当前位置:文档之家› 电气系统无功补偿

电气系统无功补偿

电气系统无功补偿
电气系统无功补偿

在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。

输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。

电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。

2配电网的无功补偿与电压调整

以相位补偿和保证用户用电电压质量为主。

2.1相位补偿亦称功率因数补偿

用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,改善电压质量。中国对大电力用户要求安装无功补偿装置,补偿后的功率因数不得低于0.9。

2.2电压调整

为保证用电电器有良好的工作电压,避免受配电网电压波动的影响,配电网需要进行电压调整。配电网电压调整的措施包括:中心调压、调压变压器调压和无功补偿调压。

2.2.1利用地区发电厂或枢纽变电所进行中心调压

这种措施简单而经济方便,但它只能改变整个供电地区的电压水平,不能改善电压分布。当供电地区的地域比较广阔、供电距离长短悬殊时,中心调压措施往往不能兼顾全区,有顾此失彼的缺点。

2.2.2调压变压器调压

可弥补中心调压方式的不足,进行局部调压。调压变压器有有载调压变压器、串联升压器和感应调压器三种。有载调压变压器与感应调压器一般用于特定负荷点,串联升压器则用于供电线路。

调压变压器的调压作用是靠改变电力网的无功潮流来实现的。它本身不仅不产生无功功率,而且还因本身励磁的需要而消耗无功功率。当电网的无功电源不足时,调压变压器的调压效果不显著。相反地,若调压变压器装设过多,将加重配电网的无功功率消耗,拉低全网电压水平,增大网损,降低并联电容器的无功出力,严重时有可能造成恶性循环的趋向。

2.2.3无功补偿调压

由于增加了电力网的无功电源,能起到改善电网电压的作用。装设于变电所内的无功补偿装置,还可采用分组投切的办法,对供电地区实行中心调压。

串联电容补偿,可用于配电网中进行局部调压。距离较长的重载线路,使用串联电容补偿,效果较好。因其调压作用是由线路滞相电流流过串联电容而产生的电压升高来实现的。故线路负载愈重,功率因数愈低,串联电容补偿调压的作用愈显著。这种调压作用随线路负载的变化而变化,具有自行调节的功能。串联电容器所产生的无功功率,也增加了电力网的无功电源,可改善电力网的电压水平。串联电容能使线路受端的

电动机产生自励磁现象,在设计、使用时,需采取预防措施。

SVG静止无功补偿器

无功功率补偿 编辑词条分享 ?新知社新浪微博人人网腾讯微博移动说客网易微博开心001天涯MSN ? 1 定义 ? 2 产生和影响 ? 3 作用 ? 4 装置 无功功率指的是交流电路中,电压U与电流I存在一相角差时,电流流过容性电抗(X C)或感性电抗(X L)时所形成的功率分量(分别为)。这种功率在电网中会造成电压降落(感性电抗时)或电压升高(容性电抗时)和焦耳(电阻发热)损失,却不能做出有效的功。因而需要对无功功率进行补偿。合理配置无功补偿(包括在什么地点、用多大容量和采用何种型式)是电力系统规划和设计工作中一项重要内容。在运行中,合理使用无功补偿容量,控制无功功率的流动是电力系统调度的主要工作之一。 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率 (P)的同时还需要无功功率(Q),其大小和负荷的功率因数有关;有功功率和无功功率在电力系统的输电线路和变压器中流动会产生有功功率损耗(ΔP)和无功功率损耗(ΔQ),也会产生电压降落(ΔU)。 一般情况下,电力系统中发电机所发的无功功率和输电线的充电功率不足以满足负荷的无功需求和系统中无功的损耗,并且为了减少有功损失和电压降落,不希望大量的无功功率在网络中流动,所以在负荷中心需要加装无功功率电源,以实现无功功率的就地供应、分区平衡的原则。 无功补偿可以收到下列的效益:①提高用户的功率因数,从而提高电工设备的利用率;②减少电力网络的有功损耗;③合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力;④在动态的无功补偿装置上,配置适当的调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性;⑤装设静止无功补偿器(SV

