当前位置:文档之家› 8.2 量子力学初步-光电效应

8.2 量子力学初步-光电效应

高一物理竞赛相对论:《量子力学初步》

一个光子的能量: E=hv v 是光的频率,h 是普朗克常数 光子质量: 22c hv c E m == 秒焦??=-341063.6h 光子动量: c hv mc P = = ②德布罗意波 德布罗意把光的波粒二象性推广到实物粒子。他认为,波粒二象性是一切微观粒子共有的特性。第一个实物粒子在自由运动时所具有的能量为E 、动量为p ,这样的自由粒子必定对应一个振动频率为v 、波长为λ的平面简谐波。这两组特征量之间的关系仍是 λh p hv E =?= 自由的实物粒子所对应的平面简谐波常称为物质波或德布罗意波,它的客观真实性已为许多实验所证实。 物质波的物理意义究竟是什么?波是振动状态在空间传播形成的,波在空间某处振动状态的强弱可用该处振幅的平方米来表征。对于光波,若某处振幅平方较大,则该处的光较强,光子数较多,这也意味着光子在该处出现的可能性较大,物质波也是如此。物质波若在某处振幅的平方较大,则实物粒子在该处出现的可能性较大,可能性的大小可定量地用数学上的概率大来

表述,物质波各处振幅的平方便与粒子在该处出现的概率联系起来,这就是物质波的物理意义。 例1、试估算热中子的德布罗意波长。(中子的质量 kg m n 271067.1-?=)热中子是指在室温下(T=300K )与周围处于热平衡的中子,它的平均动能 eV J kT 038.01021.63001038.123232123=?=???==--ερ 它的方均根速率 s m m v n 32721107.21067.11021.622?≈???== --ε,相应的德布罗 意波长 nm v m h n 15.027001067.11063.62734 =???==--λ 这一波长与X 射线的波长同数量级,与晶体的晶面距离也有相同的数量级,所以也可以产生中子衍射。 3.2.2、海森伯测不准原理 设一束自由粒子朝z 轴方向运动,每一个粒子的质量为m ,速度为v ,沿z 轴方向的动量P=mv 。这一束自由粒子对应一个平面简谐波,在与z 轴垂直的波阵面上沿任何一个方向(记为x 方向)的动量取0=x p 精确值。波阵面上各处振幅相同,每一个粒子在各处出现的概率相同,这意味着粒子的x 位置坐标可取任意值,或者说粒子的x 位置坐标不确定范围为∞→?x 。为了在波阵面的某个x 位置“抓”到一个粒子,设想用镊子去夹粒子。实验上可等效地这样去做:在波阵面的前方平行地放置一块挡板,板上开一条与x 轴垂直的狭缝,狭缝相当于一个并合不够严实的镊子。如果狭缝的宽度为△x ,那么对于通过狭缝的粒子可以判定它的x 位置不确定范围为△x 。△x 越小,通过狭缝粒子以x 位置就越是确定。然而问题在于物质波与光波一样。通过狭

量子力学第二章总结

第二章 1.波函数/平面波: (1)频率和波长都不随时间变化的波叫平面波。 (2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数 2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子. 3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。 由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。 (2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。 4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|2 5.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2 d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2 d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。 7.归一化: C ∫∞|Φ(x,y,z,t)|2 d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2 d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ?Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2 故把(1)式改写成 ∫∞|Ψ(r , t)|2 d τ=1 把Φ换成Ψ的步骤称为归一化。 8.δ—函数 δ(x-x 0)= 0 x ≠x 0 ∞ x=x0 ∫+∞ -∞δ(x-x 0)dx=1 9.波函数的标准化条件: (1)单值、有限、连续 (2)正交 归一 完备 10.态叠加原理: 态叠加原理一般表述:若Ψ1 ,Ψ2 ……Ψn …… 是体系的一系列可能的状态,则这些态的线性叠加 Ψ= C 1Ψ1+ C 2Ψ2+……+C n Ψn 也是体系的一个可能状态。 11.能量算符/哈密顿算符 定态波函数满足下面两个方程: 两个方程的特点:都是以一 个算符作用于Ψ(r, t)等于E Ψ(r, t)。 →哈密顿算符 这两个算符都是能量算符 12.薛定谔方程: 13.几率流密度 单位时间内通过τ的封闭 表面S 流入(面积分前面的负号)τ内的几率,因而可以自然的把J 解释为概率密度矢量。 14.质量守恒定律: 15.电荷守恒定律:

