当前位置:文档之家› 固液萃取

固液萃取

固液萃取
固液萃取

第十章固液浸取

第一节萃取原理

教学目标:

理解萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。

掌握单级萃取、多级逆流萃取、多级错流萃取的物料流动过程。

教学重点:

萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。

单级萃取、多级逆流萃取的物料流动过程。

教学难点:

萃取分配定律的含义,分配常数计算公式的具体应用。

教学内容:

一、萃取基本原理

1.萃取过程

如图10—1所示,假设一种溶液的溶剂A与另一个溶剂B互不相容,且溶质C在B中的溶解度大于在A中的溶解度,当将溶剂B加入到溶液中经振摇静臵后,

则会发生分层现象,且大部分溶质C转移到了溶剂B中。这种溶质从一种体系转移到另一个体系的过程称为萃取过程。

在萃取过程中起转移溶质作用的溶剂称为萃取剂,由萃取剂和溶质组成的溶液叫萃取液,原来的溶液在萃取后则称为萃余液。如果萃取前的体系是液态则称为液—液萃取,如果是固态则称为固——液萃取,又称固液浸取,如用石油醚萃取青蒿中的青蒿素就是典型的固液浸取实例。

2.萃取原理

物质的溶解能力是由构成物质分子的极性和溶剂分子的极性决定的,遵守“相似相溶”原则的,即分子极性大的物质溶于极性溶剂,分子极性小的物质溶解于弱极性或非极性溶剂中。例如,还原糖、蛋白质、氨基酸、维生素B 族等物质,其分子极性大,可溶于极性溶剂水中,而不溶解于非极性溶剂石油醚中。又如大多数萜类化合物的分子极性小,易溶于石油醚和氯仿等极性小的溶剂中,但不溶于水等极性强的溶剂。因此,同一种化合物在不同的溶剂中有不同的溶解能力。当一种溶质处于极性大小不相当的溶剂中时,其溶解能力小,有转移到相当极性的溶剂中去的趋势,假设这种极性相当的溶剂与原来的溶剂互不相溶,则绝大部分溶质就会从原来的相态扩散到新的溶剂中,形成新的溶液体系,即形成萃取液。

在萃取过程时,溶质转移到萃取剂中的程度遵守分配定律。指出,在其他条件不变的情况下,萃取过程达到平衡后,萃取液中溶质浓度与萃余液中溶质浓度的比值是常数,这个规律叫分配定律,常数0k 叫分配系数。如图10—2所示,在

进行第一次萃取时,设原料液中溶质的摩尔浓度为C,萃取相中溶质的摩尔浓度为X ,萃余相中溶质的摩尔浓度为Y ,则:

假设进行多次萃取才能将目的产物提取完,则进行第n 次萃取时,原料液中0 10--1X k Y

==萃取相()萃余相

的溶质浓度为n c ,萃取相中溶质的浓度为Xn ,萃余相中的浓度为Yn ,根据分配定律应有:

10--2n Xn k Yn

=() 所以 012= 10--3n X Xn k k k k Y Yn

===== () 由此看到 0Yn ≠

故随着萃取次数的增加,残留在原料体系中的溶质越来越少,但无论进行多少次萃取,都不可能完全将溶质从原料体系中萃取出来。因此在实际生产过程中,往往要综合考虑萃取操作生产成本,只进行有限次的萃取操作。如在中药提取生产时,一般对中药材进行三次萃取后,有效成分基本上被最大程度的萃取,同时经济上也达到最好的效益。

二、常见萃取流程

在工业生产中,萃取操作有单级萃取、

多级错流萃取、多级逆流萃取等流程。

1.单级萃取

将萃取剂加入原料液中只萃取一次的

操作方式叫单级萃取。如图10—3所示。

具体操作过程是:将原料液和萃取剂都加

入到混合器中,用搅拌器搅拌,促使溶质

从原料液中转移到萃取剂中,经过一段时

间后,静臵分层,用分离器把萃取相和萃余相分离后即完成一个萃取操作周期。

工业上常用液—液单级萃取设备是高速管式离心机和碟片式离心机,进行固液萃取的设备是各种形式的提取罐。

2.多级错流萃取

原料经过多个串联的萃取器,并在每个萃取器中进行萃取操作,这种萃取方式叫多级萃取。按原料的流向与萃取剂的流向关系可分为多级错流萃取、多级逆流萃取、多级平流萃取。图10—4是多级错流萃取示意图。多级错流萃取操作中,原料液从第1级经过第2级流向第3级,最后得到萃余相,萃取剂则由总管道分别注入三个萃取器,原料在每级萃取器经萃取操作后,所得萃取相都回收到同一

个储罐中贮存。

在多级错流萃取中由于溶剂分别加入各级萃取器,故萃取推动力较大,

萃取效果好,所以在中药提取分离中被广泛采用。其缺点是要加入大量的萃

取溶剂,产品浓度稀,蒸发浓缩回收溶剂时需要消耗较多的能量。

3.多级逆流萃取

如果原料的流向从第1级经过若干级后到末级的萃余液,而萃取溶剂从末级逆向流动,经过若干级后到达第1级而得到萃取液,这种萃取操作方式成为多级

逆流萃取。一般萃取级数是三级。如青霉素生产中,用乙酸戊酯从澄清的发酵液中分离青霉素时,就采用了三级逆流萃取系统,如图10—5所示。

进行多级逆流萃取的设备主要有:

①由单级混合—澄清器串联组成的多级逆流萃取系统

②多级筛板塔。

在生物制药生产过程中,萃取是一个非常重要的单元操作,通过萃取可以把目的产物从复杂的体系中提取出来,以便于进行更进一步的纯化分离。

第二节植物浸取原理

教学目标:

了解植物中目的产物的理化性质。掌握植物浸取常用溶剂的理化性质。

理解植物浸取过程基本原理。

掌握植物浸取工艺条件参数的选择依据和方法。

教学重点:

植物浸取常用溶剂的理花性质,植物浸取工艺条件参数的选择依据和方法。

教学难点:

植物浸取工艺条件参数的选择依据和方法。

教学内容:

