当前位置:文档之家› 物理相对论论文

物理相对论论文

物理相对论论文
物理相对论论文

摘要:

现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。

狭义相对论最著名的推论是质能公式,它可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论所预言的引力透镜和黑洞,也相继被天文观测所证实。

关键词:狭义相对论、广义相对论、意义

正文:

(一)狭义相对论的概念

是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间——绝对空间,时间是独立于空间的单独一维(因而也是绝对的),即绝对时空观。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。

物理学家马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。

四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。

相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

(二)广义相对论的概念

相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。

相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3.14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。

空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。

相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。

(三)相对论的意义

狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住

了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思想的发展都有巨大的影响。相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。

2018高中物理学史(归纳整理版)

2018年高考物理学史总结 物理学史这部分内容在高考卷上通常以选择题形式出现(实验题中也会小概率出现),分值在6分以下,一般情况下不会出偏难怪的,毕竟这不是考纲里的重点。复习建议:以现有的生活经验常识为主,稍加了解就可以。现总结如下:1、伽利略 (1)通过理想实验推翻了亚里士多德“力是维持运动的原因”的观点 (2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点 2、开普勒:提出开普勒行星运动三定律; 3、牛顿 (1)提出了三条运动定律。 (2)发现表万有引力定律; 4、卡文迪许:利用扭秤装置比较准确地测出了引力常量G 5、爱因斯坦 (1)提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体) (2)提出光子说,成功地解释了光电效应规律,并因此获得诺贝尔物理学奖(3)提出质能方程2 E ,为核能利用提出理论基础 MC 6、库仑:利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。 7、焦耳和楞次 先后独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(这个很冷门!以教材为主!) 8、奥斯特 发现南北放置的通电直导线可以使周围的磁针偏转,称为电流的磁效应。 9、安培:研究电流在磁场中受力的规律(安培定则),分子电流假说,磁场能对电流产生作用 10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。 11、法拉第 (1)发现了由磁场产生电流的条件和规律——电磁感应现象(教材上是这样的,实际不是有一定历史原因,以教材为主!) (2)提出电荷周围有电场,提出可用电场描述电场,提出电磁场、磁感线、电场线的概念 12、楞次:确定感应电流方向的定律,愣次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 13、亨利:发现自感现象(这个也比较冷门)。 14、麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。 15、赫兹: (1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。 (2)证实了电磁理的存在。 16、普朗克 提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波的发射和吸收不是连续的,而是一份一份的,即量子理论

爱因斯坦的相对论

篇名 愛因斯坦的相對論 作者 郭展嘉。國立虎尾高中。一年三班申建霖。國立虎尾高中。一年三班李憲昌。國立虎尾高中。一年三班

在我們的國中階段物理化學課已經學到了不少科學家與物理學家,上了高中之後,我們最常聽到的物理學家的名字就是屬於「愛因斯坦」了! 因為他的相對論造成了革命性的變化〈至今還沒有人能夠推翻他的學說〉,也是因為之前有人想解剖他的腦袋做觀察他為什麼會那麼地聰明,所以引發我們想了解他的動機;也剛好有這個小論文的機會所以我們國文老師指派了一個任務給我們班所有人,藉著這次機會我開始和組員一起開始對愛因斯坦做了更深入的研究。 貳●正文 一.愛因斯坦生平簡介 01.1902年任職於瑞士專利局,工作乏味,下班後在家中進行自已所喜 歡的研究。 02. 在他26歲時,也就是1905年,愛因斯坦共計發表了3篇論著{光電效應、分子論的布朗運動、電力學的相對論},其中第二篇光電效應使他在1921年榮獲諾貝爾物理獎。最引人注目的是他所提出相對論的質量和能量的關係,這兩者是一體的兩面,可以互相轉換,這導致核能的實現(質量的損失可以轉變成能量)。 03. 1912年秋天愛因斯坦回瑞士母校任教,他的座右銘為「研究的目的在追求真理」,時常告誡學生不要選擇輕鬆的途徑。 04. 在一九一五年十一月四日向柏林科學院提出有名的「廣義相對論」。其中曾斷言太陽的重力場會使通過太陽附近的星光彎曲,但是平常陽光太強無法觀測。按照當時一般的看法,光既非物質點所組成,在太陽的重力場裏,光理應以直線進行,不應該受到太陽的影響。愛因斯坦不尋常的主張自然引起了爭論,幸好愛因斯坦的理論終於找到了個試驗的機會。 05. 1938年德國在希特勒統治下已經發現以中子撞擊鈾會產生核分裂 的現象。美國科學家乃上書羅斯福總統,由愛因斯坦具名簽署,信中建議展開鈾實際用途的研究,終於研製出核武器。第二次世界大戰戰後愛因斯坦倡議原子能的和平用途,阻止戰爭的再發生。為本世紀的科學巨人。〈註一〉

