当前位置:文档之家› 浅析高压电缆故障分析及解决方法

浅析高压电缆故障分析及解决方法

浅析高压电缆故障分析及解决方法
浅析高压电缆故障分析及解决方法

浅析高压电缆故障分析及解决方法

发表时间:2019-04-11T14:01:57.313Z 来源:《河南电力》2018年19期作者:周荣斌[导读] 本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴

周荣斌

(福建省万维新能源电力有限公司福建福州 350003)摘要:本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴。

关键词:高压电缆;故障分析;电力1.高压电缆故障原因分析

按照故障产生的原因进行分类,高压电缆故障大致分为以下几类:厂家制造原因、施工质量原因、设计单位设计原因、外力破坏四大类。下面进行分类介绍:

1.1厂家制造原因

厂家制造原因根据发生部位不同,又分为电缆本体原因、电缆接头原因两类。

一是电缆本体制造原因。一般在电缆生产过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,有些情况比较严重可能在竣工试验中或投运后不久出现故障,大部分在电缆系统中以缺陷形式存在,对电缆长期安全运行造成严重隐患。

二是电缆接头制造原因。高压电缆接头以前用绕包型、模铸型、模塑型等类型,需要现场制作的工作量大,并且因为现场条件的限制和制作工艺的原因,绝缘带层间不可避免地会有气隙和杂质,所以容易发生问题。电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等原因。

1.2施工质量原因

因为施工质量导致高压电缆系统故障的事例很多,主要原因有以下几个方面:一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度、湿度、灰尘都不好控制。二是电缆施工过程中在绝缘表面难免会留下细小的滑痕,半导电颗粒和砂布上的沙粒也有可能嵌入绝缘中,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分,这些都给长期安全运行留下隐患。三是安装时没有严格按照工艺施工或工艺规定没有考虑到可能出现的问题。四是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。五是因密封处理不善导致。中间接头必须采用金属铜外壳外加PE或PVC绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。

1.3设计原因

因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。

2.高压电缆头制作技术

电缆终端头是将电缆与其他电气设备连接的部件,电缆中间头是将两根电缆连接起来的部件,电缆终端头与中间头统称为电缆附件。电缆附件应与电缆本体一样能长期安全运行,并具有与电缆相同的使用寿命。

2.1高压电缆头的基本要求

良好的电缆附件应具有以下性能,线芯联接好,主要是联接电阻小而且联接稳定,能经受起故障电流的冲击;长期运行后其接触电阻不应大于电缆线芯本体同长度电阻的1.2倍;应具有一定的机械强度、耐振动、耐腐蚀性能;此外还应体积小、成本低、便于现场安装。绝缘性能好:电缆附件的绝缘性能应不低于电缆本体,所用绝缘材料的介质损耗要低,在结构上应对电缆附件中电场的突变能完善处理,有改变电场分布的措施。

2.2电场分布原理

高压电缆每一相线芯外均有一接地的(铜)屏蔽层,导电线芯与屏蔽层之间形成径向分布的电场。也就是说,正常电缆的电场只有从(铜)导线沿半径向(铜)屏蔽层的电力线,没有芯线轴向的电场(电力线),电场分布是均匀的。

在做电缆头时,剥去了屏蔽层,改变了电缆原有的电场分布,将产生对绝缘极为不利的切向电场(沿导线轴向的电力线)。在剥去屏蔽层芯线的电力线向屏蔽层断口处集中。那么在屏蔽层断口处就是电缆最容易击穿的部位。电缆最容易击穿的屏蔽层断口处,我们采取分散这集中的电力线(电应力),用介电常数为20~30,体积电阻率为108~1012Ω?cm 材料制作的电应力控制管(简称应力管),套在屏蔽层断口处,以分散断口处的电场应力(电力线),保证电缆能可靠运行。

为尽量使电缆在屏蔽层断口处电场应力分散,应力管与铜屏蔽层的接触长度要求不小于20mm,短了会使应力管的接触面不足,应力管上的电力线会传导不足(因为应力管长度是一定的),长了会使电场分散区(段)减小,电场分散不足。一般在20~25mm左右。

预制式安装要求比热缩的高,难度大。管式预制件的孔径比电缆主绝缘层外径小2~5mm。中间接头预制管要两头都套在电缆的主绝缘层外,各与主绝缘层连接长度不小于10mm。电缆主绝缘头上不必削铅笔头(在电缆芯线上尽量留半导体层)。铜接管表面要处理光滑,包适量填料。

关键技术问题是附件的尺寸与待安装的电缆的尺寸配合要符合规定的要求。另外也需采用硅脂润滑界面,以便于安装,同时填充界面的气隙,消除电晕。预制附件一般靠自身橡胶弹力可以具有一定密封作用,有时可采用密封胶及弹性夹具增强密封。预制管外面同热缩的一样,半导体层和铜屏蔽层,最外面是外护层。