一、植物中天然产物的理化性质

1.非目的产物

在植物中存在着多种天然大分子物质类,如淀粉、纤维素、木质素、果胶、树脂、鞣质、多肽、蛋白质、酶、核酸等,因为这些分子含有大量的羟基、氨基、羧基等极性基团,因此其分子极性强,在水中溶解度大,用水等极性溶剂提取时容易被浸提出来。但是,非目的产物受热会糊化,影响后续分离纯化操作,因此在提取时要尽量避免将其浸出。

2.目的产物的理化性质

植物中的目的产物有生物碱、苷类、醌、黄酮、香豆素、木脂素、萜类、甾体及其苷类、挥发油、色素物质等,这些物质一般都具有生理活性,因而是中药有效成分。这些物质的分子极性分布范围宽,且从强极性到非极性都有相应的物质存在,因而植物中的有效成分溶解性比较复杂。现分别介绍如下:生物碱是一类含氮的天然有机化合物,具广泛的生理活性。生物碱分子中的氮原子与氨分子中的氮原子一样,有一对孤电子,对质子有一定程度的亲和力,当与酸反应中和后,氮原子可由三价转为五价而成盐,因而具有碱性。在植物中,大多数生物碱与有机酸结合成盐而存在,少数与无机酸结合成盐而存在,有些生物碱碱性弱,以游离状态存在,还有部分与糖结合成苷类的形式存在。

大多数生物碱不溶或难溶于水,可溶于乙醇、乙醚、丙酮等有机溶剂;生物

碱盐类则可溶于水,因此,加入一定的有机酸或无机酸作浸出辅助剂,使生物碱转成盐后,可用水作溶剂提取。

苷类又称配糖体,是糖或糖的衍生物如氨基糖、糖醛酸等,与另一类非糖物质通过糖的端基碳原子连接而成的化合物。其中非糖部分称为苷元或配基,其连接键称为苷键。按化学结构可分为香豆素苷、木脂素苷、蒽醌苷、黄酮苷、吲哚苷等多种,其亲水性随苷元化学结构、所连接糖的种类和数目有较显著的区别,但大多数苷类亲水性强,可用水提取,也可用不同浓度的乙醇提取。

醌类是具有α,β-不饱和酮结构一类化合物,从结构上可分为苯醌、萘醌、菲醌、蒽醌等四类。醌类化合物中含酚羟基团越多,颜色则越深。天然醌类多为有色晶体。苯醌及蒽醌多以游离状态存在,蒽醌往往结合成苷。游离的醌类多具升华性,小分子的苯醌类及茶酮类具有挥发性,能随水蒸汽蒸馏,可因此进行提取、精制。游离酮类多溶于乙醇、乙酸、苯、氯仿等有机溶剂,微溶或不溶于水。而配基成苷后,极性增大,易溶于甲醇、乙醇、热水,几乎不溶于苯、乙醇等非极性溶剂。蒽醌类衍生物多具有酚羟基,故呈酸性,易溶于碱性溶剂。分子中酚羟基的数目及位臵不同,酸性强弱也不一样。

黄酮类化合物的基本母核是无苯基色原酮,有的具有良好的心脑血管药理活性,有的具有抗菌消炎作用,有的具有保肝作用。游离黄酮苷元难溶或不溶于水,易溶于乙醇,可用不同浓度的乙醇提取;黄酮苷类可溶于水也可溶于醇,可用水或不同浓度的乙醇提取。

萜类化合物是由若干异戊二烯结构单元组成的碳氢化合物,可用(C

5H

8

)n表示

其分子式,n为大于2的整数。当n是2时称单萜,是3时称倍半萜,是4时称双萜,是5时称二倍半萜,于此类推可对复杂的萜命名。

分子量较小的萜类化合物如单萜和倍半萜多为有特殊气味的挥发性油状液体,其沸点随分子量和双键数量的增加而提高;分子量较大的萜类如二萜、三萜多为固体结晶。萜类化合物大多具有苦味,也有一些萜类化合物有极强的甜味,甜菊苷就是比蔗糖甜100倍的甜味剂。萜类化合物大多不溶于水而易溶于非极性有机溶剂中,如青蒿素溶解于石油醚。萜类化合物成苷后水溶性提高而易溶于热水,另外含有内酯结构的萜类化合物易溶于碱性水溶液中。

香豆素是邻羟基桂皮酸的内酯,其分子结构是以苯骈α-吡喃酮为母核。根

据其结构特征可分为四大类,即简单香豆素类,喃喃香豆素类、吡喃香豆素类及其他香豆素类。游离的香豆素多数有较好的结晶,且大多有香味。香豆素中分子量小的有挥发性,能随水蒸汽蒸馏,并能升华。香豆素苷多数无香味和挥发性,也不能升华。游离的香豆素能溶于沸水,难溶于冷水,易溶于甲醇、乙醇、叙情和乙醚;香豆素苷类能溶于水、甲醇和乙醇,而难溶于乙醇等极性小的有机溶剂。香豆素类及其苷因分子中具有内酯环,在强碱溶液中内酯环可以开环生成顺邻羟基桂皮酸盐,但加酸又可重新闭环成为原来的内酯。但如与碱长时间加热,则可转变为稳定的反邻羟基桂皮酸盐。因此用碱液提取香豆素时,必须注意碱液的浓度,并应避免长时间加热,以防破坏内酯环。

木脂素是一类由两分子苯丙素衍生物聚合而成的天然化合物,多数呈游离状态,少数与糖结合成苷而存在于植物的木部和树脂中。多数为无色结晶,一般无挥发性,不能随水蒸气蒸馏,少数木脂素在常压下能升华。游离的木脂素是亲脂性的,一般难溶于水,易溶于乙醇和亲脂性有机溶剂中;具有酚羟基的木脂素可溶于碱性水溶液中。木脂素与糖结合成苷后分子极性增加,在水中的溶解度也增大。