供配电系统无功补偿方案的选择

0引言 韶钢新一钢供电系统负荷存在多样性,无功功率消耗大,自然功率因数低,谐波大。因此解决好电网的无功功率补偿和谐波治理问题,对于提高炼钢供配电系统电能质量、保证设备安全运行、节能降耗、充分利用电气设备的出力等具有重要的意义。 1无功补偿 1.1无功补偿作用 在炼钢供配电系统中,电动机、变压器等设备是无功功率消耗大户,电力线路、变频器、气体放电电灯、电焊机、空调及其它大多数设备也都是无功功率消耗户。如果所需要的无功功率由外部供电网络经过长距离传送,通常不合理也不可能。如果这些所需要的无功功率不能及时得到补偿,对炼钢供电系统电能质量就会造成严重影响。无功功率补偿作用有:(1)稳定受电端及电网的电压,提高供电质量。 (2)提高供用电系统及负载的功率因数,降低设备容量,减小功率损耗。 (3)减少线路损失,提高电网的有功传输能力。 (4)降低电网的功率损耗,提高变压器的输出功率及运行经济效益。 (5)降低设备发热,延长设备寿命,改善设备的利用率。 (6)高水平平衡三相的有功功率和无功功率。1.2无功补偿方法及原则 配电网中常用的无功补偿方式包括:在高低压配电线路中分散安装并联电容器组;在配电变压器低压侧和车间配电屏间安装并联电容器以及在单台用电设备附近安装并联电容器(就地补偿)等。目前,常采用的无功补偿方式有就地无功补偿、分散无功补偿和集中无功补偿。就地无功补偿采用电容器直接装于用电设备附近,与其供电回路相并联,常用于低压网络;分散无功补偿常采用高压电容器分组安装于电网的10kV和6kV配电线路的杆架上、公用配电变压器的低压侧、用户各车间的配电母线上,达到提高电网的功率因数、降低供电线路的电流、减少线损的目的;集中无功补偿采用变电站或高压供电电力用户降压变电站母线上的高压电容器组,也包括集中装设于电力用户总配电高低压母线上的电容器组,其优点是有利于控制电压水平,且易于实现自动投切,利用率高,维护方便,能减少配电网、用户变压器及专供线路的无功负荷和电能损耗,但是不能减少电力用户内部各条配电线路的无功负荷和电能损耗。 根据P=S cosφ,当功率因数cosφ=1时,有功功率P等于变压器的视在功率S,而当功率因数为0.6~0.7时,如不进行补偿,供电变压器的效率就很难提高,如1000kVA的变压器仅能带600~700kW的有功功率。 供配电系统无功补偿方案的选择 刘火红,陆吉利,李权辉,左文瑞 (宝钢集团广东韶关钢铁有限公司炼钢厂,广东韶关512123) 摘要:介绍无功补偿的作用、方法及原则,分析炼钢供配电系统负荷性质及无功补偿的必要性,并提出各供配电系统的无功补偿方案。 关键词:负荷;无功补偿;功率因数 Selection of Reactive Power Compensation Scheme for Distribution System LIU Huo-hong,LU Ji-li,LI Quan-hui,ZUO Wen-rui (Steel Plant of Guangdong Shaoguan Iron&Steel Co.,LTD of Baosteel Group,Shaoguan512123,China) Abstract:The function,method and principle of reactive power compensation are introduced.The nature of the supply load and distribution system of steel making and the necessity of reactive power compensation are analyzed.The reactive pow-er compensation programs of the power supply and distribution system are proposed. Keywords:load;reactive power compensation;power factor 作者简介:刘火红(1972-),三电主管,电气工程师,从事电 气自动化管理工作。 收稿日期:2013-10-15 电力专栏 89 2014 自动化应用3期

