计放大图,可知小强的错误是_____________________。 (3)在该次实验中,所测滑轮组的机械效率应该为______________。 (4)实验中,若仅增加钩码的重,则滑轮组的机械效率将_______ (选填“增大”、“减小”或“不变”). 答案:(1) (2)总功小于有用功测力计读数错了 (3)% (4)增大 3.某实验小组探究影响滑轮组机械效率的因素的实验装置如图所示,实验数据如下表。若不计摩擦,比较1和2两次的实验数据,可以看出滑轮组的机械效率与 有关;比较1和3两次的实验数据,可以看出滑轮组的机械效率与 有关。 次数 物理量 1 2 3 钩码重G/N 4 4 6 钩码上升高度h/m 绳端拉力F/N 绳端移动距离s/m 机械效率η 74% 57% 83% 二、探究影响杠杆机械效率的因素 杠杆的机械效率(不计摩擦) (1)若不计杠杆自重,则杠杆不做额外功,机械效率η=100%;如考虑杠杆自重,提起杠杆自身所做的功为额外功,提起重物所做的功为有用功,则机械效率杆 物物W W W += η (2)考虑杠杆本身的重力,则提起杠杆自身所做的功为额外功杆心杠杆额外h G W =,拉力为动力,所做的功为总功Fs W =总

电动机效率取决于功率因数

电动机效率取决于功率因数 电机功率效率已采取的中心舞台。政府越来越感兴趣的节约能源,现在的技术可以使可能的,经济的要求了。在电机控制算法和具有成本效益的电子元件执行进展电机驱动也创造了几乎每一个电动马达的市场革命。功率因数的控制,以有效地减少也意味着失去了能源,电动机和驱动电子两种,并在 电网电力供应的家庭,办公室,并在使用的电机工厂。 潜在节约 可节省的能源是惊人的。超过4000 万电动机用于制造业务在美国alone.1 电动机占65 至70 工业电力消费总量的比例,约百分之五十七的所有电力消费worldwide.2 保存几个百分点,甚至对世界的估计1.6 万多兆瓦小时(亿千瓦小时)电力的年消费量的数百名万亿瓦,每年小时。目前,汽车使用的平均今天 在转换了百分之八十八的效率电力为机械能。对百分之96 的数字转换效率, 以便在技术上是可行的更大的发动机。 2010.为了比较,光伏太阳能电池发电在欧洲,所有的能力,在德国和西班牙正在带领安装基地在美国,预计将只有15 亿kWh /年,到2010 年。仅在英国,每年总有大约350 亿千瓦时,工程与技术学院电子消费5 亿kWh,估计可节省通过更有效的利用,每年电动机。此外,许多没有使用电动机以有效的方式。例如,汽车可能会过大的手头的工作,也没有多少,它的机械输出功率可能 是白费,这意味着更多的节省可能来自马达如何使用,对储蓄顶端从电机本身。1996 年,美国能源部推测,在每年5 亿kWh,到2000 年的储蓄,并以每年2010,6 节能潜力100 亿kWh 同时考虑电机和相关系统级的储蓄。 有潜力,作出就像老电机和驱动未来几年的重大进展,并被新的更有效的代替。由于电力节约成本,许多企业都自愿加速其安装汽车基地的营业额,甚至