甾体类化合物是广泛存在于自然界中的一类天然化学成分,包括植物甾醇、胆汁酸、

c甾类、昆虫变态激素、强心苷、甾体皂苷、甾体生物碱、蟾毒配基

21

等。其基本结构中母核是环戊烷骈多氢菲。

强心苷多为无定型粉末或者无色结晶,具有旋光性,一般可溶于水、乙醇、丙酮等极性溶剂,微溶于乙酸乙酯、含醇氯仿,几乎不溶于乙醚、苯、石油醚等极性小的溶剂。

挥发油类又称精油,是一类具有挥发性的油状液体,大部分具有香气,如薄荷油、丁香油等。挥发油难溶于水,能完全溶解于无水乙醇、乙醚、氯仿、脂肪油中。在各种不同浓度的含水乙醇中可溶解一定量,乙醇浓度愈小,挥发油溶解的量也愈少。挥发油少量地溶解于水后使水溶液具该挥发油特有的香气。

天然产物的理化性质是植物浸取操作的理论依据,但在设计提取方法时,要进行多次实验,获得最佳的工艺参数,筛选出最可靠的工艺流程。

二、植物浸取常用溶剂

1.溶剂性质

因为提取的植物产品绝大多数是作医、食用原料,所以提取用溶剂必须是“安全、廉价”的,即对有效成分是化学惰性的,对人无毒理反应,能最大程度地浸出目的产物而最小程度地浸出非目的产物,另外,在经济上是廉价的。事实上,同时满足上述条件的溶剂几乎没有。在实际生产过程中,往往是多种溶剂按一定比例混合使用以达到生产要求。

常见溶剂的极性大小排列顺序为:

水→乙醇→丙酮→乙醚→乙酸乙酯→氯仿→甲苯→石油醚

水:极性大,溶解范围广,价格便宜。植物中多种成分如生物碱盐类、苦味物质、有机酸、蛋白质、单糖和低聚糖、淀粉、菊糖、树脂、果胶、黏液质、色素、维生素、酶和少量挥发油等都能被水溶解浸出。其缺点是选择性差,非目的产物被浸出量大,给纯化操作带来困难。

乙醇:中强极性,能与水以任意比例相混,乙醇浓度越高溶液极性越低。各种目的产物在乙醇中的溶解度随乙醇浓度的变化而变化。90%的乙醇用来浸取挥发油、有机酸、树脂、叶绿素等,50%~70%的乙醇用来浸提生物碱、甙类等,50%以下的乙醇用来浸取苦味物质、蒽醌类化合物。

乙醚:乙醚是非极性溶剂,微溶于水(1:12),可与乙醇及其他有机溶剂任意混溶。选择性强,能溶解生物碱、树脂、挥发油、某些甙类。大部分溶解于水的成分在乙醚中不溶解。缺点是易燃,价格高,有药理副反应,常用于精制提纯,最后要从溶液中完全除去。

氯仿:是非极性溶剂,在水中微溶,与乙醇、乙醚能任意混溶。可溶解生物碱、甙类、挥发油、树脂等,不能溶解蛋白质、鞣质等极性物质。氯仿有强烈的药理作用,应在浸出液中尽量除去。

除此之外,丙酮和石油醚也是常用溶剂,可以用于脱水脱脂和浸取,但有较强挥发性和易燃性,且具有一定的毒性,故应从最后制剂中除去。

2.辅助剂

为提高浸提效果,增加目的产物的溶解度,增加制剂的稳定性,以及除去或减少某些物质,常在浸提溶剂中加入辅助剂。常用辅助剂有酸、碱、表面活性剂。

加入硫酸、盐酸、醋酸、酒石酸、枸橼酸等,可促进生物碱溶解,提高部分

生物碱的稳定性,同时可使有机酸游离而易被溶剂萃取。

加入氨水、碳酸钙、碳酸钠、碳酸氢钠等,可增加皂甙、有机酸、黄酮、蒽醌和某些酚性成分的溶解度和稳定性。在含生物碱的浸取液中加碱可使生物碱游离,便于后续萃取。

加入表面活性剂可强化润湿增溶,降低植物材料与溶剂间的界面张力,使润湿角变小,促使溶剂和材料之间的润湿渗透。常用表面活性剂有非离子型、阴离子型、阳离子型,根据植物材料和溶剂确定使用型号。

三、浸取原理

1.植物的细胞结构

细胞是构成植物组织的基本单元,组成植物细壁的主要成分是纤维素,具有刚性,其功能是支持和保护细胞内的原生质体,防止细胞因吸涨而破裂,保持细胞的正常形态。

原生质可分为细胞核、细胞质、质体及线粒体。构成原生质的化学成分有核糖核酸、蛋白质、酶、维生素、淀粉、脂类,细胞的代谢产物有糖类、苷类、生物碱、鞣质、脂肪与蜡、挥发油,他们都存在于原生质中。

在植物细胞壁和原生质体之间的细胞膜,是控制物质进出细胞的门户,它有选择性地让某些分子进入或排出细胞。

中药有效成分提取过程就是将目的产物从细胞植物内转移到细胞外的溶剂中,如果将细胞壁破碎则能最大程度地获得有效成分,但很容易将非目的产物一并提取出来,造成纯化困难。所以在实际生产中,一般不会采用破碎细胞的提取方法,常根据传质过程和传质机理调控有关工艺参数实现最大提取效率。

2.植物浸取过程

浸取就是利用适当溶剂和方式把植物中的有效成分分离出来的操作过程,又称为提取。提取所得到的液体称为浸出液,浓缩干燥后称为浸膏。植物浸取操作属于固液萃取。

当固体与溶剂经过长时间接触后,溶质溶解过程结束,此时固体内空隙中液体的浓度与固体周围液体的浓度相等,液体的组成不再随时间而改变,即固液体系达到平衡状态,这就是一个完整的浸取过程。

完整的浸取过程有以下几个阶段:

(1)浸润渗透溶剂被吸附在植物材料表面,由于液体静压力和植物材料毛细作用,被吸附的溶剂渗透到植物细胞组织内部的过程。溶剂渗透到植物细胞组织中后使干皱的细胞膨胀,恢复细胞壁的通透性,形成通道,能够让目的产物从细胞内扩散出来。

(2)解吸与溶解由于目的产物各成分在细胞内相互之间有吸附作用,需要破坏吸附力才能溶解。因此溶剂在溶解溶质之前首先要解除吸附作用,即解吸。解吸后溶质进入溶剂即溶解。