3.电缆终端电应力控制方法

高压电缆接地的问题

浅谈高压电缆接地的问题 高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?35KV高压电缆多为单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能,影响线路的正常运行,为了避免这种现象的发生,通常采用一端接地的方式,当线路很长时还可以采用中点接地和交叉互联等方式。 在制作电缆头时,将钢铠和铜屏蔽层分开焊接接地,是为了便于检测电缆内护层的好坏,在检测电缆护层时,钢铠与铜屏蔽间通上电压,如果能承受一定的电压就证明内护层是完好无损。如果没有这方面的要求,用不着检测电缆内护层,也可以将钢铠与铜屏蔽层连在一起接地(我们提倡分开引出后接地)。 为什么高压单芯交联聚乙烯绝缘电力电缆要采用特殊的接地方式? 电力安全规程规定:35kV 及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV 时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。 感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。 此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速

电缆接地问题

浅议高压变电所屏蔽电缆接地: 摘要:高压变电所内屏蔽电缆屏蔽层的正确接地,对降低外部电磁场对微机型二次设备的干扰水平,起着重要作用。该文浅议屏蔽电缆屏蔽层一点、两点接地对电磁场屏蔽的机理,并提出了两点接地时应注意的问题。 关键词:电磁干扰;单点接地;两点接地 0 引言 近年来,耐受电磁干扰能力极低的微机型二次设备,在高压变电所中得到了广泛的应用,为保证微机型二次设备在这样一个高强度电磁场、强电磁干扰环境下的安全可靠运行,需要在两方面取得一致,一是这些二次设备应具有一定的耐受电磁干扰的能力,二是必须确保进入设备的电磁干扰水平必须低于设备自身的耐受水平。后者要求电力设计及相关部门对可能的最大干扰值预测,并采取各种切实可行的措施。 结合产品的特点合理地进行地线设计,是性价比最高的抗干扰措施。这也是各级电力部门制定的二次反事故措施反复强调二次地线设计的原因。本文对二次地线设计中比较重要的屏蔽电缆接地进行简要分析。 1 屏蔽电缆接地 屏蔽电缆屏蔽层不接地、一点接地、两点接地将直接影响屏蔽电缆电缆芯的电场屏蔽、磁场屏蔽效果。请登陆:输配电设备网浏览更多信息 1.1屏蔽层接地产生的电场屏蔽 由于两根平行导线之间存在耦合电容,屏蔽层与电缆芯也存在耦合电容,这样电场耦合会产生串联干扰,如图1、图2所示(虚线表示屏蔽层接地)假定一根为理想屏蔽电缆,置于干扰电路中。不考虑干扰源导线对电缆芯的耦合,则源导线的干扰电压U1会通过C12耦合到屏蔽层上,再通过C23耦合到芯线上。 芯线上耦合电压为 来源:https://www.doczj.com/doc/4e7578914.html, 如果屏蔽层接地,C3被短接,C3为∞,则U2=0,即U1通过C23被屏蔽层短路接地,切断了耦合到芯线上的路径,从而起到了电场屏蔽的作用。 如果屏蔽层不接地,根据文献[3],C12=(πε0)/[ln(2h/r)],h为两导线间距,r为导线半径。 由于屏蔽电缆r值比普通电缆大,耦合电容C12值更高,再根据式(1)产生的耦合电压U2也更高,其结果是不仅不能降低电场干扰水平,而且将比采用普通电缆产生更大的电场干扰。 可以看出对抑制电场干扰来说,屏蔽层必须接地,两点接地可靠性高于一点接地。因为一点接地必须保证屏蔽层的完整无损。

高压单芯电缆接地方式

高压单芯电缆接地 电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。 通常35kV及以下电压等级的电缆都采用两端接地方式,这是由于这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。 但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的低级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操纵过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套尽缘。此时,假如仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆尽缘老化,因此单芯电缆不应两端接地。 [个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列题目: 当雷电流或过电压波沿线芯活动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层尽缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济公道的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层尽缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地尽缘。 假如大于此规定电压时,应采取金属护套分段尽缘或尽缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通讯电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层尽缘,在不接地的一端应加装护层保护器。 由此可见,高压电缆线路的接地方式有下列几种: 1.护层一端直接接地,另一端通过护层保护接地----可采用方式; 2.护层中点直接接地,两端屏蔽通过护层保护接地---常用方式; 3.护层交叉互联----常用方式; 4.电缆换位,金属护套交叉互联---效果最好的接地方式; 5.护套两端接地---不常用,仅适用于极短电缆和小负载电缆线路。