大学物理习题册题目及答案第5单元 狭义相对论

第一章 力学的基本概念(二) 狭义相对论 序号 学号 姓名 专业、班级 一 选择题 [ B ]1. 一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为1v ,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹,在火箭上测得子弹从射出到击中靶的时间是 (A ) 21v v L + (B )2v L (C )12v v L - (D )211) /(1c v v L - [ D ]2. 下列几种说法: (1) 所有惯性系对物理基本规律都是等价的。 (2) 在真空中,光的速率与光的频率、光源的运动状态无关。 (3) 在任何惯性系中,光在真空中沿任何方向的传播速度都相同。 其中哪些说法是正确的 (A) 只有(1)、(2)是正确的; (B) 只有(1)、(3)是正确的; (C) 只有(2)、(3)是正确的; (D) 三种说法都是正确的。 [ A ]3. 宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t ?(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (A) t c ?? (B) t v ?? (C) 2)/(1c v t c -??? (D) 2 ) /(1c v t c -?? (c 表示真空中光速) [ C ]4. 一宇宙飞船相对于地以0.8c ( c 表示真空中光速 )的速度飞行。一光脉冲从船尾传到船头,飞船上的观察者测得飞船长度为90m ,地球上的观察者测得光脉冲从船上尾发出和到达船头两事件的空间间隔为 (A) m 90 (B) m 54 (C)m 270 (D)m 150 [ D ]5. 在参考系S 中,有两个静止质量都是 0m 的粒子A 和B ,分别以速度v 沿同一直线相向运动,相碰后合在一起成为一个粒子,则其静止质量0M 的值为 (A) 02m (B) 2 0)(12c v m - (C) 20)(12c v m - (D) 2 0) /(12c v m - ( c 表示真空中光速 ) [ C ]6. 根据相对论力学,动能为 MeV 的电子,其运动速度约等于 (A) c 1.0 (B) c 5.0 (C) c 75.0 (D) c 85.0 ( c 表示真空中光速, 电子的静止能V e M 5.020=c m ) [ A ]7. 质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的多少倍 (A )5 (B )6 (C )3 (D )8 二 填空题 1. 以速度v 相对地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度的大小为 ____________C________________。 2.狭义相对论的两条基本原理中, 相对性原理说的是 _ __________________________略________________________. 光速不变原理说的是 _______________略___ _______________。 3. 在S 系中的X 轴上相隔为x ?处有两只同步的钟A 和B ,读数相同,在S '系的X '的轴上也有一只同样的钟A '。若S '系相对于S 系的运动速度为v , 沿X 轴方向且当A '与A 相遇时,刚好两钟的读数均为零。那么,当A '钟与B 钟相遇时,在S 系中B 钟的读数是v x /?;此时在S '系中A '钟的 读数是 2 )/(1)/(c v v x -? 。 4. 观察者甲以 c 5 4的速度(c 为真空中光速)相对于观察者乙运动,若甲携带一长度为l 、截面积为S 、 质量为m 的棒,这根棒安放在运动方向上,则 (1) 甲测得此棒的密度为 s l m ; (2) 乙测得此棒的密度为 s l m ?925 。 三 计算题

狭义相对论推导详细计算过程

狭义相对论 狭义相对论基本原理: 1. 基本物理定律在所有惯性系中都保持相同形式的数学表达式,因此一切惯性系都是等价 的。 2. 在一切惯性系中,光在真空中的传播速率都等于c ,与光源的运动状态无关。 假设S 系和S ’系是两个相对作匀速运动的惯性坐标系,规定S ’系沿S 系的x 轴正方向以速度v 相对于S 系作匀速直线运动,x ’、y ’、z ’轴分别与x 、y 、z 轴平行,两惯性系原点重合时,原点处时钟都指示零点。 Ⅰ洛伦兹变换 现假设,x ’=k(x-vt)①,k 是比例系数,可保证变化是线性的,相应地,S ’系的坐标变换为S 系,有x=k(x ’+vt) ②,另有y ’=y ,z ’=z 。将①代入②: x=k[k(x-vt)+vt ’] x=k^2*(x-vt)+kvt ’ t ’=kt+(1-k^2)x/kv 两原点重合时,有t=t ’=0,此时在共同原点发射一光脉冲,在S 系,x=ct ,在S ’系,x ’=ct ’,将两式代入①和②: ct ’=k(c-v)t 得 ct ’=kct-kvt 即t ’=(kct-kvt)/c ct=k(c+v)t ’ 得 ct=kct ’+kvt ’ 两式联立消去t 和t ’ ct=k(kct-kvt)+kv(kct-kvt)/c ct=k^2ct-k^2vt+k^2vt-k^2v^2t/c c^2=k^2c^2-k^2v^2 k= 2 2 /11c v - 将k 代入各式即为洛伦兹变换: x ’=2 2 /1c v vt x -- y ’=y z ’=z t ’= 2 2 2/1/c v c vx t -- 或有 x=k(x ’+vt ’) x ’=k(x-vt) =k(1+v/c)x ’ =k(1-v/c)x 两式联立, x ’=k(1-v/c)k(1+v/c)x ’ k= 2 2 /11c v - Ⅱ同时的相对性