(3)扩散随着细胞内溶质进入溶剂而浓度增大,在细胞内外产生了溶质浓度差,从而产生了渗透压,溶质将进入低浓度溶液中,溶剂将要进入高浓度溶液中,引起溶质从高浓度部位向低浓度部位的扩散过程。扩散可分为内扩散和外扩散两个阶段。内扩散就是细胞内已经进入溶剂中的溶质,随溶剂通过细胞壁转移到细胞外的过程,外扩散就是植物材料和溶剂边界层的溶质传递到溶剂主体中去的过程。

研究表明,在通常浸取条件下,溶剂进入细胞后,溶质的溶解速度很大,但溶质的内扩散速度和外扩散速度较低。提高扩散速度的途径有两条,其一是通过搅拌产生湍流提高外扩散速度;其二是不断用溶剂臵换出固液界面上的浓溶液,始终保持细胞内外高浓度差,促使溶质不断扩散出细胞壁,强化浸取操作。

四、浸取工艺条件

在植物浸取过程中,有多种因素对浸取过程产生重要的影响,影响浸取回收率的高低。这些因素包括温度、压力、酸碱性、颗粒直径、浸取时间、溶剂用量、浸取次数、液体运动状态等。为达到浸取成本低回收率高的浸取效果,必须通过查阅文献资料和做现场实验求出这些因素的最佳参数,作为生产操作时的控制依据。在工程上习惯地把这些参数称为工艺条件。

1.浸出温度

一般来讲,温度升高能使植物组织软化并促进膨胀,增加了可溶性成分的溶解和扩散速度,所以浸取温度越高,浸出速度越快。但温度升高后,某些目的产物不稳定发生分解变质,同时使挥发性目的产物挥发散失。因此,要把浸取温度控制在适当的范围。中药提取时,根据处方情况可把浸取温度控制在100℃以下。

2.浸取时间

浸取过程是一个溶剂进入细胞溶解目的产物并向外扩散的过程,浸取所需时间长短视植物材料本身结构和溶剂性质而定。如果原材料的组织结构细密,溶质扩散速度慢,所需时间就长,如果所用植物材料的组织疏松则所需时间就短。溶剂穿透力强且对目的产物溶解性好则所需时间短,反之则长。浸取所用时间的长短要通过中试实验来确定,一般每批中药材提取的时间大约是2—4个小时。

3.操作压力

植物提取一般是在常压沸点下进行,但对于溶剂较难渗透到植物组织内部的浸出操作,提高压力有利于浸出过程,因为在较高压力下植物组织内部细胞被破坏,加速了润湿渗透过程,使只组织内部毛细孔更快地充满溶剂,有利于溶质扩散。超临界萃取就属于加压浸取。对于组织疏松的材料可不用加压操作,因影响浸出速度的主要因素是扩散过程,加大压力对提高浸出速度无显著效果。

4.溶剂PH值

在目的产物浸出过程中,溶剂的PH值对浸出速度有影响。某些目的产物可溶解于酸性溶剂,则要使用酸性溶剂浸提,有些目的产物易溶解于碱性溶液因而要选择碱性溶剂提取。根据目的产物的酸碱性质可确定提取过程中溶剂PH值的范围。

5.溶剂用量

可用萃取公式进行理论计算再经过实验校验后即可得到溶剂的用量。在工业生产中,经验公式和经验值是技术操作的参数依据,一般溶剂用量是原材料的2~5倍,经过三次浸取就可认为提取完成。

6.溶剂流动状态

因在浸取过程中控制速度的关键步骤是扩散阶段,因此可以通过产生错流或湍流,不断地将植物材料表面上高浓度的溶液与低浓度的溶液混合而使溶质被扩散,保持细胞内外高渗透压,提高扩散速度。通过搅拌或者用离心泵强制溶剂流动可达到提高扩散速度的目的。

7.预浸泡

植物材料多是处于干燥状态,在正式浸取前需要预浸泡,使植物组织软化和细胞壁被浸润而膨胀,便于浸取时溶质的加速溶解和扩散。

第三节植物提取操作方法

教学目标:

掌握植物浸取煎煮工艺、浸渍工艺、渗漉工艺、回流提取工艺、压榨工艺的原理、工艺过程及设备结构。

掌握各种工艺规程的操作方法。

初步掌握根据不同原材料选用不同的极取工艺的方法。

教学重点:

植物浸取工艺过程、设备结构及操作方法。

教学难点:

工艺原理及选用。

教学内容:

一、煎煮提取工艺

将植物用水加热煮沸一定时间提取目的产物的方法称为煎煮法。这是一种传统方法,可分为常压煎煮法、加压煎煮法、减压煎煮法。常压煎煮法是应用得最广泛的方法。煎煮法适合于目的产物可溶于水,且对加热不敏感的植物材料。

1.工艺操作过程

煎煮提取工艺操作过程是:将预处理了植物材料装入煎煮容器中,用水浸没原材料,待植物材料软化润胀后,用直接蒸汽加热至沸腾,然后改用间接蒸汽加热,保持微沸状态,经过一定时间后将浸取液通过筛网过滤装入贮液罐,用新鲜水重复三次,合并浸取液,静臵过夜,沉淀过滤,所得滤液即浸提液经浓缩干燥即得提取物。

2.煎煮设备

煎煮设备可分为传统煎煮器、密闭煎煮器、强制循环煎煮器、多能提取罐等四种类型。

在植物提取生产中现已经不再使用传统煎煮器,广泛使用的是多功能提取罐。多功能提取罐可以进行多种方法的浸取操作。

二、浸渍提取工艺

浸渍法属于静态提取方法,是将已预处理过的植物材料装入密闭容器在常温或加热条件下进行浸取目的产物的操作过程。

通过浸渍法所得的浸取液在不低于浸渍温度下能较好地保持其澄清度,操作简单易行,其缺点是时间长,溶剂用量大,浸出效率低。

浸渍法工艺流程如下:

1.操作过程

按照操作温度不同,浸渍法可分为冷浸法和热浸法。

冷浸法在室温或更低温度下进行的浸渍操作。一般是将植物材料装入密闭浸渍器中,加入溶剂后密闭,于室温下浸泡3~5日或更长的时间,适当振动或搅拌。到规定时间后过滤浸出液,压榨残渣,使残液析出,将压榨液与滤液合并,静臵一天后再过滤得浸出液待用。