高压电缆故障分析判断与故障点查找

高压电缆故障分析判断与故障点查找 随着我国的市场经济与现代化科技水平的不断发展提升,加快促进了我国城乡基础设施的建设。而对于高压电缆而言,其主要作用为连接电气设备与传输电能,因具备优质的稳定性与安全性的特点,得到了我国全国范围内广泛应用与普及。但是高压电缆在日常运作中也会受到诸多因素的影响,例如不可预判的自然雷电灾害、忽略了使用年限超龄等,极易引发高压电缆故障,对城乡稳定供电产生困扰。基于此,为了有效及时的采取科学合理的措施解决高压电缆故障,我国电力工作者需要对高压电缆故障的分析判断能力与精确定位故障点能力进行提升。 标签:高压电缆;故障成因;故障点判断;故障点定位 高压电缆在电力系统中因占地面积小与送电可靠性高,电力工作者为了加强供电安全性与电厂规划布局、外观美化等性能方面逐渐深入了高压电缆的应用,并且高压电缆的正确合理运用还会对后续的电力系统维护保养工作提供基础保障。然而由一些因素导致可能会对稳定工作中的高压电缆造成一系列的负面影响,从而造成危害高压电缆正常供电运行的故障出现,为了有效排除故障,电力工作者将高压电缆故障的成因进行深度分析与探究对保证社会大众的生活生产用电极具现实意义[1]。 一、高压电缆故障成因 1机械损伤 电力工作者对高压电缆工作实际操作前,未对相关区域单位部门上报与获得批准,私自进行人工打桩或者机械开挖,其过程中发生人为误操作等情况,皆可能导致高压电缆断线故障。另外,电力工作者完成对线缆或线管的敷设安装后,对高压电缆标志牌未明确标明,一旦电缆受到过大的外力时,也会造成高压电缆的断线。经相关调查,这类高压电缆线路故障成因最为普遍。 2绝缘胶层老化变质 电力系统在经过长时间运行后会发生电流流经电缆发热现象,而后长期发热现象得不到有效缓解就会导致电流流经电缆的温度不断升高,从而对电缆的绝缘胶层造成一定程度的破坏;除此之外,铁塔地下土壤中存在的酸碱性物质等自然因素,久而久之也会腐蚀电缆的绝缘外套。 3电缆施工技术 一方面,在高压电缆安装时,电力工作者未根据相关技术标准进行违规造作。另一方面,在电力建筑工程中也会出现不同程度的下沉情况,让电缆承受了较大的压力,皆会导致高压电缆断线与短路的故障发生。

为什么高压单芯电缆要采用特殊的接地方式

为什么高压单芯电缆要采用特殊的接地方式? 电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式。 这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铅包或金属屏蔽层外基本上没有磁链。这样,在铅包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铅包或金属屏蔽 层。 但是当电压超过35kV时,绝大多数采用单芯电缆供电,情况就不一样了。单芯电缆的导体线芯与金属屏蔽层的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铅包(或铝包)或金属屏蔽层,使它的两 端出现感应电压。 感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,当线路发生短路故障、遭受操作过电压或雷电电压冲击时,电缆的金属屏蔽层上会形成很高的感应电压, 甚至可能击穿护套绝缘。 此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,严重情况会导致电缆的护套着火,因此单芯电缆不应两端接地。个别情况(如短电缆小于100M或轻载运行时) 方可将铝包或金属屏蔽层两端三相互联接地。 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题: (1)当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端就会出现很高的感应性冲击电压; (2)在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现电缆的金属护层多点接地,并在电缆的长度方向上形成 多处环流。 因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器。 由此可见,高压电缆线路的接地方式有下列几种: 1.护层一端直接接地,另一端通过护层保护接地--可采用方式; 2.护层中点直接接地,两端屏蔽通过护层保护接地--常用方式; 3.护层交叉互联--常用方式; 4.电缆换位,金属护套交叉互联--效果最好的接地方式; 5.护套两端接地--不常用,仅适用于极短电缆和小负载电缆线路。

35kV及以下电压等级的电力电缆接地方式

35kV及以下电压等级的电力电缆接地方式 35kV及以下电压等级的电力电缆接地方式 电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV 时,大多数采用单芯电缆,的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。gwsd_re 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不

接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器

单芯电缆接地

随着我国电网改造的深入,大量的架空线被电力电缆取代。电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件。在城市配电网络中,应用最广的是10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。而单芯电缆金属护套的接地和三芯电缆不同。现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。 1 单芯电缆金属护套过电压和环流的产生 单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。 如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。 2 单芯电缆金属护套的连接与接地 为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。 电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。因此,一端直接接地的接线方式适用的电缆不能太长。 电缆金属护套中间直接接地、两端经过电压保护器接地,是一端直接接地的引伸,可以把一端直接接地电缆的最大长度增加一倍,接线方式和原理与一端直接接地一样。 电缆线路很长时,即使采用金属护套中间接地,也会有很高的感应电压。这时,可以采用金属护套交叉互联。如图2所示。