探究影响滑轮组机械效率的因素_李绍森

探究影响滑轮组机械效率的因素 李绍森 (淄博师专附属中学 山东淄博 255100) 在初中物理的实验中,大多数同学来都能测量出 测定滑轮组的机械效率 ,但要想弄清影响机械效率大小的因素,就不那么简单了. 为了探究影响滑轮组机械效率大小的因素,我采用了小组合作探究的方式,把同学们讨论交流的结果进行了简单的归纳:机械摩擦、机械重力(动滑轮和绳子的重力)、绳子的绕法、绳子的弹性、物体运动的快慢、物体的重力、物体上升的高度,并引导同学们分别控制变量进行了探究. 在探究机械摩擦对滑轮组机械效率的影响时,我引导同学们设计了两个滑轮组成的滑轮组(动滑轮重0.3N),提升两个勾码(1N),拉力方向向下.只改变绳子与滑轮之间的摩擦,保持其他的因素不变.为了达到这一效果,同学们用两根相同的细线,其中一根用水浸湿,以增大绳子与滑轮之间的摩擦.实验结果表明,没浸湿的绳子拉力为0.7N,用水浸湿了绳子为0.8N,由此可见用水浸湿了的绳子机械效率要小一些,从而说明机械摩擦越大,机械效率越小. 然后再探究机械重力对机械效率的影响.我让同学们换用了一个重力较大的动滑轮(0.5N),其他的因素保持不变.结果在使物体升高相同高度的情况下,拉力为0.8N,总功变大了,机械效率降低了,从而说明机械重力越大,机械效率越小. 然后我引导同学,只改变绳子的绕法,拉力方向向上.结果在使物体升高相同高度的情况下,拉力的大小均为0.5N,总功相等,从而说明滑轮组的机械效率与绳子的绕法没有关系.为了探究绳子的弹性对滑轮组机械效率的影响,我引导同学们把绳子分别换用了弹性大小不同的两根皮筋,其他因素保持不变,通过探究发现拉力大小都是0.7N,机械效率依然不变,从而说明绳子的弹性与滑轮组的机械效率无关. 接下来探究物体运动的快慢对滑轮组机械效率的影响.需要注意的是,提升的物体不论运动快慢,一定要保持匀速运动,读取弹簧秤的示数时,一定要在运动的过程中进行,不要等到停止以后,因为运动中的摩擦和停止后的摩擦大小是不同的,不然就违背了控制变量的原则.当然保持不同速度的匀速运动是比较困难的,我让同学们多做了几次.实验表明,在使物体升高相同的高度时,拉力大小仍然是0.7N,总功的大小保持不变,从而说明物体运动的快慢与滑轮组机械效率的大小无关. 这时我引导同学们增加勾码的个数,增加到4个(2N),保持其他因素不变,结果拉力大小变为1.3 N,滑轮组的机械效率从71.4%提高到了76.9%,从而说明所提物体越重,机械效率越高. 最后探究物体升高的高度对滑轮组机械效率的影响,同学们使物体升高不同的高度,第一次升高0.1m,第二次升高0.2m,结果拉力大小不变,绳子上升的高度从0.2m变为0.4m,机械效率依然不变,从而说明滑轮组的机械效率与物体升高的高度无关. 通过以上的探究,同学们总结出了影响滑轮组机械效率的因素主要有以下三个:机械摩擦、机械重力和物体的重力. 例如在研究声音的产生时,敲锣时发出声音,而用手按住锣面时,声音消失,大部分学生总结为振动停止,声音没有了,或者是没有振动就没有声音.教师引导学生:要有声音,必须怎样做才能达到呢?总结归纳出结论:声音是由于物体的振动而产生的.这样表述完整、准确,物理语言到位. 以上四 导 是教师在课堂教学中引导的主要方面.教师的精心引导可以使学生对所学内容产生兴趣,提高学习效率,增进对学习内容的理解,提高学生的能力.所以教师要在 导 上下功夫,导得精妙是一堂好课的重要标志,值得物理教师重视. 46 2010年第1期 物理通报 物理实验教学

功率因素和供电效率关系

功率因素和供电效率的关系 【摘要】在供电过程中,用户功率因数的高低,直接关系到电力网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约电能和整个供电区域的供电质量。文章介绍影响电网功率因数的主要因素以及低压无功补偿的几种实用方法。【关键词】功率因数;节约电能;供电质量 the relationship between power factor and supply efficiency taizhou motor vehicle inspection center yu shui abstract:druing the process of power supply , power factors are related to the power loss and electric energy loss from the power network , related to loss of voltage and voltage pulsation of charging line and related to the quality of power . this passage tells us the main factors and several practical methods of low tension . key words : power factors , save power , quality of supply 功率因数是指电力网中线路的视在功率供给有功功率的消耗所 占百分数。在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力、减少线

(完整版)初二物理功与机械效率知识点汇总

一、功的定义及公式 1.力学里所说的功包括两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。 2.不做功的三种情况:有力无距离、有距离无力、力和距离垂直。 巩固:某同学踢足球,球离脚后飞出10m远,足球飞出10m的过程中人不做功。(原因是足球靠惯性飞出)。 3.力学里规定:功等于力跟物体在力的方向上通过的距离的乘积。公式:W=FS。 4.功的单位:焦耳,1J=1N·m。把一个鸡蛋举高1m,做的功大约是0.5J。 5.应用功的公式注意:①分清哪个力对物体做功,计算时F就是这个力; ②公式中S一定是在力的方向上通过的距离,强调对应; ③功的单位“焦”(牛·米=焦),不要和力和力臂的乘积(牛·米,不能写成“焦”)单位搞混。 二、功率公式及换算 功率公式: 功率单位:主单位W;常用单位kWmW马力。 功率换算:1kW=103W1mW=106W1马力=735W。 某小轿车功率66kW,它表示:小轿车1s内做功66000J。 三、功率定义及意义 功率 1、定义:单位时间里完成的功。 2、物理意义:表示做功快慢的物理量。 [pagebreak] 四、总功定义及公式