量子力学初步-作业(含答案)

量子力学初步 1. 设描述微观粒子运动的波函数为(),r t ψ ,则ψψ*表示______________________________________;(),r t ψ 须满足的条件是_______________________________; 其 归 一 化 条 件 是 _______________________________. 2. 将波函数在空间各点的振幅同时增大D 倍,则粒子在空间的分布概率将_______________________________. (填入:增大D 2倍、增大2D 倍、增大D 倍或不变) 3. 粒子在一维无限深方势阱中运动(势阱宽度为a ),其波函数为 ()()30x x x a a πψ= << 粒子出现的概率最大的各个位置是x = ____________________. 4. 在电子单缝衍射实验中,若缝宽为a =0.1 nm (1 nm = 10-9 m),电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量y p ?= _________N·s. (普朗克常量h =6.63×10-34 J·s) 5. 波长λ= 5000 ?的光沿x 轴正向传播,若光的波长的不确定量λ?= 10-3 ?,则利用不确定关系式x p x h ??≥可得光子的x 坐标的不确定量至少为_________. 6. 粒子做一维运动,其波函数为 ()00 x Axe x x x λψ-≥= ≤ 式中λ>0,粒子出现的概率最大的位置为x = _____________. 7. 量子力学中的隧道效应是指______________________________________ 这种效应是微观粒子_______________的表现. 8. 一维无限深方势阱中,已知势阱宽度为a ,应用测不准关系估计势阱中质量为m 的粒子的零点能量为____________. 9. 按照普朗克能量子假说,频率为ν的谐振子的能量只能为_________;而

原子物理第三章量子力学初步答案

第三章 量子力学初步 3.1 波长为ο A 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得: 动量为:1 24 10 34 10 63.610 1063.6----???=?= = 秒 米千克λ h p 能量为:λ/hc hv E == 焦耳 15 10 834 10 986.110 /10310 63.6---?=???=。 3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少? 解:德布罗意波长与加速电压之间有如下关系: meV h 2/ =λ 对于电子:库仑 公斤,19 31 10 60.110 11.9--?=?=e m 把上述二量及h 的值代入波长的表示式,可得: ο οο λA A A V 1225.010000 25.1225.12== = 对于质子,库仑 公斤,19 27 10 60.110 67.1--?=?=e m ,代入波长的 表示式,得:ο λ A 3 19 27 34 10 862.210000 1060.110 67.1210 626.6----?=??????= 3.3 电子被加速后的速度很大,必须考虑相对论修正。因而原来ο λ A V 25.12=的电子德布罗意波长与加速电压的关系 式应改为: ο λA V V )10 489.01(25.126 -?-= 其中V 是以伏特为单位的电子加速电压。试证明之。 证明:德布罗意波长:p h /=λ

对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:2 22 02 2c p c Km K =+ 而被电压V 加速的电子的动能为:eV K = 2 2 002 2 2 /)(22)(c eV eV m p eV m c eV p += += ∴ 因此有: 2 002112/c m eV eV m h p h + ?= =λ 一般情况下,等式右边根式中2 02/c m eV 一项的值都是很小 的。所以,可以将上式的根式作泰勒展开。只取前两项,得: )10 489.01(2)41(26 02 00V eV m h c m eV eV m h -?-= - = λ 由于上式中ο A V eV m h 25.122/0≈ ,其中V 以伏特为单位,代回原 式得: ο λA V V )10 489.01(25.126 -?-= 由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。 3.4 试证明氢原子稳定轨道上正好能容纳下整数个电子的德布罗意波波长。上述结果不但适用于圆轨道,同样适用于椭圆轨道,试证明之。