关于电力电缆接地存在的问题与应注意事项探析

关于电力电缆接地存在的问题与应注意事项探析 电力电缆接地施工是一项极为复杂的工程,其施工会受到诸多因素的影响。为了避免受电磁耦合的影响,可以根据不同的电缆长度将其外护层的接地方式分为一端接地、两端接地、交叉互联接地,避免由于接地不合理产生问题;考虑到环流回路中的接触不良易会产生高温现象或环流过大造成高温问题,导致电缆绝缘被烧毁。可以选取针对性的解决方案。文章主要从电力电缆接地施工中存在的问题入手,分析了电力电缆施工中应注意的一些细节。 标签:电力电缆;接地问题;事项 1 电力电缆存在的问题 1.1 关于高压电缆的接地问题 1.1.1 高压电缆接地不良问题众多,是因为高压电缆接地问题十分复杂,产生不良因素的原因比较多,概括起来,可以分为以下几点: (1)没有把接地线焊接牢固。6~35kV XLPE 电缆接头制作技术十分简单,安装便捷、施工方便,因此一些单位不注意接头质量,在接地线焊接中更是不按规范操作。在施工中,一些技术人员因为技术水平低,一方面担心电缆绝缘烧坏,另一方面又担心接地线焊接不牢固,于是在接地线焊接中总是采用简单地绑扎缠绕方法,这样就容易埋下隐患,造成接地线与铜带屏蔽层的松动。还有些施工人员在制作铜丝屏蔽电缆接头时,没有直接引出铜丝,而是先切断后绑扎,然后引出接地软线,从而引发了线路接地问题。 (2)铜带屏蔽层的过流能力较差。铜带屏蔽电缆应为单芯或三芯,截面一般不作规定。但是要求在制造电缆时,铜带连接处必须进行熔焊或铜焊。然而事实上一些厂家生产的电缆仍然采用锡焊,或采用搭接后用塑料袋粘贴一下,这是一种不按准则操作的不负责任的行为。现在我国电缆行业只有对电缆金属屏蔽层截面的计算,但没有为铜带搭接考虑其副作用,对于新生产的电缆可以使用这种计算方法;但在运行或存放一定时间后会产生铜带松动、氧化等问题,致使搭接处接触不良。短路电流是按沿螺旋方向,不是按轴向流动,这个时候,屏蔽层的铜带厚度和总长度决定了其电阻。这些都是造接触不良的原因。 (3)由于接地线接触不良。这些年,电缆附件一般都配套供应,厂家为了获得高的效益,配套接地线的长度只有规定的一半,作完电缆头后就所剩无几,就必须选择就近接地了,很多时候是直接把电缆卡按在固定螺栓上就可以了。因为油漆和锈蚀等原因,也会使接地端子产生接触不良问题。 1.1.2 高压电缆没有接地。在一些情况特殊的地方,如矿山、煤井等,由于条件限制等问题,只能使用高低压电缆的屏蔽层、护套和电缆的复合的接地网。倘使高压电缆金属屏蔽层意外断裂或接地线脱离,都会造成高压电缆与地面无接

高压电缆接地—同轴接地电缆的使用

高压电缆接地—同轴接地电缆的使用 1定义 同轴电缆也叫做同轴接地电缆。该同轴接地电缆包括内导体、绝缘层、外导体、外保护套;绝缘层采用交联聚乙烯材质,耐受温度高;外导体采包括内外相邻的第一层导体和第二层导体;外保护套采用阻燃交联聚乙烯材料,阻燃防爆,具有良好的化学稳定性、憎水性和密封性。使用时,同轴接地电缆的一端可以与高压电力电缆金属护层连接,另一端与接地保护装置连接,可将高压电力电的缆金属护层端的过电压导入接地保护装置从而有效地保护高压电力电缆的正常运行。一般来讲10kV的单芯电缆也是可以的,采用屏蔽的同轴电缆优点更明显。同轴电缆内外导体连接方式合理,方便,使用可靠.。结构上讲,这些是属于双铜芯电缆,外铜芯铜丝是屏蔽作用,内铜丝导电流。所有,这些10kV的同轴电缆的价格一般是普通10kV铜芯单芯电力电缆的双倍价格。 2型号 一般来讲同轴接地电缆电压等级为10kV;主要型号有VOV、YJOV和YOY三种型号,截面积从1×50~1×300mm2都有。正规的写法例如:YJOV-8.7/10-240/240。

(1)表示:YJ:交联聚乙稀绝缘;V:聚氯乙稀绝缘;Y:聚乙稀绝缘; (2)表示: O同轴电缆; (3)表示:PVC护套;V是聚氯乙稀护套,Y是氯乙稀护套 3使用范围 高压电缆,按照单回路、双回路甚至更多回路设计,如果单根的电缆长度越长,感应电势越大,没有保护装置的情况下最好不要超过50V,即50伏的电压。如果有保护装置,例如回流线、同轴电缆等,不应超过300V,如果超过,对超高压电缆外护套,其他动植物的安全,人的安全都是有一定影响的,对电缆的影响也是有的。同轴电缆的作用可见一斑。同轴接地电缆一般用于避雷器引线和防雷接地线,交联电缆线路护层绝缘保护装置的接地箱相连接线,因为雷电或浪涌电压对地泄放时间极短,就要求电缆需要具有低阻抗,同轴接地电缆对于瞬态具有低阻抗特性。 VOV(YOV、YJOV)一般用于高压电缆交叉互联的,用来减小金属护套的感应电势的。用于110kV~220kV交联电缆线路护层绝