总功 定义:有用功加额外功或动力所做的功 公式:W总=W有用+W额=FS=W有用/η 斜面:W总=fL+Gh=FL 五、额外功的定义及公式 额外功 定义:并非我们需要但又不得不做的功。 公式:W额=W总-W有用=G动h(忽略轮轴摩擦的动滑轮、滑轮组) 斜面:W额=fL 六、有用功定义及公式 有用功 定义:对人们有用的功。 公式:W有用=Gh(提升重物)=W总-W额=ηW总 斜面:W有用=Gh 七、功的原理及应用 1、内容:使用机械时,人们所做的功,都不会少于直接用手所做的功;即:使用任何机械都不省功。 2、说明:(请注意理想情况功的原理可以如何表述?) ①功的原理是一个普遍的结论,对于任何机械都适用。 ②功的原理告诉我们:使用机械要省力必须费距离,要省距离必须费力,既省力又省距离的机械是没有的。 ③使用机械虽然不能省功,但人类仍然使用,是因为使用机械或者可以省力、或者可以省距离、也可以改变力的方向,给人类工作带来很多方便。 ④我们做题遇到的多是理想机械(忽略摩擦和机械本身的重力)理想机械:使用机械时,人们所做的功(FS)=直接用手对重物所做的功(Gh)。 3、应用:斜面

电机功率和转速的关系

电机功率和转速的关系 电机功率和转速的关系:P=T×n/9550其中P是额定功率(KW) 、n是额定转速(分/转) 、T是额定转矩(N.m)你没给速度,假设是3000rpm,那么电机T=9550XP/n=9550X11/3000=35N.m,35X 减速比847=29645N.m输出扭矩。 三角带传动速比如何计算?传动装置:电机轴转速n1=960转/分,减速机入轴转速n2 =514转/分,电机用皮带轮 d1=150mm ,求减速机皮带轮d2 =? 带轮速比i=? i=n1÷n2= 960÷514=1.87 根据d1/d2=n2/n1d2=d1×n1÷n2=150×960÷514=280㎜ 答:减速机皮带轮直径为:280毫米; 带轮速比为: 1.87。1.减速机用在什么设备上,以便确定安全系数SF(SF=减速机额定功率处以电机功率),安装形式(直交轴,平行轴,输出空心轴键,输出空心轴锁紧盘等)等 2.提供电机功率,级数(是4P、6P还是8P电机) 3.减速机周围的环境温度(决定减速机的热功率的校核) 4.减速机输出轴的径向力和轴向力的校核。需提供轴向力和径向力 减速机扭矩计算公式: 速比=电机输出转数÷减速机输出转数("速比"也称"传动比")

1.知道电机功率和速比及使用系数,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 2.知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式: 电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数 摆线针轮减速机原理:摆线针轮减速机是一种应用行星式传动原理,采用摆线针齿啮合的新颖传动装置。摆线针轮减速机全部传动装置可分为三部分:输入部分、减速部分、输出部分。在输入轴上装有一个错位180°的双偏心套,在偏心套上装有两个称为转臂的滚柱轴承,形成H机构、两个摆线轮的中心孔即为偏心套上转臂轴承的滚道,并由摆线轮与针齿轮上一组环形排列的针齿相啮合,以组成齿差为一齿的啮合减速机构,(为了减小摩擦,在速比小的减速机中,针齿上带有针齿套)。当输入轴带着偏心套转动一周时,由于摆线轮上齿廓曲线的特点及其受针齿轮上针齿限制之故,摆线轮的运动成为既有公转又有自转的平面运动,在输入轴正转周时,偏心套亦转动一周,摆线轮于相反方向转过一个齿从而得到减速,再借助W输出机构,将摆线轮的低速自转运动通过销轴,传递给输出轴,从而获得较低的输出转速。