配电网无功补偿方式

配电网无功补偿方式 合理的无功补偿点的选择以及补偿容量的确定,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损。而且由于我国配电网长期以来无功缺乏,造成的网损相当大,因此无功功率补偿是降损措施中投资少回收高的有效方案。配电网无功补偿方式常用的有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。 配电网无功补偿方案 1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿(如图1的方式1),补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用无功补偿装置(一般是并联电容器组)结合变压器有载调压共同调节。通过两者的协调来进行电压/无功控制在国内已经积累了丰富的经验,九区图便是一种变电站电压/无功控制的有效方法。然而操作上还是较为麻烦的,因为由于限值需要随不同运行方式进行相应的调整,甚至在某些区上会产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而在九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2 低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿(如图1的方式2),通常采用微机控制的低压并联电容器柜,容量在几十至几百千乏左右,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿。它主要目的是提高专用变用户的功率因数,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。这种补偿方式的投资及维护均由专用变用户承担。目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切。就这种方案而言,虽然有助于保证用户的电能质量,但对电力系统并不可取。虽然线路电压的波动主要由无功量变化引起,但线路的电压水平往往是由系统情况决定的。当线路电压基准值偏高或偏低时,无功的投切量可能与实际需求相去甚远,易出现无功过补偿或欠补偿。 对配电系统来说,除了专用变之外,还有许多公用变。而面向广大家庭用户及其他小型用户的公用变,由于其通常安装在户外的杆架上,实现低压无功集中补偿则是不现实的:难于维护、控制和管理,且容易造成生产安全隐患。这样,配电网的无功补偿受到了很大地限制。 3 杆上补偿方式 由于配电网中大量存在的公用变压器没有进行低压补偿,使得补偿度受到限制。由此造成很大的无功缺口需要由变电站或发电厂来填,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿(如图1的方式3),以提高配电网功率因数,达到降损升压的目的。但由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行: (1)补偿点宜少,建议一条配电线路上宜采用单点补偿,不宜采用多点补偿; (2)控制方式从简。建议杆上补偿不设分组投切; (3)建议补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时出现过电压和过补偿现象;另外杆上空间有限,太多数电容器同杆架设,既不安全,也不利于电容器散热; (4)建议保护方式应简化。主要采用熔断器和氧化锌避雷器作简单保护。 显然,杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的

国家电网公司电力系统无功补偿配置技术原则

国家电网公司电力系统无功补偿配置技术原则 为进一步加强国家电网公司无功补偿装置的技术管理工作,规范电网无功补偿的配置要求,提高电网的安全、稳定、经济运行水平,国家电网公司在广泛征求公司各有关单位意见的基础上,制定完成了《国家电网公司电力系统无功补偿配置技术原则》,并于8月24日以国家电网生[2004]435号印发,其全文如下: 国家电网公司电力系统无功补偿配置技术原则 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV 电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV 及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

配电网无功补偿

配电网无功补偿 发表时间:2018-04-16T09:30:22.227Z 来源:《电力设备》2017年第31期作者:田金文展瑞磊段其岳 [导读] 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。 (国网阳谷县供电公司山东聊城 252300) 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。在这个过程中,将有各种新技术、新设备发展起来,未来的无功补偿技术将会更加合理和经济有效。 关键词:无功功率产生;无功补偿现状;发展趋势 一、配电网无功功率的产生 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率的同时还需要无功功率,其大小和负荷的功率因数有关;由此可见,无功功率在输、配电线、变压器中的流动会增加有功功率损耗,产生电压降落。 二、低压配电网无功补偿的含义及现状 低压配电网中的无功补偿是对低压配电网中的无功功率进行补偿的措施,旨在提高低压配电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善低压配电网的供电环境。低压配电网中的无功补偿通过选择合适的补偿方法和补偿装置,可以最大限度的减少低压配电网的损耗,使电网质量提高,减少电压波动和降低谐波,从而提高电压稳定性和电能质量。 目前低压电网无功补偿普遍采取在配电房集中补偿、分散就地补偿和个别补偿三种方式。无功信号的采集使用单相信号,利用三相电容器进行三相共补:现在控制信号采集一般在单相上进行,这种方式不能满足三相负荷量在同一时间不同变化要求。三相共补偿方式适用于负荷主要是使用三相负载的地方,如工业开发区的工业用电。多采用集中补偿和就地补偿,即随机补偿。但对于当前的负载主要为居民用户,由于电源接入点不同和用电负荷不同,三相负荷很可能不平衡,各相无功需量也不同,采用这种补偿方式会在不同程度上出现过补或欠补。无功控制物理量多用电压、功率因数、无功电流,投切方式为:循环投切、编码投切。这种策略没有考虑电压的平衡关系与区域的无功优化。使用电容器容量大,且由多个电容器并列分组进行循环投切,投切开关多采用交流接触器,其缺点是响应速度较慢,在投切过程中会对电网和交流接触器的接点产生冲击涌流,影响电网质量降低交流接触器使用寿命。现价段低压配电网的无功补偿都不具备配电监测功能,依靠人为操作普遍存在时效性差的缺点,从而影响它的经济性和全安性。 三、无功补偿的作用 (一)提高用电户的功率因数,提高用电设备的利用率,降低用电成本; (二)装设静止无功补偿器还能改善电网的电压波形,减小谐波分量和解决负序电流问题。对电容器、电缆、电机、变压器等还能避免高次谐波引起的附加电能损失和局部过热。 (三)减少供电网络的有功损耗,提高线路的供电能力; (四)合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力; (五)在动态的无功补偿装置上,配置自动补偿调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性; 四、无功补偿发展方向 为适应当前社会发展,满足用电户负荷类型的要求和用电负荷的需求,提高补偿精度,减少欠补偿和过补偿情况发生,要做好低压电网的无功补偿从以下方法进行: (一)补偿方式 1、固定补偿与动态补偿相结合 随着新技术,新设备的应用和发展,负载类型越来越复杂,电网对无功要求也越来越高,用电户要求的供电可靠性不断提高,因此单纯的固定补偿已经不能满足要求,新的动态自动无功补偿技术能较好地适应负载变化。 2、稳态补偿与快速跟踪补偿相结合 稳态补偿与快速跟踪补偿相结合的补偿方式是未来发展的一个趋势。主要是针对大型的钢铁冶金等企业,工艺复杂、用电量大、负载变化快、波动大,充分有效地进行无功补偿,不仅可以提高功率因数、降损节能,而且可以充分挖掘设备的工作容量,充分发挥设备能力,提高工作效率,提高产量和质量,经济效益大。 3、三相共补与分相补偿相结合 随着人们的生产水平不断提高,大量的家用电器进入家庭,且多为单相用电设备,电网中三相不平衡的情况越来越多,导致控制开关跳闸情况频发,三相共补同投同切已无法解决三相不平衡的问题,而全部采用单相补偿则投资较大,目前还不能普及。因此根据负载情况充分考虑经济性的共分结合方式在新的经济条件下日益广泛应用。 (二)采用先进的投切开关种类 1、过零触发固态继电器 其特点是动态响应快,在投切过程中对电网无冲击、无涌流,寿命较长,但有一定的功耗和谐波污染,目前运用比较普遍。 2、无涌流电容投切器 无涌流电容投切器是无触点开关在电压过零时投入电容器,然后转接到专用接触器下运行,优点无涌流、不发热、节能、安全、寿命长。目前正在逐步推广应用,是无功补偿设备的发展趋向。 3、智能复合开关 复合开关投切装置工作原理是先由可控硅在电压过零时投入电容器,然后再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持继电器触点闭合下运行,既实现了快速投切,又降低了功耗。目前主要由于成本及可靠性原因应用较少。