浅析高压电缆故障分析及解决方法

浅析高压电缆故障分析及解决方法 发表时间:2019-04-11T14:01:57.313Z 来源:《河南电力》2018年19期作者:周荣斌[导读] 本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴 周荣斌 (福建省万维新能源电力有限公司福建福州 350003)摘要:本人根据作者实践,按照高压电缆故障产生的原因进行分类,并按照不同类别给出具体解决方案活建议,希望能为同仁提供借鉴。 关键词:高压电缆;故障分析;电力1.高压电缆故障原因分析 按照故障产生的原因进行分类,高压电缆故障大致分为以下几类:厂家制造原因、施工质量原因、设计单位设计原因、外力破坏四大类。下面进行分类介绍: 1.1厂家制造原因 厂家制造原因根据发生部位不同,又分为电缆本体原因、电缆接头原因两类。 一是电缆本体制造原因。一般在电缆生产过程中容易出现的问题有绝缘偏心、绝缘屏蔽厚度不均匀、绝缘内有杂质、内外屏蔽有突起、交联度不均匀、电缆受潮、电缆金属护套密封不良等,有些情况比较严重可能在竣工试验中或投运后不久出现故障,大部分在电缆系统中以缺陷形式存在,对电缆长期安全运行造成严重隐患。 二是电缆接头制造原因。高压电缆接头以前用绕包型、模铸型、模塑型等类型,需要现场制作的工作量大,并且因为现场条件的限制和制作工艺的原因,绝缘带层间不可避免地会有气隙和杂质,所以容易发生问题。电缆接头分为电缆终端接头和电缆中间接头,不管什么接头形式,电缆接头故障一般都出现在电缆绝缘屏蔽断口处,因为这里是电应力集中的部位,因制造原因导致电缆接头故障的原因有应力锥本体制造缺陷、绝缘填充剂问题、密封圈漏油等原因。 1.2施工质量原因 因为施工质量导致高压电缆系统故障的事例很多,主要原因有以下几个方面:一是现场条件比较差,电缆和接头在工厂制造时环境和工艺要求都很高,而施工现场温度、湿度、灰尘都不好控制。二是电缆施工过程中在绝缘表面难免会留下细小的滑痕,半导电颗粒和砂布上的沙粒也有可能嵌入绝缘中,另外接头施工过程中由于绝缘暴露在空气中,绝缘中也会吸入水分,这些都给长期安全运行留下隐患。三是安装时没有严格按照工艺施工或工艺规定没有考虑到可能出现的问题。四是竣工验收采用直流耐压试验造成接头内形成反电场导致绝缘破坏。五是因密封处理不善导致。中间接头必须采用金属铜外壳外加PE或PVC绝缘防腐层的密封结构,在现场施工中保证铅封的密实,这样有效的保证了接头的密封防水性能。 1.3设计原因 因电缆受热膨胀导致的电缆挤伤导致击穿。交联电缆负荷高时,线芯温度升高,电缆受热膨胀,在隧道内转弯处电缆顶在支架立面上,长期大负荷运行电缆蠕动力量很大,导致支架立面压破电缆外护套、金属护套,挤入电缆绝缘层导致电缆击穿。 2.高压电缆头制作技术 电缆终端头是将电缆与其他电气设备连接的部件,电缆中间头是将两根电缆连接起来的部件,电缆终端头与中间头统称为电缆附件。电缆附件应与电缆本体一样能长期安全运行,并具有与电缆相同的使用寿命。 2.1高压电缆头的基本要求 良好的电缆附件应具有以下性能,线芯联接好,主要是联接电阻小而且联接稳定,能经受起故障电流的冲击;长期运行后其接触电阻不应大于电缆线芯本体同长度电阻的1.2倍;应具有一定的机械强度、耐振动、耐腐蚀性能;此外还应体积小、成本低、便于现场安装。绝缘性能好:电缆附件的绝缘性能应不低于电缆本体,所用绝缘材料的介质损耗要低,在结构上应对电缆附件中电场的突变能完善处理,有改变电场分布的措施。 2.2电场分布原理 高压电缆每一相线芯外均有一接地的(铜)屏蔽层,导电线芯与屏蔽层之间形成径向分布的电场。也就是说,正常电缆的电场只有从(铜)导线沿半径向(铜)屏蔽层的电力线,没有芯线轴向的电场(电力线),电场分布是均匀的。 在做电缆头时,剥去了屏蔽层,改变了电缆原有的电场分布,将产生对绝缘极为不利的切向电场(沿导线轴向的电力线)。在剥去屏蔽层芯线的电力线向屏蔽层断口处集中。那么在屏蔽层断口处就是电缆最容易击穿的部位。电缆最容易击穿的屏蔽层断口处,我们采取分散这集中的电力线(电应力),用介电常数为20~30,体积电阻率为108~1012Ω?cm 材料制作的电应力控制管(简称应力管),套在屏蔽层断口处,以分散断口处的电场应力(电力线),保证电缆能可靠运行。 为尽量使电缆在屏蔽层断口处电场应力分散,应力管与铜屏蔽层的接触长度要求不小于20mm,短了会使应力管的接触面不足,应力管上的电力线会传导不足(因为应力管长度是一定的),长了会使电场分散区(段)减小,电场分散不足。一般在20~25mm左右。 预制式安装要求比热缩的高,难度大。管式预制件的孔径比电缆主绝缘层外径小2~5mm。中间接头预制管要两头都套在电缆的主绝缘层外,各与主绝缘层连接长度不小于10mm。电缆主绝缘头上不必削铅笔头(在电缆芯线上尽量留半导体层)。铜接管表面要处理光滑,包适量填料。 关键技术问题是附件的尺寸与待安装的电缆的尺寸配合要符合规定的要求。另外也需采用硅脂润滑界面,以便于安装,同时填充界面的气隙,消除电晕。预制附件一般靠自身橡胶弹力可以具有一定密封作用,有时可采用密封胶及弹性夹具增强密封。预制管外面同热缩的一样,半导体层和铜屏蔽层,最外面是外护层。 3.电缆终端电应力控制方法