电机计算公式

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

电动机效率与损耗分析

电动机效率与损耗分析 Final revision on November 26, 2020

异步电动机输入电功率,输出机械功率,在运行过程中产生恒定损耗和负载损耗。恒定损耗包含风摩耗和铁心损耗,是不随负载大小变化的损耗。负载损耗包含定子绕组损耗、转子绕组损耗和负载附加损耗(或称负载杂散损耗),对绕线转子电机还包含电刷及转子外接电路的电损耗。 恒定损耗是电动机运行时的固有损耗,它与电动机材料、制造工艺、结构设计、转速等参数有关,而与负载大小无关。 1、铁心损耗(含空载杂散损耗),亦简称铁耗,是恒定损耗的一种,由主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗组成。铁心损耗大小取决于铁心材料、频率及磁通密度,近似的表示为: 磁通密度B与输入电压U成正比,对某一台电动机而言,其铁耗近似于与电压的平方成正比。铁耗一般占电动机总损耗的20%~25%。 2、风摩耗也称机械损耗(何不称为“机械损耗”),是另一种恒定损耗,通常包括轴承摩擦损耗及通风系统损耗,对绕线式转子还存在电刷摩擦损耗。 机械损耗一般占总损耗的10%~50%,电动机容量越大,由于通风损耗变大,在总损耗中所占比重 也增大。 3、负载损耗主要是指电动机运行时,定子、转子绕组通过电流而引起的损耗,亦称铜耗。它包括定子铜耗和转子铜耗,其大小取决于负载电流及绕组电阻值。铜耗约占总损耗的20%~70%。 4、杂散损耗(附加损耗)P主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗。 这些损耗约占总损耗的10%~15%。 §1-2电动机的效率 电动机的效率与损耗相对值(P)的关系如下式所示 =1一ΣP 式中ΣP——电机总损耗 ΣP=(++++P)/Pl P1——电机输入功率 当一台电机效率为0.87时,由上式可见其损耗相对值为0.13,如损耗下降20%,则由上式可求得效率为0.896,即效率提高了2.6个百分点。并由此可见,如一通用系列的效率平均值为0. 87,作为高效率电机系列,其损耗如平均下降20%以上,则系列的平均值也应提高2.6个百分点以上。 §1-3端电压变动时电机的损耗 电机铭牌上电压值是电机设计时的依据,实际运行时电网上电压是波动的,我国规定低压系统中电压允许变化±10%,在一个工厂中电压变动往往超过这一范围,电压变动对电机各部分损耗有什么影响,电压调节在什么范围内变动能够节电,这是值得分析的问题。 国内外许多资料表明,电压低于额定值不超过10%,对一个系统,一个工厂往往是节电的。例如在保证供电电压合格范围内,降低配电压2—3%,无论对住宅、商业、工业负荷都起到节电 的效果。工厂降压运行(-5%左右)同样能够节电,而升压(+5%左右)则增加电能消耗。当然降压范围不能太大,否则引起电动机过负荷能力降低及某些重载负荷过电流等问题。但-5%范围内,一般不会出现这些问题。 电压变化在负载不同时对电机效率影响是不同的。在重载时提高电压在一定范围(从342伏提到380伏)可以提高效率,再提(412伏)则效率反而下降。但轻载时,电压从342伏上升则效率 越来越低,如何调整线路电压及个别调整电机端电压力可以达到节能的效果。

机械效率影响因素

机械效率影响因素 简单机械的机械效率是力学中的重点和难点,也是中考几乎每年必考的一个知识点。为 了较好地理解各种简单机械的做功情况,就要弄清有用功、额外功和总功的概念: (1)有用功:机械对物体做的功,是目的? (2)额外功:不需要但不得不做的功,例如克服机械间的摩擦做功? ⑶总功:人(动力)对机械做的功? 最常见的简单机械有三种:滑轮组、杠杆和斜面。 下面就这三种简单机械模型来讨论一下简单机械的机械效率影响因素。 滑轮组的机械效率(不计摩擦) W有用W有用G物h G物 1 W总W有用W额外G物h G轮h G物G轮g 1 --- G物 因此滑轮组的机械效率与物重与轮重有关: (1)滑轮越重,滑轮组的机械效率越低,可以理解为滑轮越重,做的额外功越多; (2)物体越重,滑轮组的机械效率越低,可以理解为做的有用功多,机械效率越高 1?在“探究影响滑轮组机械效率的因素”实验中,某同学用如图所示的同一滑轮组分别做了三次实验,实验数据记录如下: (1)写出表中标有编号①、②和③的空格处的数据 (2)在实验操作中应该怎样拉动弹簧测力计 (3)分析实验数据,同一滑轮组的机械效率主要与什么因素有关为什么 (4)不同滑轮组的机械效率又与其它哪些因素有关呢(列举一例)