热浸法热浸法与冷浸法相比,只是当植物材料被装入密闭容器后需通蒸汽加热,其他操作相似。在热浸法中如使用乙醇作溶剂,浸渍温度应控制在40℃~60℃的范围内,如果是用水作溶剂,浸渍温度可以控制在60℃~80℃的范围。

热浸法可大幅度缩短时间,提高了浸取效率,但提取出的杂质较多,浸取液澄清度差,冷却后有沉淀析出,需要精制。

2.浸渍设备

浸渍法所使用的设备主要是浸渍器和压榨器。各种多功能提取罐都可以作浸渍器使用。

三、渗漉提取工艺

将植物材料粉碎后装入上大下小的渗漉筒或渗漉罐中,用溶剂边浸泡边流出的连续浸取过程称为渗漉。在渗漉过程中,溶剂从上方加入,连续流过

植物材料而不断溶出溶质,溶剂中溶质浓度从小增大,到最后以高浓度溶液流出。

渗漉法提取过程类似多次浸出过程,浸出液可以达到较高的浓度,浸出效果好。同时,渗漉法不需加热,溶剂用量少,过滤要求低,适用于热敏性、易挥发和剧毒物质的提取,使用渗漉法可以进行含量低但要求有较高提取浓度的植物提取。但不适用于黏度高、流动性差的物料的提取。

现将有关渗漉法的操作工艺流程和操作方法介绍如下:

1.工艺流程

2.操作过程

首先将植物材料净选后进行前处理,并粉碎成

要求的规格。颗粒规格一般是中粗级,对于切片要

求厚度为0.5mm。原材料颗粒太细,溶剂难以通过

而影响浸取速度。其次用0.7~1倍量的溶剂浸润

原材料4小时左右,待原材料组织润胀后将其装入

渗漉罐中,将料层压平均匀,用滤纸或纱布盖料,

再覆盖盖板,以免原材料浮起。再次浸渍排气。将

原材料装入罐后,打开底部阀门,从罐上方加入溶

剂,将原材料颗粒之间的空气向下排出,待空气排

完后关闭底部阀门,继续加溶剂至超过液面5~8

厘米,加盖放臵24~48小时。最后将溶剂从罐上

方连续加入罐中,打开底部阀门,调整流速,进行渗漉浸取。

3.常见渗漉设备

渗漉设备常用渗漉筒或渗漉罐,现在也有厂家采用多能提取罐进行渗漉浸取。

四、回流提取工艺

回流法是用乙醇等易挥发的有机溶

剂进行加热浸取的方法。当有机溶剂在

提取罐中受热后蒸发,其蒸汽被引入到

冷凝器中再次冷凝成液体并回流到提取

罐中继续进行浸取操作,直至目的产物

被提取完成为止。

回流提取法本质上是浸渍法,

可分为热回流提取和循环提取,其工艺

特点是溶剂循环使用,浸取更加完全。

缺点是由于加热时间长,故不适用于热敏性物料和挥发性物料的提取。

进行回流提取的装臵是多功能提取罐,图10—11是多功能中药提取罐回流提取工艺流程示意图。

五、压榨提取工艺

用机械加压的方法使液固组织发生体积变化而组织破碎,并使液体与固体组织分离的过程,称为压榨提取法。压榨提取法是古老的植物提取法。现在制糖、榨油、果汁、香油、食用色素提取等行业仍然广泛地使用。

压榨提取法的优点是不破坏目的产物的组成和结构,能保持目的产物本来的组成成分物理化学性质不改变,因而主要用于热敏性物质、水溶性的氨基酸、蛋白质、酶、食用风味物质、食用色素、植物油等目的产物的提取。

1.水溶性物质的榨取方法

本法榨取的是氨基酸、酶、蛋白质、多糖、色素果汁等。所用植物原材料是新鲜材料,采用干压榨或湿压榨法榨取。干压榨法是在榨取过程中不加水洗涤原材料,施加压力直至无液体流出为止。干压榨法提取率不高,正逐渐被淘汰。

现广泛使用的是湿压榨法,即在压榨过程中不断加水洗涤原材料,直到把目的产物全部榨取出来为止。

在进行湿压榨法前要把原材料洗涤干净无杂质,并用粉碎机粉碎成浆状,然后装筐或装袋进行压榨。

压榨提取法使用的机械设备分为间歇和连续式两种。间歇式压榨机有水平向挤压机和竖直向压榨机,连续式压榨机主要有螺旋压榨机,水平带式压榨机。在植物提取中使用较多的是螺旋压榨机。

2.脂溶性物质的榨取法

本法榨取的是油脂、挥发油、油溶性成分。所使用的植物原材料一般是种子、果实、皮等。榨取前原材料要经过剥壳、蒸炒,使组织细胞破坏,将原材料装袋或筐后上机压榨。在压榨过程中原材料发生变化主要是物理变化,经过了物料变形、油脂分离、摩擦发热和水分蒸发等过程。压榨时,料胚在压力作用下,组织的内部表面相互挤压,使油脂不断从料胚孔中被挤压出来,同时原材料在高压下形成坚硬的油饼,物料粒子表面渐趋挤紧,直到挤压表面留下单分子层形成表面油膜,致使饼中残油无法被挤压出来。

另外,药用挥发性油的压榨提取还可通过挫榨法进行榨取。

第四节中药提取浓缩生产流程

教学目标:

掌握中药提取浓缩相关设备的结构及操作方法。

理解中药提取浓缩生产流程设计原理。

掌握提取浓缩生产流程的操作方法。

教学重点:

中药提取浓缩相关设备的结构及操作方法。

中药提取浓缩生产操作规程。

教学难点:

中药提取浓缩生产流程设计原理。

教学内容:

一、提取罐的结构

进行中药提取的设备又称为提取罐。按照外观造型可将提取罐分为五种形式,既直筒式提取罐,蘑菇形提取罐,正锥形提取罐,斜锥形提取罐,搅拌式提取罐。目前普遍采用小直径直筒式提取罐,其结构特点是中间切线循环,采用夹套和直接蒸汽加热,底部加热沸腾,上下同径,阻力小出料顺畅,结构简单,造价低廉。