(完整版)人教版物理学史归纳

一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 牛顿第一定律—惯性定律:一切物体中保持匀速直线运动或静止状态,除非作用在它上面的力迫使它改变这种状态。(力是改变物体运动状态的原因) 牛顿第二定律:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向与作用力的方向相同。(作用力即合外力;F=ma) 牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律(F=kx);经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆的,太阳处在椭圆的一个焦点上。 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。 开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它轨道周期的二次方的比值都相等。 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 二、电磁学:(选修3-1、3-2) 1、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 2、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 3、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 4、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 5、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出

大学物理狭义相对论习题及答案

第5章 狭义相对论 习题及答案 1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系? 答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。 2.狭义相对论的两个基本原理是什么? 答:狭义相对论的两个基本原理是: (1)相对性原理 在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理 在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。 3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。 解 在相对论中,不是一切都是相对的,也有绝对性存在的方面。如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。 4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生? (1)两事件发生于S 系的同一地点; (2)两事件发生于S 系的不同地点。 解 由洛伦兹变化2()v t t x c γ'?=?- ?知,第一种情况,0x ?=,0t ?=,故'S 系中0t '?=,即两事件同时发生;第二种情况,0x ?≠,0t ?=,故'S 系中0t '?≠,两事件不同时发生。 5-5 飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求: (1)地面站测得飞船B 的速率; (2)飞船B 测得飞船A 的速率。 解 选地面为S 系,飞船A 为S '系。 (1)'0.4,0.5x v c u c ==,2'341'x x x v u v c v v c +==+ (2)'0.4BA AB x v v v c =-=-=- 5.6 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104 m,2t =1×10-4 s .已知在S ′系中测得该两事件同时发生.试问: (1)S ′系相对S 系的速度是多少? (2)S '系中测得的两事件的空间间隔是多少? 解: 设)(S '相对S 的速度为v , (1) )(12 11x c v t t -='γ

爱因斯坦和他的相对论爱因斯坦的相对论说明了什么

爱因斯坦和他的相对论爱因斯坦的相对论说明了什么 爱因斯坦是本世纪的一位伟大的科学家。他在统计物理学、量子理论、辐射量子理论方面作出了杰出贡献。他建立的相对论,标志着现代物理学的诞生,对物理学、现代科学技术和现代哲学思想带来了革命性的影响。列宁称他为“伟大的自然科学革新家”。 学习、思考、勤奋的一生 1879年3月14日,阿耳伯特·爱因斯坦生于德国乌尔姆一个犹太人的家庭。 爱因斯坦小时并不显得很聪明,但却很爱动脑筋。五岁时,父亲送给他一个指南针,他玩得入了迷,无论怎么颠来倒去地摆弄它,小针总是指着一个方向,他沉思着这里必然隐藏着自然界的奥秘。爱因斯坦的小学、中学是在慕尼黑上的,学习成绩并不好。他十分讨厌当时德国的教育制度,提倡死记硬背拉丁文和希腊文的文法规则,填鸭式的教育方法。他爱好独立思考,渴望探索自然界的奥秘。 爱因斯坦十五岁时,跟随父母迁居到意大利的米兰。不久又进入瑞士阿劳中学学习。这里的学风和慕尼黑市大不相同,着重培养学生的独立思考能力和工作能力,自由空气很浓,学生不必死记硬背。学校有许多小实验室,摆着许多实验仪器和标本,学生可 __地去做