量子力学初步

第三章 量子力学初步 一、学习要点 1.德布罗意假设: (1)内容: ων ==h E , n k k h p λ πλ2,=== (2)试验验证:戴维孙—革末试验 电子 λ=V meV h 26 .122≈(?) 2.测不准关系:2 ≥???x p x , 2 ≥???E t ; 3.波函数及其统计解释、标准条件、归一化条件 薛定谔方程、定态薛定谔方程、定态波函数、定态 4量子力学对氢原子的处理 轨道角动量()1,,2,1,0,1-=+=n l l l p l ,l 称为轨道角量子数, 轨道角量子数l =0 1 2 3 4 … 电 子 态 s p d f g … 原 子 态 S P D F G … 能量()n hcT n hc R n e m E e n --=-=∞22 224220Z 2Z )41 ( πε,n =1.2.3…… 轨道投影角动量()l l l l m m p l l lz ,1,,1,0,,1,,----== ,称轨道磁量子数,表征轨道角动量对外场方向的取向,轨道角动量对外场方向的投影图 描述电子空间运动的三个量子数l m l n ,,的名称、取值范围、所表征的物理量表达式 二、基本练习 1.楮书 P 113习题①②③ 2.选择题 (1)为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了: A.电子的波动性和粒子性 B.电子的波动性 C.电子的粒子性 D.所有粒子具有二项性 (2)德布罗意假设可归结为下列关系式: A .E=h υ, p =λh ; B.E=ω ,P=κ ; C. E=h υ ,p =λ ; D. E=ω ,p=λ (3)为使电子的德布罗意假设波长为100埃,应加多大的加速电压: A .11.51?106V ; B.24.4V ; C.24.4?105V ; D.15.1V (4)基于德布罗意假设得出的公式V 26 .12=λ ?的适用条件是: A.自由电子,非相对论近似; B.一切实物粒子,非相对论近似; C.被电场束缚的电子,相对论结果; D 带电的任何粒子,非相对论近似 (5)如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为

量子力学第三章讲解

第三章 力学量用算符表达 §3.1 算符的运算规则 一、算符的定义: 算符代表对波函数进行某种运算或变换的符号。 ?Au v = 表示?把函数u 变成 v , ?就是这种变换的算符。 为强调算符的特点,常常在算符的符号上方加一个“^”号。但在不会引起误解的地方,也常把“^”略去。 二、算符的一般特性 1、线性算符 满足如下运算规律的算符?,称为线性算符 11221122 ???()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。 例如:动量算符?p i =-?, 单位算符I 是线性算符。 2、算符相等 若两个算符?、?B 对体系的任何波函数ψ的运算结果都相同,即??A B ψψ=,则算符?和算符?B 相等记为??A B =。 3、算符之和 若两个算符?、?B 对体系的任何波函数ψ有:?????()A B A B C ψψψψ+=+=,则???A B C +=称为算符之和。 ????A B B A +=+,??????()()A B C A B C ++=++ 4、算符之积 算符?与?B 之积,记为??AB ,定义为 ????()()AB A B ψψ=?C ψ= ψ是任意波函数。一般来说算符之积不满足交换律,即????AB BA ≠。 5、对易关系 若????AB BA ≠,则称?与?B 不对易。 若A B B A ????=,则称?与?B 对易。 若算符满足????AB BA =-, 则称?A 和?B 反对易。 例如:算符x , ?x p i x ?=-?不对易

证明:(1) ?()x xp x i x ψψ?=-?i x x ψ?=-? (2) ?()x p x i x x ψψ?=-?i i x x ψψ?=--? 显然二者结果不相等,所以: ??x x xp p x ≠ ??()x x xp p x i ψψ-= 因为ψ是体系的任意波函数,所以 ??x x xp p x i -= 对易关系 同理可证其它坐标算符与共轭动量满足 ??y y yp p y i - =,??z z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。 ??0??0y y z z xp p x xp p x -=??-=?,??0??0x x z z yp p y yp p y -=??-=?,??0??0x x y y zp p z zp p z -=???-=?? ????0x y y x p p p p -=,????0y z z y p p p p -=,????0z x x z p p p p -= ????0xy yx -=,????0y z z y p p p p -=,????0z x x z p p p p -= 写成通式(概括起来): ??x p p x i αββααβδ-= (1) ????0x x x x αββα-= ????0p p p p αββα-= 其中,,,x y z αβ=或1,2,3 量子力学中最基本的对易关系。 注意:当?与?B 对易,?B 与?对易,不能推知?与?对易与否。 6、对易括号(对易式) 为了表述简洁,运算便利和研究量子力学与经典力学的关系,人们定义了对易括号: ??????[,]A B AB BA ≡- 这样一来,坐标和动量的对易关系可改写成如下形式: ?[,]x p i αβαβδ= 不难证明对易括号满足下列代数恒等式: 1) ????[,][,]A B B A =- 2) ???????[,][,][,]A B C A B A C +=+ 3) ?????????[,][,][,]A BC B A C A B C =+ ,?????????[,][,][,]AB C A B C A C B =+,]?,?[]?,?[B A k B k A = 4) ?????????[,[,]][,[,]][,[,]]0A B C B C A C A B ++= ——称为 Jacobi 恒等式。