蘑菇形提取罐筒体上大下小,上部空间大可防止暴沸。传热快,切线循环,动态效果好。因顶部配有清洗球可进行全方位清洗。采用夹套和底部加热,可保持浸取液沸腾状态。缺点制造难度大,价格高。

正锥式提取罐筒体直径大,底部直径小,出料口密封性好,但出渣时往往需要人辅助出料。加热时采用夹套方式进行。斜锥式提取罐与正锥式提取罐结构和性能基本相同,但阻力小,出料时较正锥式提取罐容易。

搅拌式提取罐是在蘑菇形提取罐基础之上发展起来的。在提取罐顶部安装了搅拌器,通过搅拌器的搅动促使溶剂流动,形成动态提取,改善了物料和溶剂接触状态,提高了溶质浸取速度。但机械搅拌对原材料和被提取物都有一定的要求,选用时要予以注意。

二、提取罐操作规程

可作为植物提取的设备是多种多样的,各种设备都有其工艺操作条件、原料特性和技术特点,要根据具体情况进行综合分析后选用设备。一般来讲,采用煎煮法提取时多采用蘑菇形提取罐、直锥式提取罐和搅拌式提取罐。浸渍提取时,通常采用带有搅拌或泵循环的浸渍器。

在生产中只采用一个提取罐进行提取的工艺流程称为单罐提取。现以水提取为例说明单罐提取操作规程和安全事项,如图10—14所示。

(1)加入药材

开启空压机观察压力表,调整压力表读数大于0.6MPa,打开压缩进气阀、操作气动阀,用启动气缸把出渣门关闭,用锁紧气缸把门锁紧,用保险气缸把出渣门销住。从投料口假如中药材,关闭投料口。

(2)加入溶剂

打开冷却水阀门使冷却器正常工作,打开回流阀、测压阀使罐内和大气相通,打开进溶剂阀、切线循环阀,气动离心泵向罐内定量注入溶剂。

(3)通入蒸汽

打开蒸汽进气阀、筒体夹套蒸汽阀、底部蒸汽阀、蒸汽冷凝水管连接阀、冷凝水旁通阀、底部整齐冷凝水阀。然后打开疏水器阀,关闭冷凝水旁通阀,及时观察罐内提取温度及压力,沸腾后关闭夹套蒸汽阀,用底部蒸汽阀加热维持沸腾,一直达到工艺要求时间。

(4)循环提取

通如入整齐后,打开底部出液阀、切线循环阀,启动离心泵进行顺流循环,然后打开上提取液出液阀、逆流循环阀,关闭切线阀、底部出液阀,进行逆流循环。

(5)芳香油回收

开启溶剂回流阀、收油回流阀、放空阀,关闭回流阀V2,通过油水分离器上的视镜观察油面,打开收油阀V10、调节回流阀控制收取轻油,通过控制阀V8收取重油。

(6)出液

关闭蒸汽系统各阀门,打开底部出液阀V32、过滤阀V24,关闭逆流循环阀V29、上提取出液阀V30,启动离心泵将提取液通过过滤器送入储液罐。

(7)出渣

提取完成后,依次关闭各功能阀,操作启动阀P1,退出安全销后松开阀P2紧锁块,打开阀P3使出渣门缓缓打开,使药渣落下。

(8)冲洗

打开逆流循环阀V29,用温水冲洗罐内及出渣门密封条等,开自来水阀冲洗提取罐及软管。

(9)记录

要详细及时记录好生产各数据,为生产管理提供依据。

注意事项:

在生产过程中需要注意罐内的压力变化情况,按规定允许使用压力。罐体及

出渣门夹套使用蒸汽压力≤0.3MPa;罐内压力为常压;气缸使用压缩空气压力

0.7MPa。严禁罐内超压使用。

三、典型的纯化工艺流程

根据目的产物和杂质的理化性质,对提取液的纯化方式多种多样。最常见的方法有沉淀、大孔树脂吸附、离子交换、结晶等方法。在中药制药工业化生产过程中,通常采用水或者乙醇将杂质沉淀后静臵过夜,然后再过滤得澄清液的工艺流程,也有采用大孔树脂吸附法进行精制的。比较典型的中药提取液纯化工艺流程是提取法与纯化方法的有机结合,主要有水提醇沉法和醇提水沉法两种。

1.水提醇沉法

用水提取浓缩后,向提取液中加入一定浓度的乙醇,沉淀过滤去除杂质的方法称为水提醇沉法。在本法的基本原理是,中药有效成分如生物碱、苷、有机酸、多糖等易溶于水和乙醇,而蛋白质、淀粉、粘液质、数胶、和无机盐等杂质均不溶解于高浓度的乙醇。加入高浓度乙醇既能通过沉淀去除杂质,同时也保留了既溶于水又溶于乙醇的中药有效成分。

在实际操作中加入的乙醇量要准确,当溶液中乙醇的浓度在50%~60%时,可去除淀粉杂质,含醇量达75%时,可除去蛋白质等杂质,当含醇量达80%时,几乎可除去全部蛋白质和多糖、无机盐类杂质。

2.醇提水沉法

醇提水沉法的基本原理与水提醇沉法大致相同。其不同之处是先用70%~90%的乙醇提取静臵滤过,经蒸馏回收乙醇后再冷藏滤过则可将沉淀去除。用乙醇提取的优点是减少生药中粘液质、淀粉、蛋白质、树脂等的溶出,简化了后续纯化操作,同时因操作工序少,药液受热时间短,有效成分损失小。其缺点是不能将鞣质彻底除掉,颜色较水提醇沉法深,可能是乙醇提出的脂溶性色素较多之故。

除以上介绍的除去杂质的方法外,还有用5%~10%的明胶溶液、20%~30%的石灰乳作沉淀剂去杂、用大孔树脂吸附有效成分去杂以及其他去杂等方法,本课程不对这部分内容作深入讨论。

四、中药提取浓缩生产线

由于待提取的目的产物存在的形式和其理化性质不同,植物提取纯化方法也

就不同。按照使用的溶剂的种类,可把中药提取分为水提取法、醇提取法和其他有机溶剂提取法;如果按照溶剂在提取罐中的运动状态,可分为静态提取法和动态提取法。中药提取浓缩生产线包括提取、纯化、浓缩、干燥四个操作单元,根据提取时溶剂的流动状态,可将中药提取生产线分为静态提取和动态提取两种。