110KV单芯电缆直接接地与保护接地的区别

110KV单芯电缆直接接地与保护接地的区别 电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。通常35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。[个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯

时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位臵采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。①如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。对于电缆长度不长的情况下,可采用单点接地的方式。为保护电缆护层绝缘,在不接地的一端应加装护层保护器。 由此可见,高压电缆线路的接地方式有下列几种: 1、护层一端直接接地,另一端通过护层保护接地----可采用方式; 2、护层中点直接接地,两端屏蔽通过护层保护接地---常用方式; 3、护层交叉互联----常用方式; 4、电缆换位,金属护套交叉互联---效果最好的接地方式; 5、护套两端接地---不常用,仅适用于极短电缆和小负载电缆线路。

超高压电缆接地方式

超高压电缆的接地方式选择 电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要接地。通常35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。[个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。] 然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。 据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交*互联的接线。为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,

高压电缆应用常识

高压电缆应用常识 1. 高压电缆的型号 YJV、YJLV 交联聚乙烯绝缘聚氯乙烯护套电力电缆。 YJV22、YJLV22 交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力缆。 YJV23、YJLV23 交联聚乙烯绝缘钢带铠装聚乙烯护套电力电缆。 YJV32、YJLV32 交联聚乙烯绝缘细钢丝铠装聚氯乙烯护套电缆。 YJV33、YJLV33 交联聚乙烯绝缘细钢丝铠装聚乙烯护套电力缆。 上述型号中有“L”是铝芯电缆,无“L”是铜芯电缆,型号中最后的“2”“3”是铠装工艺之分。 阻燃型电缆型号是在普通型电力电缆型号前加ZA、ZB、ZC、ZR,‘Z’示阻燃型,‘A、B、C、R’示阻燃等级,A级最高。 我们常用的三芯高压电缆型号是ZR—YJV22—3×50(70、95、1 20、150等)。常用的单芯高压电缆型号是ZR—YJV62—300(400),其中的‘62’表示铠装不是钢带而是防磁性材料,如铝皮、铝合金等,切记:使用单芯电缆一定要用防磁型,不可穿钢管敷设。否则容易造成电缆发热甚至烧毁,国网公司曾发过这类事故通报。 型号为ZC-YJHLV22的电缆是目前正在推广应用的新型铝合金电缆,即交联聚乙烯绝缘钢带铠装铝合金电力电缆。其导体釆用稀土高铁铝合金材料,是通过在纯铝加入铁、稀土等元素,经过特殊的工艺处理使导体具有良好的电气性能和机械性能。绝缘釆用阻燃硅烷交联聚乙烯,铠装釆用特殊的金属连锁铠装结构,护套釆用专利技术研发的低烟、无卤、阻燃环保材料。这种电缆反弹性好,重量轻。 2. 高压电缆使用特性 高压电缆的导体在运行中最高长期工作温度为90℃;短路时电缆导体瞬时最高温度不超过200℃(最长时间不超过5S),否则会伤害电