电力系统无功补偿论文

电力系统的无功优化、补偿及无功补偿技术对低压电网功率因数的影响 电气与信息工程学院 自动化13-2 马春野 20131802

电力系统的无功优化、补偿及 无功补偿技术对低压电网功率因数的影响 一前言 随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。 无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。 二无功优化和补偿的原则和类型 1、无功优化和补偿的原则 在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定: 1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制; 2)根据无功就地平衡原则,选择无功负荷较大的节点。 3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。 4)网络中无功补偿度不应低于部颁标准0.7的规定。 2、无功优化和补偿的类型 电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV 每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。

国家标准《静止式动态无功补偿装置功能特性》(精)

国家标准《静止式动态无功补偿装置功能特性》 征求意见稿编制说明 2005年7月 一、概述 国家标准《静止式无功功率补偿装置(SVC)功能特性导则》被列入了2003年国家标准制修订计划,计划编号为20032411-T-469。完成年限2005年。本标准由国家标准化管理委员会提出;全国电压电流等级和频率标准化技术委员会(以下简称“标委会”)归口并负责起草。 本标准主要起草单位: 本标准主要起草人: 本标准参加起草单位: 本标准参加起草人: 为了保证标准质量,特别邀请西安交通大学夏道止教授、王兆安教授、清华大学陈建业教授、中国电力科学研究院林海雪教授级高工(兼)、全国电力电子学标委会秘书处周观允教授级高工(兼)担任标准编制工作组顾问。 1 标准项目的提出和编制过程 该项目是在全国电压电流等级和频率标委会委员、鞍山荣信电力电子有限公司左强总经理的提议下,于2001年初和《静止式动态无功补偿装置(SVC) 现场试验导则》国家标准项目一起,向国家标准委提出立项申请,2003年底被批准立项的。 2004年第1季度,标委会秘书处研究确定:成立以全国电压电流等级和频率标委会秘书处、全国电力电子学标委会秘书处、中国电力科学研究院、西安领步电能质量研究、鞍山容信电力电子有限公司为主要起草单位的标准编制工作组;随着工作的进一步开展,还将扩展供电、用电、设备及其主要部件制造行业的工程技术人员参加标准编制工作。 根据2004年6月23日国家标准委高新技术部有关“无功补偿装置”国家标准规划及制定工作会议精神,两项《静止式动态无功补偿装置(SVC)》国家标准的制定过程中将积极吸收相关行业和单位的意见。 2004年12月21-23日,于北京召开了主要起草人和顾问工作扩大会议。会议就采用美国IEEE相应标准的基本原则达成以下共识: ——本标准不是等同、也不是修改采用,但鉴于美国IEEE 1303:1994相应标准的框架和技术内容有一定价值,因此在编制我国标准时应作为主要参考文件;关键是要保证国家标准的先进性,提高产品竞争力,技术内容可适当超前以指导科研; ——标准的适用范围要突破美国IEEE相应标准,涵盖输电和配电系统; ——保持立项时的标准名称,暂不改变; ——标准中,对实现产品性能的方法(例如冷却方式)不应强行做推荐性规定; ——该标准在编制过程中,要注意与国家标准《静止式动态无功补偿装置现场试验》的编制工作的密切协调; ——标准内容不应与现行国家标准发生矛盾; ——编制标准时应注意充分研究现正在编制的相关电力行业标准和可控硅阀国家标准。 会议对由西安领步电能质量研究所、鞍山荣信电力电子有限公司分别组织翻译,并聘请有关专家校对的最新IEEE标准进行了集体校对;研究商讨了IEEE 1303:1994各章条的采用程度和增删意见。会议决定由刘军成高级工程师执笔起草、林海雪教授级高工校核本标准的征求意见稿讨论稿,然后提交2005年5月召开的主要起草人会议,供集体讨论修改。