答案:(1) 30 (2)竖直向上匀速拉动

(3) 物体的重力有关 (4)还与动滑轮重力有关 2?在“测滑轮组机械效率”的实验中,小强按正确方法操作,图 9是他实验中的情景,下 表是他记录的一组数据。 (1 )由表中数据可计算出,滑轮组对钩码做的有用功为,人做的总功为 _______ J 。 (2)对以上两个计算结果进行比较, 其不合理之处是 __________________ ;结合弹簧测力计放大 图,可知小强的错误是 __________________________ 。 (3 )在该次实验中,所测滑轮组的机械效率应该为 ______________________ 。 (4) _________________________________________________________ 实验中,若仅增加钩码的重,则 滑轮组的机械效率将 ______________________________________________ (选填“增大”、“减小” 或“不变” )? ? 答案:(1) ? (2 )总功小于有用功??测力计读数错了 ( 3) % (4)增大 3?某实验小组探究影响滑轮组机械效率的因素的实验装置如图所示,实验数据如下表。若 不计摩擦,比较1和2两次的实验数据,可以看出滑轮组的机械效率与 __________________________________ 、探究影响杠杆机械效率的因素 有关; ______________ 有关。 次数 物理量 1 2 3 钩码重G/N 4 4 6 钩码上升咼度h/m 绳端拉力F/N 绳端移动距离s/m 机械效率n 74% 57% 83% 答案:动滑轮重力有关;物体重力

电机功率计算公式

电机功率计算公式 选用的电机功率:N=(Q/3600)*P/(1000*η)*K 其中风量Q单位为m3/h,全压P单位为Pa,功率N单位为kW,η风机全压效率(按风机相关标准,全压效率不得低于0.7,实际估算效率可取小些,也可以取0.6,小风机取小值,大风机取大值),K为电机容量系数,参见下表。 1、离心风机 2、轴流风机:1.05-1.1,小功率取大值,大功率取小值。 选用的电机功率N=(Q/3600)*P/(1000*η)*K 风机的功率P(KW)计算公式为P=Q*p/(3600*1000*η0* η1) Q—风量,m3/h; p—风机的全风压,Pa; η0—风机的内效率,一般取0.75~0.85,小风机取低值、大风机取

高值。 η1—机械效率: 1、风机与电机直联取1; 2、联轴器联接取0.95~0.98; 3、用三角皮带联接取0.9~0.95; 4、用平皮带传动取0.85。 如何计算电机的电流: I=(电机功率/电压)*c 功率单位为KW 电压单位:KV C:0.76(功率因数0.85和功率效率0.9乘积)

解释一下风机轴功率计算公式:N=QP/1000*3600*0.8*0.98 Q是流量,单位为m3/h,p是全风压,单位为Pa(N/m2)。 注意:功率的基本单位是W,在动力学中,W=N.m/s。 QP的单位为N.m/h=W*3600。 风机轴功率一般用kW表示。 1000是将W换算为kW。 3600将小时换算为秒。 上述计算获取的是风机本身的输出功率,风机轴功率是指风机的输入功率,也等于电机的输出功率。风机输出功率除以转换效率就是风机的轴功率。 0.8是风机内效率估计值。 0.98是机械效率估计值。

电动机的效率、功率因数及其影响因素

、什么是电动机的功率因数? 异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占 比重的大小,其值为输入的有功功率P1与视在功率S之比,用cos 9 来表示。cos 9 二P/S 电动机在运行中,功率因数是变化的,其变化大小与负载大小有 关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为。因此,电动机应避免空载运行,防止“大马拉小车”现象。 二、什么是电动机的输入功率和输出功率 般用电动机从电源吸取的有功功率,称为电动机的输入功率, P1 表示。而电动机转轴上输出的机械功率,称为输出功率,一般用 P2表示。在额定负载下,P2就是额定功率Pn。 电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。 三、什么是电动机的效率

电动机内部功率损耗的大小是用效率来衡量的, 输出功率与输入 功率的比值称为电动机的效率,其代表符号为 n 其中,P —是电动机轴输出功率 U —是电动机电源输入的线电压 是电动机电源输入的线电流 COS )—是电动机的功率因数 电动机的输入功率:指的是电源给电动机输入的有功功率 P=V3*U*I*COS?( KW 其时,这个问题有些含糊,按说电动机的输入功率应该指的是电 源输入的视在功率: S==V3*U*I 这个视在功率包括有功功率 ( 电动机的机械损耗、铜损、铁损等 ) 、无功功率。 效率高,说明损耗小,节约电能。但过高的效率要求,将使电动机的 成本增加。一般异步电动机在额定负载下其效率为 75—92%异步电 动机的效率也随着负载的大小而变化。空载时效率为零,负载增加, 效率随之增大,当负载为额定负载的一1倍时,效率最高, 1、 三相交流异步电动机的效率:n 二P/ (V 3*U*I*COS ?) 2、 电动机的输出功率:指的是电动机轴输出的机械功率 3、