3.2量子力学初步.doc

§3、2 量子力学初步 3.2.1、 物质的二象性 ①光的二象性: 众所周知,光在许多情况下(干涉、偏振、衍射等)表现为波动性,但在有些情况下(如光电效应、黑体辐射等)又表现为粒子字。因而对光完整的认识应是光具有波粒二象性。 一个光子的能量: E=hv v 是光的频率,h 是普朗克常数 光子质量: 22c hv c E m == 秒焦??=-341063.6h 光子动量: c hv mc P = = ②德布罗意波 德布罗意把光的波粒二象性推广到实物粒子。他认为,波粒二象性是一切微观粒子共有的特性。第一个实物粒子在自由运动时所具有的能量为E 、动量为p ,这样的自由粒子必定对应一个振动频率为v 、波长为λ的平面简谐波。这两组特征量之间的关系仍是 λh p hv E =?= 自由的实物粒子所对应的平面简谐波常称为物质波或德布罗意波,它的客观真实性已为许多实验所证实。 物质波的物理意义究竟是什么?波是振动状态在空间传播形成的,波在空间某处振动状态的强弱可用该处振幅的平方米来表征。对于光波,若某处振幅平方较大,则该处的光较强,光子数较多,这也意味着光子在该处出现的可能性较大,物质波也是如此。物质波若在某处振幅的平方较大,

则实物粒子在该处出现的可能性较大,可能性的大小可定量地用数学上的概率大来表述,物质波各处振幅的平方便与粒子在该处出现的概率联系起来,这就是物质波的物理意义。 例1、试估算热中子的德布罗意波长。(中子的质量 kg m n 271067.1-?=)热中子是指在室温下(T=300K )与周围处于热平衡的中子,它的平均动能 eV J kT 038.01021.63001038.123232123=?=???==--ερ 它的方均根速率 s m m v n 32721107.21067.11021.622?≈???==--ε,相应的德布罗 意波长 nm v m h n 15.027001067.11063.62734 =???==--λ 这一波长与X 射线的波长同数量级,与晶体的晶面距离也有相同的数量级,所以也可以产生中子衍射。 3.2.2、海森伯测不准原理 设一束自由粒子朝z 轴方向运动,每一个粒子的质量为m ,速度为v ,沿z 轴方向的动量P=mv 。这一束自由粒子对应一个平面简谐波,在与z 轴垂直的波阵面上沿任何一个方向(记为x 方向)的动量取0=x p 精确值。波阵面上各处振幅相同,每一个粒子在各处出现的概率相同,这意味着粒子的x 位置坐标可取任意值,或者说粒子的x 位置坐标不确定范围为∞→?x 。为了在波阵面的某个x 位置“抓”到一个粒子,设想用镊子去夹粒子。实验上可等效地这样去做:在波阵面的前方平行地放置一块挡板,板上开一条与x 轴垂直的狭缝,狭缝相当于一个并合不够严实的镊子。如果狭缝的宽度为△x ,那么对于通过狭缝的粒子可以判定它的x 位置不确定范围为△

量子力学第三章算符

第三章算符与力学量算符 3、1 算符概述 设某种运算把函数u变为函数v,用算符表示为: (3、1-1) 称为算符。u与v中得变量可能相同,也可能不同。例如,,,,,,则,x,,,都就是算符。 1.算符得一般运算 (1)算符得相等:对于任意函数u,若,则。 (2)算符得相加:对于任意函数u,若,则。算符得相加满足交换律。 (3)算符得相乘:对于任意函数u,若,则。算符得相乘一般不满足交换律。如果,则称与对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u,若u=u,则称为单位算符。与1就是等价得。 (2)线性算符 对于任意函数u与v,若,则称为反线性算符。 (3)逆算符 对于任意函数u,若则称与互为逆算符。即,。 并非所有得算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:,其中为与函数构成得线性算符,a为常数。其解u可表示为对应齐次方程得通解u。与非齐次方程得特解之与,即。因,所以不存在使。一般说来,在特解中应允许含有对应齐次方程得通解成分,但如果当a=0时,=0,则中将不含对应齐次方程得通解成分,这时存在使,从而由得:。从上述分析可知,就是否存在逆算符还与算符所作用得函数有关。 (4)转置算符 令,则称与得转置算符,就是一个向左作用得算符。若算符表示一般函数(或常数),由于函数得左乘等于右乘,所以函数得转置就等于它本身。 定义波函数与得标积为: (3、1-2) 与得标积以及与得标积为:

若上两式中得与都就是任意波函数,则称上两式中得与为任意标积中得算符。下面考虑在任意标积中得性质。 波函数与在无限远点也应满足连续性条件: [可都等于零],,所以得: 可见在任意标积中,。 (5)转置共轭算符(也称为厄密共轭算符)与厄密算符 转置共轭算符通常也就是向左作用得算符,同时算符本身要取共轭。以标记得转置共轭算符,则若在任意标积中,,则称为厄密算符。即厄密算符得定义为: 或写为(3、1-3) 可以证明,位置算符与动量算符都就是厄密算符。因x就是实数,而,所以。在任意标积中,因,所以。也可以直接从定义式(3、1-3)出发,来证明就是厄密算符。 ,所以就是厄密算符。 (6)幺正算符 若在任意标积中,,则称为幺正算符。设,若为厄密算符,则必为幺正算符。 (7)算符得函数 设函数F(A)得各阶导数都存在,则定义算符得函数F()为: (3、1-4) 其中表示n个得乘幂,即。例如 3、2 算符得对易关系 定义算符得泊松(Poisson)括号为: (3、2-1) 一般说来,例如,这样得关系或称为对易关系式。就是对易关系式中得特例,这时,称与就是对易得。 1.量子力学中基本对易关系 在位置表象中,,即,此式对任意得都成立,所以得: 在动量表象中 ,即,此式对任意得都成立,所以得: 可见在位置表象中与动量表象中都得:

量子力学发展历程

量子力学发展历程 摘要:量子理论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学;量子理论;矩阵力学;波动力学;测不准原理 量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学揭示了微观物质世界的基本规律,为原子物理、固体物理学、核物理学和粒子物理学奠定了基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质,光的吸收与辐射等等方面。从1900年到1913年量子论的早期提出,到经过许多科学家如玻恩、海森伯、玻尔等人的努力诠释,量子力学得到了进一步发展。后来遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。双方展开了一场长达半个世纪的论战,至今尚未结束。 1 普朗克的能量子假设 普朗克在黑体辐射的维恩公式(u = b(λ^-5)(e^-a/λT))和瑞利公式(u = 8π(υ^2)kT / c^3)之间寻求协调统一,找到了与实际结果符合极好的内插公式,迫使他致力于从理论上推导这一新定律。1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。 2光电效应和固体比热的研究 普朗克的出能量子假说具有划时代的意义,但是,不论是他本人还是同时代人当时对这一点都没有充分认识。爱因斯坦最早明确地认识到,普朗克的发现标志了物理学的新纪元.1905年,爱因斯坦在其论文《关于光的产生和转化的一个试探性观点》中,发展了普朗克的量子假说,提出了光量子概念,并应用到光的发射和转化上,很好地解释了光电效应等现象。在那篇论文中,爱因斯坦总结了光学发展中微粒说和波动说长期争论的历史,提示了经典理论的困境,提出只要把光的能量看成不是连续的,而是一份一份地集中在一起,就可以作出合理的解释。与此同时,他还大胆地提出了光电方程,当时还没有足够的实验事实来支持他的理论,因此,爱因斯坦称之为“试探性观点”。但他的光量子理论并没有及时地得到人们的理解和支持,直到1916年,美国物理学家密立根对爱因斯坦的光电方程作出了全面的验证,光量子理论才开始得到人们的承认。1906年,爱因斯坦将普

量子力学第三章算符

第三章 算符和力学量算符 算符概述 设某种运算把函数u 变为函数v ,用算符表示为: ?Fu v = () ? F 称为算符。u 与v 中的变量可能相同,也可能不同。例如,11du v dx =,22xu v =3 v =, (,) x t ?∞ -∞ ,(,)x i p x h x e dx C p t -=,则d dx ,x dx ∞ -∞ ,x i p x h e -?都是算符。 1.算符的一般运算 (1)算符的相等:对于任意函数u ,若??Fu Gu =,则??G F =。 (2)算符的相加:对于任意函数u ,若???Fu Gu Mu +=,则???M F G =+。算符的相加满足交换律。 (3)算符的相乘:对于任意函数u ,若???FFu Mu =,则???M GF =。算符的相乘一般不满足交换律。如果????FG GF =,则称?F 与?G 对易。 2.几种特殊算符 (1)单位算符 对于任意涵数u ,若?I u=u ,则称?I 为单位算符。?I 与1是等价的。 (2)线性算符 对于任意函数u 与v ,若**1212 ???()F C u C v C Fu C Fv +=+,则称?F 为反线性算符。 (3)逆算符 对于任意函数u ,若????FGu GFu u ==则称?F 与?G 互为逆算符。即1??G F -=,111??????,1F G FF F F ---===。 并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。 对于非齐次线性微分方程:?()()Fu x af x =,其中?F 为d dx 与函数构成的线性算符,a 为常数。