实验。这样的学习环境对爱因斯坦来说真是太好了。他在这里学习了一年,取得中学毕业证书后,未经考试进入了当时中欧一带著名的大学——苏黎世工科大学师范系学习物理。 爱因斯坦在大学里也不是一个优等生。他对一些学科不感兴趣,考试成绩较差,而把全部精力都化在钻研有兴趣的数学和物理学上。他喜欢在实验室里工作,同实验直接打交道。他对当时大学物理教学内容的落后状况,对教授只讲一些应用性的物理原理,对自然现象缺乏探索精神,很不满意。爱因斯坦只得坚持勤奋的自学,来不断增长自己的科学知识。 1900年夏天,爱因斯坦大学毕业。1902年,在一位朋友的帮助下,进了伯尔尼瑞士专利局工作。他的任务是负责对申请专利权的各种发明创造提出审查意见。这一工作使他有机会能接触到许多新的思想和有趣的意见,培养了能够迅速抓住事物本质的不寻常的能力,这对他的物理思想也有重大的激励作用。他白天工作,晚上和假日研究感兴趣的物理问题。1905年,他获得了惊人的突破。一年之内,连续发表了有关布朗运动、量子理论和相对论三篇划时代的论文,这三项重大成就奠定了现代物理学的基础。这在自然科学史上是独一无二的。

物理学史6.3 狭义相对论被人们接受的经过

6.3狭义相对论被人们接受的经过 由于人们的思想长期受到传统观念的束缚,一时难于接受崭新的时空观,爱因斯坦的论文发表后,相当一段时间受到冷遇,被人们怀疑甚至遭到反对。在法国,直到1910年几乎没有人提到爱因斯坦的相对论。在实用主义盛行的美国,最初十几年中也没有得到认真对待。迈克耳孙至死(1931年)还念念不忘“可爱的以太”,认为相对论是一个怪物。英国也不例外,在人们的头脑里以太的观念太深了,相对论彻底否定以太的必要性,被人们看成是不可思议的事。当时甚至掀起了一场“保卫以太”的运动。J.J.汤姆生在1909年宣称:“以太并不是思辨哲学家异想天开的创造,对我们来说,就象我们呼吸空气一样不可缺少”①。1911年美国科学协会主席马吉(M.F.Magie)说:“我相信,现在没有任何一个活着的人真的会断言,他能够想象出时间是速度的函数。”被爱因斯坦誉为相对论先驱的马赫,竟声明自己与相对论没有关系,“不承认相对论”。有一位科学史家叫惠特克(S.E.Whittaker)在写相对论的历史时,竟把相对论的创始人归于彭加勒和洛仑兹,认为爱因斯坦只是对彭加勒和洛仑兹的相对论加了一些补充。 爱因斯坦是1922年获诺贝尔物理奖的。不过不是由于他建立了相对论,而是“为了他的理论物理学研究,特别是光电效应定律的发现”。诺贝尔物理奖委员会主席奥利维亚(Aurivillus)为此专门写信给爱因斯坦,指明他获奖的原因不是基于相对论,并在授奖典礼上解释说:因为有些结论目前还正在经受严格的验证。 普朗克和闵可夫斯基(H.Minkowski)可以说是支持相对论的代表。正是普朗克,当时作为《物理学年鉴》的主编,认识到爱因斯坦所投论文的价值,及时地予以发表。所以人们常说,普朗克有两大发现,一是发现了作用量子,二是发现了爱因斯坦。他的学生劳厄在1911年就致力于宣传相对论,大概也是受了他的影响。闵可夫斯基本是爱因斯坦的老师,1908年发表《空间与时间》一文,把空时-时间合并成四维空间,重新处理了相对论的基本方程,把洛仑兹变换看成是空间-时间四维坐标的变换。这样就可以使相对论的规律以更加简洁的形式表达出来。 关于狭义相对论受人们怀疑和反对的情况,可以举电磁质量的实验检验来作些说明(注)。狭义相对论有一重要结果,就是预言电子质量会随运动速度增长。从经典电磁理论出发也可以得到类似的结论,因为运动电荷会产生磁场,电磁场的能量增大,相当于质量也增大。经典电磁理论家阿伯拉罕(M.Abraham)假设电子是一个有确定半径的钢性带电小球,它在运动中产生的磁场引起电磁质量,由此推出了电子的质量公式。1901年,实验物理学家考夫曼用β射线的高速电子流进行实验,证实电子的质量确实是随速度变化的。洛仑兹到1904年则根据收缩假说也推出了电子质量公式。后来证明洛仑兹公式与狭义相对论的结果一致。1906年,考夫曼宣布,他的量度结果证实了阿伯拉罕的理论公式,而“与洛仑兹-爱因斯坦的基本假定不相容”。这件事一度竟成了否定相对论的重要依