工厂供配电系统无功补偿的作用与收益

工厂供配电系统无功补偿的作用与收益 1.无功补偿的基本原理 在交流电路中,如果是纯电阻电路,电能都转化成了热能,而在通过纯容性或纯感性负载的时候,并不做功,也就是不消耗电能,即为无功功率。当然实际负载一般都是混合性负载,这样电能在通过负载时,就有一部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿。 无论是工业负荷还是民用负荷,大多数均为感性。所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。而由并联补偿电容器就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率。 S1为功率因数改善前的视在功率;S2为功率因数改善后的视在功率 2.无功补偿的效益 2.1 提高功率因数 2.1.1 基本原理 在交流纯电阻电路中,负载中的电流IR与电压U同相位,纯电感负载中的电流IL滞后于电压90°,而纯电容的电流IC则超前于电压

90°,如图所示。可见,电容中的电流与电感中的电流相差180°,它们能够互相抵消。 电力系统中的负载大部分是感性的,因此总电流I将滞后于电压一个角度φ,如果将并联电容器与负载并联,则电容器的电流IC将抵消一部分电感电流,从而使电感电流IL减小到IL',总电流从I减小到I',功率因数将由cosφ提高到cosφ',这就是并联电容器补偿无功功率提高功率因数的原理(如图2)。 由于电容器与电感性负载并联安装,所以,当电感性负载吸收能量时,正好并联电容器释放能量。而电感性负荷放出能量时,并联电容器却在吸收能量,能量在两者之间转换。即:电感性负载所吸收的无功功率,可由并联电容器所输出的 2.1.2 节省企业电费开支 提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对用电企业的功率因数规定了最低数值(一般规定基数为cosφ=0.9),低于规定的数值,需要罚款多收电费,高于规定的数值,可奖励相应的减少电费。 供电部门在收取电费时,按照行业标准规定:根据每月的实际功率因数,在高于或低于基数0.9时,按照规定的电价计算出当月的电费后,再按照上表所规定的百分数进行奖惩,增减电费。 无功功率的节能对用户来说,就是最大可能的提高功率因数,减少无功计量,把实际功率因数保持在0.95以上,以降低电费。以我公司