1.中药静态提取浓缩生产线

中药静态提取浓缩生产线的特点是,提取罐中的药材和溶剂处于相对的静止状态,这种方法设备投资少、维修率低、提取效率较低。其提取生产线设备组成是:多能式中药提取罐、冷却冷凝器、离心泵、翅片过滤器、储罐、浓缩罐、真空干燥器、精馏塔、醇沉罐、射流真空泵等。如图10—15所示。静态提取浓缩生产线是传统中药生产线,正逐渐被动态提取法淘汰。

2.中药动态提取生产线

中药动态提取生产的全过程是:溶剂进入多功能提取罐中浸提药材后,所得浸提液经高速离心机离心过滤后,得到可直接用于口服液制剂的中药液体,整个生产过程可连续不断地进行,药材与溶剂发生相对的流动。

中药动态提取生产线设备组成有:

(1)提取装臵:提取装臵为动态多能式中药提取罐,采用热水温浸动态提取工艺,并用板式换热器对进入提取关的溶剂水进行预热。本提取工艺提取温度95℃,浸提时间较短。药材与溶剂处于一种相对运动,有利于有效成分的溶出。

(2)固液分离装臵:采用三级分离工艺,用外溢式三足离心机、液体振荡

以上的悬浮微筛、管式高速离心机对中药提取液进行三次分离,使药渣和3m

粒被分离除去,所得药液澄明度好,同时避免了后续蒸发浓缩过程结焦粘壁和管道堵塞等问题。

(3)蒸发浓缩装臵:采用单效或三效真空蒸发器浓缩蒸发。

(4)喷雾干燥:离心喷雾干燥机干燥时间短,产品粒度均匀,水溶性好,目的产物活性损失小,是当今制药企业广泛采用的干燥设备。经浓缩后的药液可直接送入离心喷雾干燥机中干燥。

第五节中药提取车间布臵设计

双水相萃取法

双水相萃取法的应用及研究进展 摘要:双水相萃取技术作为一项新的分离技术日益受到重视,它与传统的萃取及其它分离技 术相比具有操作条件温和、处理、量大、易于连续操作等优点,从而使其能广泛应用于生物分离工程中。本文介绍了双水相的形成、双水相萃取技术的基本原理以及影响物质分配系数的因素。同时对双水相萃取技术的研究进展及其应用进行了综述。 关键词:双水相萃取分离纯化进展 一:方法 随着基因工程、蛋白质工程、细胞培养工程、代谢工程等高新技术研究工作的广泛开展,各种高附加值的生化新产品不断涌现,对生化分离技术也提出了越来越高的要求。包括精馏、吸收、萃取、蒸发、结晶在内传统的分离技术有三大特点:分离过程伴随有相的变化;筛分过程不能实现分子级别的分离;精制过程成本极高,这些特征对于节约能源、生物分离、环境 保护、资源开发、替代能源、高纯材料等当代化学工程与科学技术发展不相适应。围绕以上几个问题的讨论就构成了分离技术研究与发展的主流,即新型分离技术产生的背景。双水相萃取技术始于20世纪60年代,从1956年瑞典伦德大学Albertsson发现双水相体系[2]到1979年德国GBF的Kula等人将双水相萃取分离技术应用于生物产品分离,虽然只有20多年的历史,但由于其条件温和,容易放大,可连续操作,目前,已成功的应用于蛋白质、核酸和病毒等生物产品的分离和纯化,双水相体系也已被成功的应用到生物转化及生物分析中。 双水相现象是当两种聚合物或一种聚合物与一种盐溶于同一溶剂时,由于聚合物之间或聚合物与盐之间的不相溶性,使得聚合物或无机盐浓度达到一定值时,就会分成不相溶的两相,因使用的溶剂是水,因此称为双水相原则上,无论是天然的还是合成的亲水聚合物,绝大多数在与另一种聚合物水溶液混合时都可分成两相,构成双水相体系。 双水相萃取与水一有机相萃取的原理相似,都是依据物质在两相间的选择性分配,但萃取体系的性质不同。当物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等)的存在和环境的影响,使其在上、下相中的浓度不同。对于某一 物质,只要选择合适的双水相体系,控制一定的条件,就可以得到合适的分配系数,从而达到分离纯化之目的。 二:讨论 双水相萃取是一项可以利用不复杂的设备,并在温和条件下进行简单的操作就可获得较高收率和有效成分的新型分离技术。因此,广泛应用于生物化学、细胞生物学和生物化工等领域。然而有关双水相分配的基础研究还不够,工业化的一些关键问题还没有解决。为此,有必要加强这方面的基础研究,解决大规模萃取生物活性物质的工艺条件和设备方面的问题,促进双水相萃取技术的不断发展。 影响双水相萃取的因素比较复杂,主要包括静电作用、疏水作用和界面张力等。通过对各个因素的调节,可以极大地提高蛋白质的选择性,达到向一相富集的目的。A 1}'帅的组分性质千差万别,从晶体到无定形聚合物、从非极性到极性、从电解质到非电解质、从无扫L 小分子到有扫L高分子甚至生物大分子,这些都不可避免地造成理论计算的复杂性,以至 于现在还没有一套比较完善的理论来衡量各个影响因素之问的关系和解释生物大分子在体 系中的分配扫L理.有关A丁PS分配模型的研究中,较为成功的有的渗透维里模型,以及晶格模型。前者在预测聚合物的成相行为和蛋白质的分配上有较高的准确度;后者在粒子的能

液液萃取原理

液液萃取原理 液液萃取是指两个完全不互溶或部分互溶的液相接触后,一个液相中的溶质经过物理或化学作用另一个液相,或在两相中重新分配的过程。如图所示: 几个概念 1. 原溶液:之欲分离的原料溶液,原溶液中欲萃取组份成为溶质A,其余称稀释剂B 2. 溶剂S:为萃取A而加入的溶剂,也称萃取剂 3. 萃取相:原溶剂和稀释剂混合萃取后,分成两相,含溶剂S较多的一相; 4. 萃余相:主含稀释剂的一相 5. 萃取液:萃取相脱溶剂后的溶液 6. 萃余液:萃余相脱溶剂后的溶液 萃取过程的条件 1.两个接触的液相完全不互溶或部分互溶; 2.溶质组分和稀释剂在两相中分配比不同; 3.两相接触混合和分相; 4.溶剂S对A和B的溶解能力不一样,溶剂具有选择性,即 其中:y表示萃取相内组分浓度;x表示萃余相内组分浓度。上式表明:萃取相中A/B的浓度比值应大于萃余相中A/B的浓度比值。