浅谈爱因斯坦

从相对论到量子力学 ---浅谈爱因斯坦的研究 摘要: 二十世纪,相对论和量子力学是物理学界最伟大的成就。科学家的视野从牛顿的经典中离开,开始转向更为广袤的天地———高速运动和微观粒子的世界。 爱因斯坦是相对论的创立者,是量子力学的催生者之一。毫无疑问,他是伟大的。 但伟人并不意味着完美。 爱因斯坦始终排斥着玻尔的量子系统的概率论。他说,“上帝不掷骰子。” 但实验是铁证。 玻尔说:“我们不能告诉上帝,该做什么。” 霍金评论道,“上帝不仅掷骰子,而且他总是把骰子扔到我们看不到的地方!” 从相对论到统一场理论,爱因斯坦试图用数学统一整个物理。但是,上帝掷了骰子,他还是失败了。 关键词:相对论,量子力学,爱因斯坦,场理论。 引言:作为二十世纪最伟大的物理学家,爱因斯坦以其天才的头脑,提出了相对论。但,作为二十世纪的另一座里程碑——量子力学,爱因斯坦却没有留下过多的贡献。而倾尽毕生之力的场理论,成为了爱因斯坦的遗憾。 是什么原因造成了这样的状况呢?为什么已经登上巅峰的爱因斯坦终究没能攻下另一座堡垒? 正文:一、爱因斯坦是如何创立相对论的 1、伯尔尼的辉煌记录

1905年,在不到8个星期内,四篇划时代的论文被寄到《物理学杂志》。 这四篇论文分别是《论动体的电动力学》、《关于光的产生和转化的一个启发性的观点》、《热的分子运动论所要求的静液体中悬浮粒子的运动》和《物体的惯性同她所含的能量有关吗?》。相对应的内容是著名的狭义相对论、量子学论文、布朗运动的理论解释和质能转换定律。 就是在远离科学中心的伯尔尼,身为无名小卒的爱因斯坦发表了彻底改变现代物理学和宇宙学的四篇论文,他的1905年的奇迹年(annus mirabilis)总是被庆祝,他如泉水般喷涌的天才引发了令人惊愕的敬意。 2、天才的思考 空间和时间的概念在狭义相对论中扮演着重要的角色,也是最大的突破。因为在牛顿的绝对时空观里,空间和时间是具有绝对的意义的,并且相互独立。 1905年以前的很长一段时间内,爱因斯坦一直思考着一个很困难的问题:麦克斯韦的方程组是正确的,光速是不变的。但光速的不变性又与经典力学的速度相加规则相矛盾。在和朋友的一次谈话之后,这个问题解开了:时间和信号速度之间有着不可分割的联系。 从某个角度来讲,狭义相对论几乎是直接从麦克斯韦的电磁场理论地出来的。麦克斯韦的电磁理论具有一种不对称性。而他认为这种不对称性是值得怀疑的,因为它破坏了物理学中的统一和内在的和谐。而不对称性起源于其理论中少不了的“绝对静止”的以太。方程组推出光速是恒定的,但这是对哪个参考系成立的呢?包括洛伦兹在内的一些物理学家明确承认绝对静止的“以太”的存在。可是所有的以太漂移实验都失败了,经典物理学走入了死胡同。 但爱因斯坦认为,绝对静止的以太是一个错误的概念,这明显破坏了对称性和统一性。爱因斯坦以其惊人的想象力,抛弃了经典力学的速度合成法,肯定了同时性在不同惯性参考系中是相对的,提出了空间和时间的相对性和统一性。不变的不是时间和空间,而是光速。 绝对静止是人类的假想,并不足以成为一个客观规律。自然界的存在和发展并不以人的意志为转移。他认为,好的物理规律是恒定不变的,如果事实无法与方程结合,那么努力让它们统一。用一组方程,用最简洁的表达,阐述真理。 不得不说,爱因斯坦是当之无愧的天才。身体活在低速运动的世界,思想已

物理学史总结

物理学史总结 一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;

9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同; 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 二、电磁学 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。 18世纪中叶,美国人富兰克林提出了正、负电荷的概念。 1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

爱因斯坦提出狭义相对论的论文

ON THE ELECTRODYNAMICS OF MOVING BODIES By A. Einstein June 30, 1905 It is known that Maxwell's electrodynamics--as usually understood at the present time--when applied to moving bodies, leads to asymmetries which do not appear to be inherent in the phenomena. Take, for example, the reciprocal electrodynamic action of a magnet and a conductor. The observable phenomenon here depends only on the relative motion of the conductor and the magnet, whereas the customary view draws a sharp distinction between the two cases in which either the one or the other of these bodies is in motion. For if the magnet is in motion and the conductor at rest, there arises in the neighbourhood of the magnet an electric field with a certain definite energy, producing a current at the places where parts of the conductor are situated. But if the magnet is stationary and the conductor in motion, no electric field arises in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force, to which in itself there is no corresponding energy, but which gives rise--assuming equality of relative motion in the two cases discussed--to electric currents of the same path and intensity as those produced by the electric forces in the former case. Examples of this sort, together with the unsuccessful attempts to discover any motion of the earth relatively to the ``light medium,'' suggest that the phenomena of electrodynamics as well as of mechanics possess no properties corresponding to the idea of absolute rest. They suggest rather that, as has already been shown to the first order of small quantities, the same laws of electrodynamics and optics will be valid for all frames of reference for which the equations of mechanics hold good.1 We will raise this conjecture (the purport of which will hereafter be called the ``Principle of Relativity'') to the status of a postulate, and also introduce another postulate, which is only apparently irreconcilable with the former, namely, that light is always propagated in empty space with a definite velocity c which is independent of the state of