电机功率因数

什么是电机的功率因数 电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。 cosφ——功率因数; P——有功功率,kW; Q——无功功率,kVar; S——视在功率,kV。A; U——用电设备的额定电压,V; I——用电设备的运行电流,A。 功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。 (1)自然功率因数:是指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。 (2)瞬时功率因数:是指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。 (3)加权平均功率因数:是指在一定时间段内功率因数的平均值. 提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。 功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。 所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的位相差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。 一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作。 可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。 提高功率因数,可以充分利用供电设备和线路的容量,减小设备、线路中的损耗,电机的有效功率会提高。 1) 提高用电质量,改善设备运行条件,可保证设备在正常条件下工作,这就有利于安全生产。 2) 可节约电能,降低生产成本,减少企业的电费开支。例如:当cos?=0.5时的损耗是cos?=1时的4倍。 3) 能提高企业用电设备的利用率,充分发挥企业的设备潜力。 4) 可减少线路的功率损失,提高电网输电效率。 5) 因发电机的发电容量的限定,故提高cos?也就使发电机能多出有功功率。 在实际用电过程中,提高负载的功率因数是最有效地提高电力资源利用率的方式。 在现今可用资源接近匮乏的情况下,除了尽快开发新能源外,更好利用现有资源是我们解决燃眉之急的唯一办法。而对于目前人类所大量使用和无比依赖的电能使用,功率因数将是重中之重。 高功率因数,可提高电机设备出力。 对于3相电动机:P=√3UIcosφ所以功率因素从0.8提高到0.9,出力提高0.1UI√3其它:感应电动机的功率因数有两种,即自然功率因数和总功率因数。自然功率因数就是设备本身固有的功率因数,其值决定

电动机效率与损耗分析

第一章电动机效率与损耗分析 异步电动机输入电功率,输出机械功率,在运行过程中产生恒定损耗和负载损耗。恒定损耗包含风摩耗和铁心损耗,是不随负载大小变化的损耗。负载损耗包含定子绕组损耗、转子绕组损耗和负载附加损耗(或称负载杂散损耗),对绕线转子电机还包含电刷及转子外接电路的电损耗。 恒定损耗是电动机运行时的固有损耗,它与电动机材料、制造工艺、结构设计、转速等参数有关,而与负载大小无关。 1、铁心损耗(含空载杂散损耗),亦简称铁耗,是恒定损耗的一种,由主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗组成。铁心损耗大小取决于铁心材料、频率及磁通密度,近似的表示为: 磁通密度B与输入电压U成正比,对某一台电动机而言,其铁耗近似于与电压的平方成正比。铁耗一般占电动机总损耗的20%~25%。 2、风摩耗也称机械损耗(何不称为“机械损耗”?),是另一种恒定损耗,通常包括轴承摩擦损耗及通风系统损耗,对绕线式转子还存在电刷摩擦损耗。 机械损耗一般占总损耗的10%~50%,电动机容量越大,由于通风损耗变大,在总损耗中所占比重也增大。 3、负载损耗主要是指电动机运行时,定子、转子绕组通过电流而引起的损耗,亦称铜耗。它包括定子铜耗和转子铜耗,其大小取决于负载电流及绕组电阻值。铜耗约占总损耗的20%~70%。 4、杂散损耗(附加损耗)P主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗。 这些损耗约占总损耗的10%~15%。 §1-2电动机的效率 电动机的效率与损耗相对值( P)的关系如下式所示 = 1一Σ P 式中Σ P——电机总损耗 Σ P =(++++ P)/Pl P1——电机输入功率 当一台电机效率为0.87时,由上式可见其损耗相对值为0.13,如损耗下降20%,则由上式可求得效率为0.896,即效率提高了2.6个百分点。并由此可见,如一通用系列的效率平均值为0.87,作为高效率电机系列,其损耗如平均下降20%以上,则系列的平均值也应提高2.6个百分点以上。 §1-3 端电压变动时电机的损耗 电机铭牌上电压值是电机设计时的依据,实际运行时电网上电压是波动的,我国规定低压系统中电压允许变化±10%,在一个工厂中电压变动往往超过这一范围,电压变动对电机各部分损耗有什么影响,电压调节在什么范围内变动能够节电,这是值得分析的问题。 国内外许多资料表明,电压低于额定值不超过10%,对一个系统,一个工厂往往是节电的。例如在保证供电电压合格范围内,降低配电压2—3%,无论对住宅、商业、工业负荷都起到节电的效果。工厂降压运行(-5%左右)同样能够节电,而升压(+5%左右)则增加电能消耗。当然降压范围不能太大,否则引起