高压电缆金属护套分段、接地方式及应用

高压电缆金属护套分段、接地方式及应用 [摘要]包有金属护套的单芯或每根芯线包有金属护套的三芯高压电缆,其金属护套上都会产生感应电压,当电压超过一定限值时,将会影响电缆的安全运行。一般设计会根据电缆长度选择适当的接地方式,或者将电缆金属护套在电气上进行分段,以此降低护套感应电压。本文通过汇集各文献所述观点和作者多年电缆设计的经验,并结合电缆实际运行情况,分析各种金属护套接地方式和不同护套分段形式对于降低护套感应电压的作用,以及在实际工程中的应用,以期能够为高压电缆线路设计提供有用的参考和经验。 【关键词】电缆;金属护套;感应电压;分段;接地;应用 当高压电缆为单芯并包有金属护套或者是每根芯线上有金属护套的三芯电缆时,这种结构的电缆可以被看作是延长的变压器,导线作为一次绕组,金属护套作为二次绕组,一般高压电缆均为这种结构。这样在以交变电流或三相电流运行时产生交变磁场,在金属护套上产生感应电势,该电势值与导线电流、频率、导线和金属护套间的互感量、电缆长度,直接成正比。当金属护套上的感应电压达到一定值时将危及人身安全。电力生产安全规程规定:电气设备非带电部分的金属外壳都要接地。因此金属护套要采取适当的接地措施。本文以下将介绍各种护套分段及接地形式和应用条件。 一、两端直接接地 此接地方式也叫做全接地,就是将电缆金属护套在两端终端头处分别并联接地,这样护套内就产生环流。在35kV以上高压电缆中若采用此种接地形式后,产生的环流可占到电缆工作电流的50%左右,甚至更高至80%以上。从而由于环流的存在造成附加损耗,使护套发热,降低电缆的输送容量。因此110kV及以上高压电缆金属护套较少采用这种接地方式,一般应用在电缆利用小时低,裕度大,长度仅几十米的短35kV以上高压电缆或者是35kV及以下电缆线路,由于其阻抗值不像35kV以上电缆那么小,环流尚不过分显著,只占工作电流的10%以下,尚可以接受。 在电缆采用了此种接地方式后一般以接触式三角形敷设,这样可以避免过分的护套损耗,因为这种排列是电气上平衡的方式,该方式下护套的阻抗及损耗在所有三相中是相等的。另外其要求接地电阻应不大于2Ω。 二、单点直接接地 1、首端接地 首端接地是单点接地方式的一种,就是将电缆线路一端的金属护套互联后直接接地,另一端经互层保护器后互联接地。这样在正常运行条件下金属护套和大地之间形不成回路,不会形成环流,但是对于相同长度的电缆线路来说,首端接

10kV电力电缆常见故障及处理方法

10kV电力电缆常见故障及原因分析: 1、故障类型 电缆故障可概括为接地、短路、断线三大类,其故障类型主要有以下几方面: (1)闪络故障。 电缆在低压电时处于良好的绝缘状态,不会存在故障。可只要电压值升高到一定范围,或者一段时间后某一电压持续升高,那么就会瞬间击穿绝缘体,造成闪络故障。 (2)一相芯线断线或多相断线。 在电缆导体连续试验中,电缆的各个导体的绝缘电阻与相关规定相符,但是在检查中发现有一相或者多相不能连续,那么就说明一相芯线断线或者多相断线。 (3)三芯电缆一芯或两芯接地。 三芯电缆的一芯或者两芯导体用绝缘摇表测试出不连续,然后又进行一芯或者两芯对地绝缘电阻遥测。如果芯和芯之间存在着比正常值低许多的绝缘电阻,这种绝缘电阻值高于1000欧姆就被称之为高电阻接地故障;反之,就是低电阻接地故障。这两张故障都称为断线并接地故障。 (4)三相芯线短路。 短路时接地电阻大小是电缆的三相芯线短路故障判断的依据。短路故障有两种:低阻短路故障、高阻短路故障。当三相芯线短路时,低于1000欧姆的接地电阻是低阻短路故障,相反则是高阻短路故障。 2、原因分析 电缆故障的最直接原因就是绝缘降低而被击穿,归纳起来主要有以下几种情况: (1)外力损坏。 电缆故障中外力损坏是最为常见的故障原因。电缆遭外力损坏以后会出现大面积的停电事故。例如地下管线施工过程中,电缆因为施工机械牵引力太大而被拉断;电缆绝缘层、屏蔽层因电缆过度弯曲而损坏;电缆切剥时过度切割和刀痕太深。这些直接的外力因素都会对电缆造成一定的损坏。 (2)绝缘受潮。 电缆制造生产工艺不精会导致电缆的保护层破裂;电缆终端接头密封性不够;电缆保护套在电