狭义相对论 -规律方法(word无答案)

狭义相对论 -规律方法(word无答案) 一、解答题 (★★) 1 . 静长同为三艘飞船,在惯性系S的时刻,相对S系的空间位置和沿x轴匀速度运动的速度分布如图所示。具体而言,三个飞船在S系中沿一直线航行,时刻,飞船1,2,3头部各自位于图示,,位置,飞船1,2,3分别将自己头部时钟拨到本系内的 时间零点。(注意,S系认为飞船1,2,3头部时钟同时拨到零点,但飞船1,2,3并不认为它 们彼此也是同时将各自头部时钟拨到零点)设此时,即S系时刻,飞船1头部天线朝右 发出无线电信号;在飞船2参考系中此信号被其尾部天线接收的同时,恰好其头部天线朝右发 出无线电信号;在飞船3参考系中此信号被其尾部天线接收的时刻记为,试求之。 (★★) 2 . 一块厚玻璃以速率v向右运动。在A点有闪光灯,它发出的光通过厚玻璃后到达B点,如图所示。已知A、B之间的距离为L,玻璃在其静止的坐标系中的厚度为,玻璃的折射率 为n。试问,光从A点传播到B点需多少时间? (★★) 3 . 惯性系相对于S以v向右运动,在惯性系中有一与x轴夹角为边长L的正 方形ABCD,如图所示,现有一粒子初速度为0,并以加速度在轨道ABCD中运动,试问: (1) ,时于系中,分别为多少? (2)在S系中测得、分别为多少? (★★) 4 . 如图所示,一单色点光源在相对其静止的惯性系中各向同性地辐射光能量,其发 光强度(单位立体角内的光辐射功率)为。当该点光源相对惯性系中的观察者以匀速度v运 动时,P测得发光强度I会随观察方位而变。将观察方向与点光源运动方向之间的夹角用表

示,试求I随变化的函数。 (★) 5 . 封闭的车厢中有一点光源S,在距光源l(车厢参考系)处有一半径为r的圆孔,其圆心为,光源一直在发光,并通过圆孔射出。车厢以高速v沿固定在水平地面上的x轴正方向 匀速运动,如图所示。某一时刻,点光源S恰位于x轴的原点O的正上方,取此时刻作为车厢 参考系与地面参考系的时间零点。在地面参考系中坐标为处放一半径为的不透 光的圆形挡板,板面与圆孔所在的平面都与x轴垂直。板的圆心、S、都等高,起始时 刻经圆孔射出的光束会有部分从挡板周围射到挡板后面的大屏幕(图中未画出)上。由于车厢 在运动,将会出现挡板将光束完全遮住,即没有光射到屏上的情况。不考虑光的衍射。试求: (1)车厢参考系中(所测出的)刚出现这种情况的时刻。 (2)地面参考系中(所测出的)刚出现这种情况的时刻。 (★★) 6 . 两惯性系与S初始时刻完全重合,前者相对后者沿z轴正向以速度v高速运动。 作为光源的自由质点静止于系中,以恒定功率P向四周辐射(各向同性)光子。在S系中 观察,辐射偏向于光源前部(即所谓的前灯效应)。 (1)在S系中观察,系中向前的那一半辐射将集中于光源前部以x轴为轴线的圆锥内。求该 圆锥的半顶角。已知相对论速度变换关系为。式中与分别为S与 系中测得的速度x分量,c为光速。 (2)求S系中测得的单位时间内光源辐射的全部光子的总动量与总能量。 (★★) 7 . 如图所示,在某恒星参考系S中,飞船A和飞船B以相同速率(c为真空中的光 速)做匀速直线运动。飞船A的运动方向与方向一致,而飞船B的运动方向与方向一致,两飞船轨迹之间的垂直距离为d。当A和B靠得最近时,从A向B发出一细束无线电联络 信号。试问: (1)为使B能接收到信号,A中的宇航员认为发射信号的方向应与自己的运动方向之间成什么角? (2)飞船B接收到信号时,B中的宇航员认为自己与飞船A相距多少? (★) 8 . 设系相对于S系的速度V并不平行于x轴,时,x与轴,y与轴,