量子力学 第二章 算符理论

第二章(一维)算符理论 本章提要:本章从线性变换和微分算子出发,建立算符理论统一它们来处理「观测行为」,引入观测公设。接着,从观测值=本征值为实数的要求出发,找到了符合条件的厄米矩阵来描述力学量,引入算符公设。之后介绍了运算法则、基本的位置和动量算符、复合算符的对易子、哈密顿算符等。最后,作为对上述内容的综合应用,讨论了不确定性原理。 1.算符:每一个可观测量,在态空间中被抽象成算符。在态空间中,观测行为被抽象为,某可测量对应的算符「作用」在态矢量上 ①线性变换:线性代数告诉我们,一个线性变换「作用」到n 维向量上会获得一个新的n 维向量,这等价于一个n 阶方阵「作用」在n 行1列矩阵上得到新的n 行1列矩阵,用数学语言可表示为()Ta b T =?=αβ 。总之,方阵与线性变换一一对应。由于方阵性质比矩阵更丰富,我们将只研究方阵。 ②微分算子:在微积分中2222,,,i i x f x f dx f d dx df ???? 也可简写成f f f D Df 22,,,??。前两种在解 欧拉方程和高阶方程式时常用,后两种则经常出现在矢量分析中。简写法可看作是微分算子「作用」在函数上,我们知道它遵守加法和数乘法则,是一种线性运算 ③本征值和本征矢:在矩阵方程x Ax λ=中,把λ称为矩阵本征值,x 称为矩阵的本征矢 ④本征值和本征函数:在微分方程f f D mix μ=中,把μ称为问题本征值,f 称为本征函数 ⑤线性算符:现在把上述概念统一为线性算符理论。 考虑一个可测量Q ,定义它的对应算符为Q ?,它的本征方程是ψ=ψλQ ?或λψψ=Q ?,把λ称为算符的「本征值」,λ的取值集合称为算符的「谱」, ψ称为算符的「本征态」 (或本征矢),ψ称为算符的「本征函数」 (注意:有时也把ψ记作本征值的对应本征态λ, 如后面将遇到的坐标算符本征态x 、动量算符本征态p ) ⑥第三公设——观测公设:对于量子系统测量某个量Q ,这过程可以抽象为对应的算符Q ?作用于系统粒子的态矢量ψ,测量值只能为算符Q ?的本征值i λ。在这次测量后,假设得到

量子力学导论第2章答案

第二章 波函数与Schr?dinger 方程 2.1设质量为m 的粒子在势场)(r V 中运动。 (a )证明粒子的能量平均值为 ω?= ?r d E 3 , ψψψψωV m * * 2 2+?= (能量密度) (b )证明能量守恒公式 0=??+??s t w ??? ? ? ????+???- =* *2 2ψψ ψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化) V T r d V m E +=??? ? ? ?+?-=?32 2* 2ψψ (1) ?= ψψV r d V * 3 (势能平均值) (2) ( )( )()[] ?????-???- =???? ???-=ψψ ψψψψ* * 3 2 22* 3 2) (2动能平均值r d m m r d T 其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。因此 ψψ ???= ?* 3 2 2r d m T (3) 结合式(1)、(2)和(3),可知能量密度,2* *2 ψψψψωV m +???= (4) 且能量平均值 ??= ωr d E 3 。 (b )由(4)式,得 ... 2 ** .. . . . 2*22**. . 2 2 2 2 * 2222V V t m t t t t V V m t t t t t t s V V t m t m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ?? ??*??*???=???+???++????????? ?? ?????*??*??*??? ? ?=???+?-?+?++? ? ? ???????? ?? ?? ????? ?*?=-??+- ?++- ?+ ? ????? ?? =-??+ .. *t t ψψψψ???*? ? + ?????