高压电缆故障分析判断与故障点查找

高压电缆故障分析判断与故障点查找 发表时间:2019-05-31T09:44:15.230Z 来源:《电力设备》2019年第1期作者:刘海龙[导读] 摘要:随着我国经济快速发展,我国加快了现代化社会建设,面对城市和农村日益增长的用电需求,高压电缆的安全性能受到了人们的高度关注。 (内蒙古电力(集团)有限责任公司鄂尔多斯电业局内蒙古鄂尔多斯 017000)摘要:随着我国经济快速发展,我国加快了现代化社会建设,面对城市和农村日益增长的用电需求,高压电缆的安全性能受到了人们的高度关注。高压电缆相较于传统电缆,安全性更高、稳定性更好、维护方便,是当前电气设备、电能传输、电能分配的首选电缆,在我国现代化社会建设过程中得到了广泛应用。随之而来的高压电缆故障对供电造成了较大的影响,通过分析常见的高压电缆故障,为准确分 析判断高压电缆故障,准确定位故障点提供基础依据,以便于及时有效的解决故障,保证电能正常供应,避免对人们生活、生产造成较大困扰。 关键词:高压电缆;故障分析;故障点查找 一、高压电缆故障原因分析 1.1设计不足 设计师在设计过程中设计水平较低,在重要的设计场所对于电源、贯通电缆、电缆故障等问题没有设计备用电源,方便专业人员快速进行维护的措施场地。配电所的电缆没有进行单独的运行管道设计,较长的电缆没有设计电缆中间站或者对接方式。设计中设计图纸相对于简单,仅仅给出电缆的大体路线、数量、产考标准等,对于重要的电缆没有进行标注和说明。 1.2产品质量存在偏差 厂家在对于电缆生产的质量没有办法进行保证,经常出现绝缘偏心、绝缘厚度不均匀、绝缘内部有杂质、电缆防潮水平不高、电缆密封效果不良等问题。有些问题更加严重的是在运行过程中出现故障,大部分电缆系统在运行过程中都有程度大小不等的故障,导致电缆安全问题一直是电力系统运行的隐在性问题。个别厂家也出现过同种型号电缆两端色标不相对应,按颜色进行施工,竣工后发现无法正常使用。 1.3后期维护不善 在电缆运行中,相关的工作人员没有每年对于电缆进行排查,大部分的电缆都已经超过最大维护期,导致工作人员对于电缆上面重要信息掌握情况不足,如电缆上面的电阻、电压等重要数据,电缆绝缘性能下降未能及时发现,容易发生电力系统故障。在设计时,由于对于电缆、电缆标注等位置标注不清,字迹模糊,导致外部施工破坏电缆。 二、高压电缆常见故障 2.1电缆附件故障 高压电缆应用过程中对其附件有很高的要求,其本身也具备制作工艺复杂的特点。高压电缆终端与接头的附件很容易发生各种故障。究其原因,主要包括质量问题,比如制作电缆接头与终端方面,导体连接和导线压接等制作并没有严格根据工艺要求开展,或是选择制作附件的材料不合理,需求的膨胀系数与本体不符且有较大差异,严重影响密封性,很容易出现短路的情况,还有就是受到周围环境的影响,产生电缆击穿等情况。 2.2电缆老化故障 由于高压电缆使用时间过长,或是受到其他因素如机械、电光热等因素的影响,其绝缘性会明显降低,于是发生故障。高压电缆的使用寿命较长,但通常在应用30年后均会有老化的情况,再加上其他外界因素的影响,有的甚至故障发生时间更短。此外,导致电缆出现老化的原因还有以下几点:一是电缆型号的选择不适合,导致其处于长期超负荷的状态下工作,加快老化;二是线路与热源比较靠近,长期处于高温环境下,于是出现热老化情况;三是应用的环境下存在与运行产生不利化学反应的物质,在这种作用下加速电缆老化时间。 2.3电缆护层故障 电缆护层具备一定的绝缘性能,确保电缆主体尽可能少受侵蚀与损坏,对其性能加以保护,但电缆护层出现故障的概率较高,严重影响传输效果。电缆护层出现故障的主要原因包括生产制作的不合格、电缆护层应用本身存在缺陷;制作不符合相关工艺要求,施工与标准不符,导致出现故障;受到建筑施工外力影响使其受到破坏。 三、高压电缆故障查找与处理方法探究 3.1粗测定位分析 3.1.1低压脉冲法 此方法依据的理论是微波传输理论,工作人员需要加入脉冲信号在电缆故障相上,随后电波在传输的同时如果触碰到故障点,就会将一部分的电波进行反射,对反射的电波进行时间差的测量与计算,就能明确具体的故障范围。长期的应用实践发现,脉冲阀针对低阻故障的测试和金属性短路故障的测试对应的准确度较高,而在电波长度的校准、电缆部分接头位置的显示以及电缆传输速度的校对方面均有较为明显的优势,但与此同时也有一定的缺陷,比如无法对高阻故障以及闪络故障展开测试工作。 3.1.2高压脉冲法 这种方法是在高压作用下电缆故障位置会出现闪络点,对应的高阻故障就会实现转化,出现瞬间短路而发射的情况,工作人员只要分析反射波就能判断具体的故障点,这种方法也可以称为高压闪络法,更多的应用在对泄露性高阻故障情况的诊断测试上。 3.1.3二次脉冲法 方法是工作人员要对故障电缆发射低压脉冲,在特性阻抗不发生较大变化的情况下,脉冲会在出现高阻故障点的位置而不进行反射,直到另一终端以后才会有反射的情况,工作人员则要记录这段波形,随后再次对故障电缆发射高压脉冲,通过击穿故障点使其发生转化并成为低阻故障,于是在应用的仪器中就会出现低压脉冲,一旦遇到这个故障点则直接反射回来,工作人员再次记录这段波形,对比两段波形,有交叉点或是有异常的位置则是故障点所处位置。在这种方法的应用中,操作相对方便,且具有较为全面的功能,得到的两个波形图明了易懂,所以得到很多工作人员的应用和认可。 3.2精测定位分析

相关主题
文本预览
相关文档 最新文档