爱因斯坦相对论超级经典通俗理解

爱因斯坦相对论超级经典通俗理解 (注:摘自百度知道) 达到光速时间停止: 假如有一段足够长的笔直公路,你站在甲地,12:00准时从甲地以光速前进。在你开始前进的那一时刻,甲地发生的一切现象也正好以光速向四面八方传播。10分钟以后,也就是12:10分,你到达了乙地。此时在甲地12:00钟发生的现象也正好传到乙地,那么你回头看甲地还是12:00的现象,不管你前进了多久,回头看到得一直都是甲地12:00的现象。这就是时间停止的现象。 超越光速时间倒流: 假如有一段足够长的笔直公路,你站在甲地,12:00以2倍光速前进,那么10分钟后到达丙地,不难得出光从甲地传播到丙地需要20分钟,意思就是在甲地11:50发生的现象在12:10分正好到达丙地。那么你12:10在丙地看到了甲地在11:50就发生的事情,时间倒流的现象就这样发生了。 相对时间公式: 设从甲地出发,速度为V,前进时间为T1,看到甲地现象的时间为T2=T1V/C。相对时间T=T1-T2=T1(1-V/C)。 公式中可以看出,V=C,T=0。时间停止;V>C,T<0,时间倒流。

光速不可超越理论: 假如有一段足够长的笔直公路,你站在甲地,12:00以2倍光速前进的时候,甲地有一个人在看着你。10分钟后你达到丙地,你达到丙地的现象还要经过20分钟才可以传到甲地。这样一来,甲地的人在12:30分的时候才看到你达到丙地,从而得出你的速度是2/3倍的光速。 设你的速度为V,光速为C,前进距离S,你前进的时间T1=S/V,达到后的现象传回甲地的时间T2=S/C,可以得出甲地的人看你的速度为 V1=S/(T1+T2)=S/(S/V+S/C)=VC/V+C。 从这个公式里就可以看出,不管你的速度V有多大,看起来的速度都不可能达到光速。只有当你的速度是无穷大的时候,看起来才是光速。 接近光速时物体长度变短: 假设一辆长30万千米的火车,车头在A地,车尾在B地,观察者站在B地,火车以光速前进。1秒钟后,车尾到达A地,再过1秒后观察者看到车尾到达A地。得出2秒钟后观察者看到车尾在A 地;从运动开始,0.5秒后车头前进15万千米达到C地,BC距离45万千米,再过1.5秒后,观察者看到车头到达C地,得出2秒钟

高中物理学史 人物成就大全

高中物理中出现的所有物理学史资料的总结 1、胡克:英国物理学家;发现了胡克定律(F 弹=kx) 2、伽利略:意大利的着名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S 正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J= 焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷 e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了着名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提

大学物理(第四版)课后习题及答案_相对论

第十六章相对论 题16.1:设'S 系以速率v = 0.60c 相对于S 系沿'xx 轴运动,且在t ='t = 0时,0'==x x 。(1)若有一事件,在 S 系中发生于t = 2.0×10- 7 s ,x = 50 m 处,该事件在 'S 系中发生于何时刻?(2)如有另一事件发生于 S 系中 t = 3.0×10- 7 s ,x = 10 m 处,在 S ′系中测得这两个事件的时间间隔为多少? 题16.1解:(1)由洛伦兹变换可得S ′系的观察者测得第一事件发生的时刻为 s 1025.1/1'72 21211-?=--=c v x c v t t (2)同理,第二个事件发生的时刻为 s 105.3/1'7222222-?=-- =c v x c v t t 所以,在S ′系中两事件的时间间隔为 s 1025.2'''721-?=-=?t t t 题16.2:设有两个参考系S 和S ′,它们的原点在t = 0和t ′ = 0时重合在一起。有一事件,在 S ′系中发生在 t ′ = 8.0×10-8 s ,x ′ = 60 m ,y ′ = 0,z ′ = 0处,若S ′系相对于S 系以速率v = 0.6c 沿xx ′轴运动,问该事件在S 系中的时空坐标各为多少? 题16.2解:由洛伦兹逆变换得该事件在S 系的时空坐标分别为 m 93/1''22=-+= c v vt x x 0'==y y 0'==z z s 105.2/1''7222-?=-+ = c v x c v t t 题16.3:一列火车长 0.30 km (火车上观察者测得),以 100 km/h 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端。问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少? 题16.3解:设地面为S 系,火车为S ′系,把闪电击中火车前后端视为两个事件(即两组不同的时空坐标)。由洛伦兹变换可得两事件时间间隔为