量子力学第一章态矢量

1.量子力学的基本要素是:「态」(状态)、「演化」、「可观测量」(力学量)、「观测行为」 (简单解说:粒子在任一时刻都具有一个「状态」,粒子具有的某些可测量的性质(位置、动量、角动量、自旋,etc )称为「可观测量」,而测量粒子的这些性质的过程就是「观测行为」,俗称“做实验”) 2.初等量子力学的任务是: (1)预测「对一个系统(“态”)进行实验(“观测”)得到的实验结果(观测结果)」 (2)寻找“态”随时间的「演化」规律 3.从旧量子论到现代量子力学: (1)普朗克能量量子化假设(1900年) (2)爱因斯坦光量子假说(1905年) (3)光的波粒二象性(1909年) (4)玻尔模型(1913年) (5)斯特恩-盖拉赫实验(1922年) (6)德布罗意假设:物质波假说,粒子动量k p (1924年) (7)乌伦贝克-古兹米特自旋假说;泡利不相容原理;海森堡-矩阵力学(1925年) (8)薛定谔-波动力学(1926年) 波函数统计诠释:2 是概率密度函数, 12 dx (1926年) (9)海森堡不确定性原理;玻尔的互补原理:观测影响状态(1927年) (10)态叠加原理;《量子力学原理》(狄拉克,1930年) 4.量子力学与经典力学的比较:

量子力学经典力学 研究对象在t时刻的位置 无法确定 只能确定在dx x x ~的出现概率 可以确定 t时刻的动量和速度 无法确定,速度无意义 只能确定具有dp p p ~的概率 且不可同时确定位置和动量 位置、动量和速度 同时确定 研究对象的状态的描述波函数(复函数) 或态矢量 (复矢量) t p t r ,(实矢量函数) 状态的 演化方程 薛定谔方程(复系数方程)牛顿第二定律(实系数方程)观测行为 会影响对象 (只有时间测量不影响) 不会影响对象 测量精度 受不确定性原理限制 且“某些”量无法同时测定 可达到任意高 可以同时测定所有物理量 预测的 测量结果 某个结果出现的概率确定的值 实际的测量结果 确定的值 或可能取值的统计平均 确定的值 *量子力学的测量:在量子领域,在实验中通常事先准备好大量具有相同状态 的粒子(这称为「系综」(esemble)),同时测量它们的「物理量」Q,然后考察统计平均值Q。这是由于测量行为会直接改变粒子的状态(所谓的“坍缩”),导致重复实验的结果平均值失去意义(一旦某粒子坍缩到了状态A,之后的一切实验结果也都只会是A) 关于力学量测量结果的详细讨论,见第三章 *不确定性原理:位置和动量无法同时确定,严格来说是指其之一的测量标准差可以任意地大以至于无法确定真实结果,这是不确定性原理的结果,详见第二章第7节

量子力学曾谨言习题解答第二章

目次 第二章:波函数与波动方程………………1——25 第三章:一维定态问题……………………26——80 第四章:力学量用符表达…………………80——168 第五章:对称性与守衡定律………………168——199 第六章:中心力场…………………………200——272 第七章:粒子在电磁场中的运动…………273——289 第八章:自旋………………………………290——340 * * * * * 参考用书 1.曾谨言编著:量子力学上册 科学。1981 2.周世勋编:量子力学教程 人教。1979 3.L .I .席夫著,李淑娴,陈崇光译:量子力学 人教。1982 4.D .特哈尔编,王正清,刘弘度译:量子力学习题集 人教。1981 5.列维奇著,李平译:量子力学教程习题集 高教。1958 6.原岛鲜著:初等量子力学(日文) 裳华房。1972 7.N.F.Mott.I.N.Sneddon:Wave Mechanics and its Applications 西联影印。1948 8.L.Pauling.E.B.Wilson:Introduction to Quantum- Mechanics (有中译本:陈洪生译。科学) 1951 9. A.S.Davydov: Quantum Mechanics Pergamon Press 1965 10. SIEGFRIED.Fluegge:Practical Quantum- Mechanics (英译本) Springer V erlag 1973 11. A.Messian:Quantum Mechanics V ol I.North.Holland Pubs 1961 https://www.doczj.com/doc/4318017737.html,ndau,E.Lifshitz:Quantum-Mechanics1958 量子力学常用积分公式 (1) dx e x a n e x a dx e x ax n ax n ax n ?? -- = 1 1 )0(>n (2) )cos sin (sin 2 2 bx b bx a b a e bxdx e ax ax -+= ? (3) = ?axdx e ax cos )sin cos (2 2 bx b bx a b a e ax ++ (4) ax x a ax a axdx x cos 1sin 1sin 2 -=? (5) = ?axdx x sin 2 ax a x a ax a x cos )2( sin 22 2 2 - + (6) ax a x ax a axdx x sin cos 1cos 2 +=? (7ax a a x ax a x axdx x sin )2( cos 2cos 3 2 2 2 - += ?)