泵的效率及其计算公式

泵的效率及其计算公式 指泵的有效功率和轴功率之比。η=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。 有效功率即:泵的扬程和质量流量及重力加速度的乘积。 Pe=ρg QH (W)或Pe=γQH/1000 (KW) ρ:泵输送液体的密度(kg/m3) γ:泵输送液体的重度γ=ρg (N/ m3) g:重力加速度(m/s) 质量流量 Qm=ρQ (t/h 或 kg/s) 水泵轴功率计算公式 这是离心泵的:流量×扬程×9.81×介质比重÷3600÷泵效率流量单位:立方/小时,扬程单位:米 P=2.73HQ/η,其中H为扬程,单位m,Q为流量,单位为m3/h,η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ρgQH/1000η(kw),其中的 ρ=1000Kg/m3,g=9.8 比重的单位为Kg/m3,流量的单位为m3/h,扬程的单位为m,1Kg=9.8牛顿 则P=比重*流量*扬程*9.8牛顿/Kg =Kg/m3*m3/h*m*9.8牛顿/Kg =9.8牛顿*m/3600秒 =牛顿*m/367秒

=瓦/367 上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了. 渣浆泵轴功率计算公式 流量Q M3/H 扬程H 米H2O 效率n % 渣浆密度A KG/M3 轴功率N KW N=H*Q*A*g/(n*3600) 电机功率还要考虑传动效率和安全系数。一般直联取1,皮带取0.96,安全系数1.2 泵的效率及其计算公式 指泵的有效功率和轴功率之比。η=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 Pe=ρg QH (W) 或Pe=γQH/1000 (KW) ρ:泵输送液体的密度(kg/m3) γ:泵输送液体的重度γ=ρg(N/ m3) g:重力加速度(m/s) 质量流量Qm=ρQ (t/h 或kg/s)

电动机的效率 功率因数及其影响因素

电动机的效率、功率因数及其影响因素一、什么是电动机的功率因数? 异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用cos ψ来表示。cosψ=P/S 电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.7-0.9。因此,电动机应避免空载运行,防止“大马拉小车”现象。 二、什么是电动机的输入功率和输出功率 电动机从电源吸取的有功功率,称为电动机的输入功率,一般用P1表示。而电动机转轴上输出的机械功率,称为输出功率,一般用P2表示。在额定负载下,P2就是额定功率Pn。 电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。

三、什么是电动机的效率 电动机内部功率损耗的大小是用效率来衡量的,输出功率与输入功率的比值称为电动机的效率,其代表符号为η 1、三相交流异步电动机的效率:η=P/(√3*U*I*COSφ) 其中,P—是电动机轴输出功率 U—是电动机电源输入的线电压 I—是电动机电源输入的线电流 COSφ—是电动机的功率因数 2、电动机的输出功率:指的是电动机轴输出的机械功率 3、电动机的输入功率:指的是电源给电动机输入的有功功率: P=√3*U*I*COSφ(KW) 其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S==√3*U*I这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。 效率高,说明损耗小,节约电能。但过高的效率要求,将使电动机的成本增加。一般异步电动机在额定负载下其效率为75~92%。异步电动机的效率也随着负载的大小而变化。空载时效率为零,负载增加,效率随之增大,当负载为额定负载的0.7~1倍时,效率最高, 影响电动机功率的因素 电动机的损耗包含各种形式,有与负载电流大小基本无关的铁损、由励磁电流产生的定子铜损以及机械损耗,还有与负载电流大小有关的定、转子铜损、杂散损耗等。即使在电动机空载情况下,电动