爱因斯坦的相对论及其哲学思想

南京航空航天大学 课程名称:自然辩证法 论文题目:爱因斯坦的相对论及其哲学思想 学生姓名:陆想想 班级学号:SX1203225 学科名称:生物医学工程 2012年12月22日

爱因斯坦的相对论及其哲学思想 陆想想 (南京航空航天大学生物医学工程系,江苏省南京市 210016) 摘要:在物理学的发展史上,曾经出现电磁场理论与牛顿力学经典理论相矛盾的情况,众多物理学家坚持牛顿力学是权威,不可能有错,爱因斯坦则选择修改牛顿力学,最终导致相对论的产生。本文介绍了爱因斯坦创立狭义相对论的历史背景,阐述了相对论的历史意义,以及相对论所展现的哲学思想。 关键词:爱因斯坦;相对论;哲学; 0引言 19世纪下半期,麦克斯韦的电磁场理论(包括光波是电磁波的理论)在实验上得到了确认。当时,在物理学家的思想方法中,力学观点占有统治地位。因而一般认为电磁波(或光波)只有在介质中才能传播,并给传播电磁波(或光波)的介质取名为“以太”。但是以太的引入却使电磁场理论和相对性原 理之间出现了不可弥补的裂缝:力学相对性原理指出,所有的惯性系都是平权的;但是对引进了以太以后的电磁场理论来讲以太惯性系却是一个优越的 惯性系。如何解决相对性原理和电磁场理论之间存在的矛盾,物理学家们进行了积极的探索。 1相对论的创立 1.1物理学发展出现矛盾 1687年,牛顿的绝对时空与运动理论发表,牛顿力学以及伽利略变换统治了物理学两个多世纪。1864年,麦克斯韦建立了统一的电磁场理论——麦克斯韦方程组,由电磁场理论预言了电磁波的存在,并认为光波也是电磁波,提出了光的电磁学说,统一了电磁学和光学。1887年赫兹用实验证实了电磁波的存在,麦克斯韦电磁场理论取得了巨大成功。然而,电磁场的一些规律与牛顿力学理论相矛盾。此时,统治了两个多世纪的牛顿力学与伽利略变换遇到了困难。科学家们纷纷寻求解决困难的方法。 1.2拯救“以太”之路失败 大部分科学家认为,存在一种适用于力学但不适用于电动力学的相对性原理,在电动力学里存在着一个优越的惯性系,即“以太参考系”。相对于以太静止的参照系就是一种较之其它参照系具有 特殊优越性的“绝对参照系”,它对应着牛顿所讲的“绝对空间”。因此,为了拯救“以太”,科学家们进行了一系列探索研究。对双星现象、光行差现象的观察、分析以及斐索实验、迈克尔逊—莫雷实验,得到的结果是否定的,即以太参考系并不存在。 1.3爱因斯坦另辟蹊径 爱因斯坦则要通过修改牛顿力学,以一个既满足力学又满足电动力学的相对性原理来解决矛盾,这样一套理论就是狭义相对论。爱因斯坦在这个理论中,抛弃了以太,抛弃了绝对空间和绝对时间,从根本上改造了经典物理学,建立了一个新的物理学体系。爱因斯坦选择的是一条令其他物理学家望而生畏的道路。在19世纪末,几乎所有物理学家都认为,牛顿力学经受了几百年的考验,已成为全部物理学甚至是整个自然科学的基础,其正确是不容怀疑的。但是爱因斯坦恰恰就敢于把与旧时空观不相容的两个基本假设(相对性原理和光速不变原理)作为新理论的出发点,这充分表明爱因斯坦在科学探索中不迷信权威、敢于创新的精神。也可以说,爱因斯坦选择的是一条反传统的道路。 1.4狭义相对论的创立 1905年9月,爱因斯坦发表了《论动体的电动 力学》论文,标志着爱因斯坦创立了狭义相对论,使电磁场理论和经典力学得到了统一,开创了物理学的新纪元。 对牛顿力学成立的伽利略变换,在电磁学理论中不成立的原因,爱因斯坦认为是牛顿的绝对时间、绝对空间有问题。而且,爱因斯坦认为解决问题的关键是更改时间和同时性的定义。爱因斯坦明确地确定了时间和同时性的定义[1]。 爱因斯坦指出:“借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了‘同时’和‘时间’的定义。一个事件的‘时间’,就是在这事件发生地点静止的一只钟同该事件同时的一

相关主题
文本预览
相关文档 最新文档