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

配电网无功补偿方式的优化选择

配电网无功补偿方式的优化选择 发表时间:2011-12-31T10:12:35.030Z 来源:《时代报告》2011年11月下期供稿作者:邹雪莲 [导读] 电力系统无功分布是否合理,关系到电能质量的优劣,还影响电网运行的安全性和经济性。 邹雪莲 (重庆工贸职业技术学院,重庆 408000) 中图分类号:TM769 文献标识码:A 文章编号:1003-2738(2011)11-0278-01 摘要:本文根据目前配电网中无功补偿的实际情况,简要分析了配电网中无功补偿装置在调节电压、降低电能损耗中所起的作用,提出了配电网中几种无功补偿方式,进行了经济技术优化比较,提出了相应的优化选择方式。 关键词:配电网;无功补偿;优化选择 一、概述 随着国民经济的高速发展和人民生活水平的提高,人们对电力的需求日益增长,电网负荷的不断增加,改变了网络结构和电源分布,造成无功分布的不合理,甚至出现局部地区无功严重不足、电压水平普遍较低的情况。电力系统无功分布是否合理,关系到电能质量的优劣,还影响电网运行的安全性和经济性。合理的无功补偿点的选择以及补偿方式的选择,能够有效地维持系统的电压水平,提高系统的电压稳定性,降低有功网损。因此,解决好配电网络无功补偿的问题,对电网的运行安全和降损节能有着重要的意义。 二、无功补偿的原则 无功补偿的原则:全面规划,合理布局,分级补偿,就地平衡。 1.总体平衡与局部平衡相结合:既要满足全网的总无功平衡,又要满足分线、分站的无功平衡。 2.集中补偿与分散补偿相结合:要求既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。 3.高压补偿与低压补偿相结合:以低压补偿为主,这和分散补偿相辅相成。 4.降损与调压相结合针对线路长,分支多,负荷分散,功率因数低的线路。这种线路最显著的特点是:负荷率低,线路损失大,若对此线路补偿,可明显提高线路的供电能力。 5.供电部门的无功补偿与用户补偿相结合:由于无功消耗大约60%在配电变压器中,其余的消耗在用户的用电设备中,若两者不能很好地配合,可能造成轻载或空载时过补偿,满负荷时欠补偿,使补偿失去了它的实际意义,得不到理想的效果。 三、无功补偿装置在调节电压、降低电能损耗中所起的作用 无功补偿的作用主要有以下几点:提高系统及负载的功率因数,降低设备容量,减少功率损耗,稳定受电端及电网的电压,提高供电质量。 1.功率因数补偿,提高电压质量。 工农业生产的用电设备多为电磁结构,功率因数较低,一般都会低于0.7以下,导致电网电压降低。加装并联电容器补偿装置就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流失的无功功率,降低网损,从而改善电压质量; 2.无功补偿调压,提高电压质量。 变电站10KV母线无功集中补偿,主要是平衡输电网的无功功率,提高系统终端变电站的母线电压,补偿主变和高压线路的无功损耗。变电站10KV母线无功集中补偿容量和投切控制方式应考虑到满足主变自身的无功损耗和就近向配电线路前端输送无功,为主变有载调压维持系统电压稳定提供保障。 四、配电网无功补偿方案及其经济技术优化比较 1.变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿,补偿装置包括并联电容器、同步调相机、静止补偿器等,这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用并联电容器组结合变压器有载调压共同调节。利用九区图配合调节来进行电压无功控制,是一种变电站电压无功控制的有效方法。然而操作上较为麻烦,因为由于限值需要随不同运行方式进行相应的调整,会在某些区上产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2.低压集中补偿方式。 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿,通常采用微机控制的低压并联电容器柜,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。 3.杆上补偿方式。 采用 10kV户外并联电容器安装在架空线路的杆塔上进行无功补偿,以提高配电网功率因数,达到降损升压的目的。由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行:补偿点宜少、杆上补偿不设分组投切、补偿容量不宜过大、保护方式应简化。 杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的长配电线路,但是因负荷经常波动而该补偿方式是长期固定补偿,故其适应能力较差,应积极开发应用电容器组能自动投切的杆上无功补偿技术。 4.用户终端分散补偿方式。 直接对用户末端进行无功补偿,将最恰当地降低配电网的损耗和维持配电网的电压水平的有效措施。对于企业和厂矿中的电动机,应