电机转速转矩计算公式

针对你的问题有公式可参照分析: 电机功率:P=1.732×U×I×cosφ 电机转矩:T=9549×P/n ; 电机功率转矩=9550*输出功率/输出转速 转矩=9550*输出功率/输出转速 P = T*n/9550 公式推导 电机功率,转矩,转速的关系 功率=力*速度 P=F*V---公式1 转矩(T)=扭力(F)*作用半径(R) 推出 F=T/R ---公式2 线速度(V)=2πR*每秒转速(n秒) =2πR*每分转速(n 分)/60 =πR*n分/30---公式3 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位Nm, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P= T * n 电机转速:n=60f/p,p为电机极对数,例如四级电机的p=2; 注:当频率达50Hz时,电机达到额定功率,再增加频率,其功率时不会再增的,会保持额定功率。 电机转矩在50Hz以下时,是与频率成正比变化的;当频率f达到50Hz时,电机达到最大输出功率,即额定功率;如果频率f在50Hz以后再继续增加,则输

出转矩与频率成反比变化,因为它的输出功率就是那么大了,你还要继续增加频率f,那么套入上面的计算式分析,转矩则明显会减小。

转速的情况和频率是一样的,因为电源电压不变,其频率的变化直接反应的结果就是转速的同比变化,频率增,转速也增,它减另一个也减。 关于电压分析起来有点麻烦,你先看这几个公式。 电机的定子电压:U = E + I×R (I为电流, R为电子电阻, E为感应电势); 而:E = k×f×X (k:常数, f: 频率, X:磁通); 对异步电机来说:T=K×I×X (K:常数, I:电流, X:磁通); 则很容易看出频率f的变化,也伴随着E的变化,则定子的电压也应该是变化的,事实上常用的变频器调速方法也就是这样的,频率变化时,变频器输出电压,也就是加在定子两端的电压也是随之变化的,是成正比的,这就是恒V/f比变频方式。这三个式子也可用于前面的分析,可得出相同结果。 当然,如果电源频率不变,电机转矩肯定是正比于电压的,但是一定是在电机达到额定输出转矩前。 电机的“扭矩”,单位是N?m(牛米) 计算公式是T=9549 * P / n 。 P是电机的额定(输出)功率单位是千瓦(KW) 分母是额定转速n 单位是转每分(r/min) P和n可从电机铭牌中直接查到。 电机转速和扭矩(转矩)公式 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW

电机功率因素和效率

1、效率低涉及:铜耗、铁耗 定子绕组铜耗大、转子导体铜损耗大、定子铁耗大、机械耗大、谐波分量损耗大 a、定子绕组铜耗大:缩短端部降低漏抗(加大启动电流),增大导线面积降低匝数, 磁密、Tmax上升和功率因数下降 b、转子导体铜损耗大:加大转子槽面积,导致齿部和轭部磁密上升和功率因数下降 或加厚端环,或转子槽型深窄化提高漏抗,使得功率因数和Tmax均下降 c、定子铁耗大:减小定子内径引起转子磁密提高,增加铁心长度增加定子绕组匝数,使定子 电阻损耗增大, 漏抗增大,减少定、转子槽口宽度和采用磁性槽楔,以减少旋转铁耗漏抗增大,使Tmax降低 d、机械耗大:在满足风量下,尽量缩小风扇直径,注意倾角改善风阻,装配精度降低轴 系磨耗 e、谐波分量损耗大:选择恰当槽配合,降低5、7、11、13次谐波幅值,在无法改变槽配 合的时候 可以适当加大气隙,以削弱非基次谐波幅值,以减少损耗,但加大加大气隙 的结果就是励磁电流加大,功增加功率因数下降,基波幅值下降因此基本Tmax 下降 2、功率因数低涉及:励磁电抗、总漏抗 磁化电流大、电抗电流大 a、磁化电流大:增加定子绕组匝数,以降低磁密,定子电阻增大,使效率降低,漏抗增大, Tmax下降。 或适当减少气隙,降低励磁电流,如果槽配合不当会提高谐波幅值,最大转矩稍微提高, 使得效率下降,电磁噪音或震动增加,温升增加,同时造成装配困难增加。 使谐波漏抗增大,增加铁心长度以降低磁密,调整槽形尺寸,使齿部和轭部磁密分 配合理。 b、电抗电流大:电抗电流大,由于漏抗大所致,可以改变槽形尺寸,加大槽宽,减小槽高,增大槽 口 如此,漏抗减小, 启动电流增大,同时缩短绕组端部长度以减少端部漏抗,但嵌线 困难 随写几种,其实,许多是相互制约的,一般优先考虑Tmax、效率、启动电流,其次再考 虑功率因数, 必将两全齐美很难,这个就要看客户的要求,来分配铜耗与铁耗、励磁电抗与漏抗的关系。

相关主题
文本预览
相关文档 最新文档