半导体器件物理1-2章量子力学初步

半导体器件物理 第一章:半导体材料 就其导电性而然,半导体材料的导电性能介于金属和绝缘体之间。半导体基本可以分为两类:位于元素周期表IV族的元素半导体和化合物半导体。大部分化合物半导体材料是Ⅲ族和V族元素化合而成的。表1.1是元素周期表的一部分,包含了最常见的半导体元素。表1.2给出了较为常用的某些半导体材料。 表1.1部分半导体元素周期表 表1.2半导体材料 由一种元素组成的半导体称为元素半导体,如Si和Ge。硅是制作半导体器件和集成电路最常用的半导体材料。

由两种或两种以上半导体元素组成的半导体称为化合物半导体,如GaAs或GaP是由Ⅲ族和Ⅴ族元素化合而成的。

其中GaAs是应用最为广泛的一种化合物半导体材料,它具有较高的载流子迁移率,因此一般应用在制作高速器件或高速集成电路的场合。 1.1半导体的价键和价电子 硅是用于制作半导体器件和集成电路的重要材料之一,它具有金刚石晶格结构,是IV族元素; 锗也具有金刚石晶格结构,也是IV族元素。其它化合物半导体材料如砷化镓具有闪锌矿晶格结构。 由于硅是主流集成电路工艺普遍使用的半导体材料,所以我们主要研究该材料的物理特性。无限多的硅原子按一定规律在三维空间上的集合就形成硅晶体(通常是形成单晶体结构)是什么因素导致硅原子的集合能够形成特定的硅晶格结构? 统计物理学给出了答案:热平衡系统的总能量总是趋于达到某个最小值。原子间价键的作用使它们“粘合”在一起形成晶体。 原子间的相互作用倾向于形成满价壳层。元素周期表中的Ⅳ族元素Si和Ge,其原子序数是14,包围着硅原子有3个电子壳层,最外层壳层上有4个价电子,需要另外4个价电子来填满该壳层。当硅原子组成晶体时,最外层壳层上的4个价电子与紧邻的硅原子的最外层4电子组成共价键。

量子力学第二章习题解答

第二章习题解答 p.52 2.1.证明在定态中,几率流与时间无关。 证:对于定态,可令 )] r ()r ()r ()r ([m 2i ] e )r (e )r (e )r (e )r ([m 2i ) (m 2i J e )r ( ) t (f )r ()t r (**Et i Et i **Et i Et i **Et i ψψψψψψψψψψψψψψψ?-?=?-?=?-?===-----)()(, 可见t J 与 无关。 2.2 由下列定态波函数计算几率流密度: i k r i k r e r e r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。 解:分量只有和r J J 21 在球坐标中 ? θθ?θ?? +??+??=?s i n r 1e r 1e r r 0 r mr k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i m i J ikr ikr ikr ikr 3 020 220 1* 1*111 )]11(1)11(1[2 )]1(1)1(1[2 ) (2 )1(==+----=??-??=?-?=--ψψψψ r J 1 与同向。表示向外传播的球面波。

r mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i ) (m 2i J )2(3020 220 ik r ik r ik r ik r * 2*222 -=-=---+-=??-??=?-?=--ψψψψ 可见,r J 与2反向。表示向内(即向原点) 传播的球面波。 补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化? ∞==? ? ∞ ∞ dx dx ψψ* ∴波函数不能按1) (2 =? dx x ψ方式归一化。 其相对位置几率分布函数为 12 ==ψω表示粒子在空间各处出现的几率相同。 2.3 一粒子在一维势场 ??? ??>∞≤≤<∞=a x a x x x U ,, ,0 00)( 中运动,求粒子的能级和对应的波函数。 解:t x U 与)(无关,是定态问题。其定态S —方程 )()()()(22 2 2x E x x U x dx d m ψψψ=+- 在各区域的具体形式为 Ⅰ: )()()()(2 011122 2x E x x U x dx d m x ψψψ=+- < ① Ⅱ: )()(2 0 222 2 2x E x dx d m a x ψψ=-≤≤ ② Ⅲ: )()()()(2 3332 2 2x E x x U x dx d m a x ψψψ=+- > ③ 由于(1)、(3)方程中,由于∞=)(x U ,要等式成立,必须 0)(1=x ψ

相关主题
相关文档 最新文档