《国家电网公司电力系统无功补偿配置技术原则》

《国家电网公司电力系统无功补偿配置技术原则》 第一章总则 第一条为保证电压质量和电网稳定运行,提高电网运行的经济效益,根据《中华人民共和国电力法》等国家有关法律法规、《电力系统安全稳定导则》、信息来源:《电力系统电压和无功电力技术导则》、《国家电网公司电力系统电压质量和无功电力管理规定》等相关技术标准和管理规定,特制定本技术原则。 第二条国家电网公司各级电网企业、并网运行的发电企业、电力用户均应遵守本技术原则。 第二章无功补偿配置的基本原则 第三条电力系统配置的无功补偿装置应能保证在系统有功负荷高峰和负荷低谷运行方式下,分(电压)层和分(供电)区的无功平衡。分(电压)层无功平衡的重点是220kV 及以上电压等级层面的无功平衡,分(供电)区就地平衡的重点是110kV及以下配电系统的无功平衡。无功补偿配置应根据电网情况,实施分散就地补偿与变电站集中补偿相结合,电网补偿与用户补偿相结合,高压补偿与低压补偿相结合,满足降损和调压的需要。 第四条各级电网应避免通过输电线路远距离输送无功电力。500(330)kV电压等级系统与下一级系统之间不应有大量的无功电力交换。500(330)kV电压等级超高压输电线路的充电功率应按照就地补偿的原则采用高、低压并联电抗器基本予以补偿。 第五条受端系统应有足够的无功备用容量。当受端系统存在电压稳定问题时,应通过技术经济比较,考虑在受端系统的枢纽变电站配置动态无功补偿装置。 第六条各电压等级的变电站应结合电网规划和电源建设,合理配置适当规模、类型的无功补偿装置。所装设的无功补偿装置应不引起系统谐波明显放大,并应避免大量的无功电力穿越变压器。35kV~220kV变电站,在主变最大负荷时,其高压侧功率因数应不低于0.95,在低谷负荷时功率因数应不高于0.95。 第七条对于大量采用10kV~220kV电缆线路的城市电网,在新建110kV及以上电压等级的变电站时,应根据电缆进、出线情况在相关变电站分散配置适当容量的感性无功补偿装置。 第八条35kV及以上电压等级的变电站,主变压器高压侧应具备双向有功功率和无功功

无功补偿设备主要分类简介

无功补偿设备主要分类简介 无功补偿是电力系统及电力设备稳定运行的重要保障,无功补偿设备也是输配电网必备的重要设备。无功补偿设备大致可分为三类:调相机、静止无功补偿装置(Static Var Compensator,SVC)、静止无功发生装置(Static Var Generator,SVG)。 调相机或称同步调相机、同步补偿机是较早出现的一类无功补偿设备。调相机实际是一台空载运行的同步电动机,利用同步电动机在不同励磁电流下的发出或吸收无功电流的能力起到无功补偿作用。当正常励磁时,调相机的电枢电流接近于零;过励磁时,调相机向电网发出无功电流;欠励磁时,调相机从电网中吸收无功电流。因此,调相机经常运行在过励状态,励磁电流较大,损耗也比较大,发热比较严重。为方便运行起见,调相机一般与发电厂中的同步发电机组或负荷端的异步电动机组安装在一起,容量较大的调相机还需要采用氢气冷却。以上缺点均大大限制了调相机的应用范围,目前除在高压直流输电线路的终端作动态无功支持外,已很少使用。 SVC是目前应用最为广泛的一类无功补偿设备。单就字面而言,SVC中的“Static”即静止,是相对于调相机的旋转而言,因此除调相机和SVG之外,凡是用电感或电容进行无功补偿的装置均可称作SVC。按国际大电网会议的定义,SVC可分为以下7类:机械投切电容器(MSC)、机械投切电抗器(MSR)、自饱和电抗器(SR)、晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)、晶闸管投切电抗器(TSR)、自换向或电网换向转换器(SCC/LCC)。实际上以上7类仍未能涵盖全部SVC设备,例如MCR(Magnetic Control Reactor)——磁阀式可控电抗器设备以及由以上两类或几类技术混合构成的设备。一般认为应慎重使用SVC这一名词,因为其所能指代的范围过于宽泛。 在种类繁多的SVC设备中,一般可按控制/投切设备的种类分为机械投切型及电力电子型两大类,通常所称的SVC设备也是指这两类。前者一般包括机械投切电容器(MSC)、机械投切电抗器(MSR)等,共同特点是采用机械投切开关如接触器、遥控断路器等作为投切设备,其优点是鲁棒性较好、不易受谐波干扰等,缺点则是响应时间长、一般只能分级投入不易实现动态无级补偿等。后者一般包括晶闸管控制电抗器(TCR)、晶闸管投切电容器(TSC)、晶闸管投切电

配电系统无功补偿技术分析

配电系统无功补偿技术分析 发表时间:2018-07-06T10:51:15.743Z 来源:《电力设备》2018年第8期作者:何业波 [导读] 摘要:随着人们对配网建设的重视和无功补偿技术的发展,配电网的无功补偿技术问题得到了较好的解决。 (国网安徽省电力有限公司和县供电公司安徽马鞍山 238200) 摘要:随着人们对配网建设的重视和无功补偿技术的发展,配电网的无功补偿技术问题得到了较好的解决。本文从降低网损和提高供电质量的角度出发,探讨了无功补偿的作用及几种补偿方式,重点分析了配电无功补偿方法、配置技术和经济效益,对配电网无功补偿工作有积极的促进作用。 关键词:配电系统;无功补偿;补偿技术 1.无功补偿的合理配置原则 从电网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一部分的无功功率,尤以配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输 配电设备的效率,无功补偿设备的配置应按照“分级补偿,就地平衡”的原则合理布局。 (1)总体平衡与局部平衡相结合,以局部平衡为主。首先要满足整个县局电网的无功电力平衡,其次要满足变电所、10kV配电线路的无功电力平衡。如果无功电源的布局、补偿容量和补偿位置选择不合理,局部地区的无功电力不能就地平衡,就会造成不同分区之间无功电力的长途输送和交换,使电网的功率损耗和电能损耗增加。因此,在规划过程中,要在总平衡的基础上,研究各个局部的补偿方案,求得最优化的组合,才能达到最佳的补偿效果。 (2)电力部门补偿与用户补偿相结合。在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,由电力部门和用户共同进行补偿。 (3)分散补偿与集中补偿相结合,以分散为主。集中补偿是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路、配电变压器和用户的用电设备等进行的无功补偿。集中补偿主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗,但不能降低配电网络的无功损耗。因为用户需要的无功通过变电所以下的配电线路向负荷端输送。为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿,中、低压配电网应以分散补偿为主。 (4)降损与调压相结合,以降损为主。利用并联电容器进行无功补偿,其主要目的是为了达到无功电力就地平衡,减小网络中的无功损耗,以降低线损。同时也可以利用电容器的分组投切,对电压进行适当的调整,这是补偿的辅助目的。在一般情况下,以降损为主,调压为辅。 2.电力无功补偿技术 2.1电力负荷的功率因数 功率因数是指电力网中通过线路、变压器的视在功率供给有功功率所占百分数。在电力网的运行中,希望功率因数越大越好,如能做到这一点,则通过电力设备的视在功率将大部分用来供给有功功率,以减少无功功率的传输,减少有功功率损耗。适当提高用户的功率因数,可以充分发挥供电设备的生产能力、减少线路损失、改善电压质量。 影响功率因数的主要因素:首先我们知道功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q为零时,则其功率因数为1。因此,提高功率因数问题的实质就是减少用电设备的无功功率需要量。 2.2并联电容器补偿无功功率的作用及方法 电力电容器作为补偿装置有两种方法:串联补偿和并联补偿。串联补偿是把电容器直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。按电容器安装的位置不同,通常有三种方式。 (1)集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。 (2)分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端变配电所高压或低压母线上,也称为分散补偿。这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。但是分组补偿的效果比较明显,采用得也较普遍。 (3)就地补偿将电容器或电容器组装设在异步电动机或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备十分适用。 3.无功补偿技术在供电系统中的应用 3.1变电站无功补偿技术 变电站是一个供电区域的供电中心,用不同电压等级的配电线路向用户供电。按照“分级补偿,就地平衡”的原则,配电线路和电力用户应该基本达到无功功率平衡,不向变电站索取无功电力。容性无功补偿装置以补偿主变压器无功损耗为主,并适当兼顾负荷侧的无功补偿。容性无功补偿装置的容量可根据主变压器容量来确定,可按主变压器容量的10%~30%配置,并满足220~500kV主变压器最大负荷时,其高压侧功率因数不低于0.95的要求。当主变压器单台容量为40MVA及以上时,每台主变压器应配置不少于两组的容性无功补偿装置。变压器为建立并维持交变磁场所需消耗的无功功率约占30%,一般约为其额定容量10%~15%,他的空载无功功率约为满载时的1/3。变压器的无功功率损耗由两部分组成,励磁支路的无功功率损耗和绕组漏抗中的无功功率损耗。励磁支路的无功功率损耗与变压器所施加的电压有关,绕组漏抗中的无功功率损耗与变压器的通过功率成比例。无功功率不宜长距离输送,所以一般在超高压枢纽变电站主变压器低压侧安装无功补偿装置来满足无功功率的就地平衡,使其平衡在系统额定电压运行水平。 3.2配电线路的无功补偿 (1)以分支线路所带配电变压器的空载无功损耗来确定分组补偿容量;(2)选择负荷较大的分支线确定补偿点;(3)小分支和个别配电变压器,可视为主干线上的近似均匀分佰负荷,可按需要确定补偿点和补偿容量;(4)所有配电变压器的负载无功损耗均以用户自

相关主题
文本预览
相关文档 最新文档