典型工业萃取过程 1.以醋酸乙酯为溶剂萃取稀醋酸水溶液中的醋酸,制取无水醋酸。由于萃取相中含有水,萃余相中含有醋酸乙酯,所以萃取后产品和溶剂均须通过精馏分离实现。 2.以醋酸丁酯为溶剂萃取青霉素产品。 3.以环砜为溶剂从石油轻馏分中提取环烃; 4.以轻油为溶剂从废水中脱酚; 5.以丙烷为溶剂从植物油中提取维生素。 萃取过程的经济性 1. 混合物的相对挥发度下或形成恒沸物,用一般精馏方法不能分离或很不经济; 2.混合物浓度很稀,采用精馏方法必须将大量稀释剂B气化,能耗高; 3 混合液含热敏性物质(如药物等),采用萃取方法精制可避免物料受热破坏。 萃取过程对萃取剂要求 ①选择性好; ②萃取容量大; ③化学稳定性好; ④分相好; ⑤易于反萃取或精馏分离; ⑥操作安全、经济、毒性小 常用的工业萃取剂 醇类:异戊醇;仲辛醇;取代伯醇 醚类:二异丙醚;乙基己基醚 酮类:甲基异丁基酮;环己酮 酯类:乙酸乙酯、乙酸戊酯、乙酸丁酯 磷酸酯类:己基磷酸二(2-乙基己基)酯、二辛基磷酸辛指、磷酸三丁酯

化工原理第十章-液-液萃取和液-固浸取

第十章 液-液萃取和液-固浸取 1. 25℃时醋酸(A )–庚醇-3(B )–水(S )的平衡数据如本题附表所示。 习题1附表1 溶解度曲线数据(质量分数/%) 试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。(2)确定由200 kg 醋酸、200 kg 庚醇-3和400 kg 水组成的混合液的物系点位置。混合液经充分混合并静置分层后,确定两共轭相的组成和质量。(3)上述两液层的分配系数A k 及选择性系数β。(4)从上述混合液中蒸出多少千克水才能成为均相溶液? 解:(1)溶解度曲线如附图1中曲线SEPHRJ 所示。辅助曲线如附图1曲线SNP 所示。分配曲线如附图2 所示。 (2)和点醋酸的质量分率为 25.0400 200200200 A =++= x 水的质量分率为 50.0400 200200400 S =++=x 由此可确定和点M 的位置,如附图1所示。由辅助曲线通过试差作图可确定M 点的差点R 和E 。由杠杆规则可得 kg 260kg 80040 13 4013=?==M R ()kg 540kg 260800=-=-=R M E

由附图1可查得E 相的组成为 A S B 0.28, 0.71,0.01y y y === R 相的组成为 A S B 0.20, 0.06,0.74x x x === (3)分配系数 A A A 0.28 1.40.20y k x === B B B 0.010.01350.74 y k x = == 选择性系数 7.1030135 .04.1B A === k k β (4)随水分的蒸发,和点M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变为均相物系。由杠杆规则可得 kg 5.494kg 80055 34 5534=?== M H 需蒸发的水分量为 ()kg 5.305kg 5.494800=-=-H M 2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为30%的醋酸–庚醇-3混合液中提取醋酸。已知原料液的处理量为1 000 kg/h ,要求萃余相中醋酸的质量分数不大于10%。试(1)水的用量;(2)萃余相的量及醋酸的萃取率。操作条件下的平衡数据见习题1。 解:(1)物系的溶解度曲线及辅助曲线如附图所示。 由原料组成x F =0.3可确定原料的相点F ,由萃余相的组成x A =0.1可确定萃余相的相点R 。借助辅助曲线,由R 可确定萃取相的相点E 。联结RE 、FS ,则其交点M 即为萃取操作的物系点。由杠杆规则可得 习题1 附图1 习题1 附图2

第七章 双水相萃取

第七章双水相萃取 第一节概述 基因工程产品如蛋白质和酶往往是胞内产品,需经细胞破碎后才能提取、纯化,细胞颗粒尺寸的变化给固—液分离带来了困难,同时这类产品的活性和功能对pH值、温度和离子强度等环境因素特别敏感,由于它们在有机溶剂中的溶解度低并且会变性,而且大部分蛋白质分子有很强的亲水性,不能溶于有机溶剂中,因此传统的溶剂萃取法并不适合。采用在有机相中添加表面活性剂产生反胶束的办法可克服这些问题,但同样存在相的分离。因此基因工程产品的商业化迫切需要开发适合大规模生产的、经济简便的、快速高效的分离纯化技术。其中双水相萃取技术,又称水溶液两相分配技术是近年来出现的引人注目、极有前途新型分离技术。双水相萃取就是针对生物活性物质的提取所开发的一种新型液一液萃取分离技术。 双水相萃取法的特点是能够保留产物的活性,整个操作可以连续化,在除去细胞或细胞碎片时,还可以纯化蛋白质2~5倍,与传统的过滤法和离心法去除细胞碎片相比,无论在收率上还是成本上都要优越得多见表11.1所示。双水相萃取法和传统的酶粗分离方法(如 盐析或有机溶剂沉淀等)相比也有很大的优势,如以 -半乳糖苷酶为例,用沉淀或双水相萃 取纯化的比较见表11.2。除此以外,处理量相同时,双水相萃取法比传统的分离方法,设备需用量要少3~10倍,因此已被广泛地应用在生物化学、细胞生物学和生物化工领域,进行生物转化、蛋白质、核酸和病毒等产品的分离纯化和分析等。用此法来提纯的酶已达数十种,其分离过程也达到相当规模,如甲酸脱氢酶的分离已达到几十千克湿细胞规模,半乳糖苷酶的提取也到了中试规模等。 近年来又进行了双水相萃取小分子生物活性物质,如红霉素、头孢菌素C、氨基酸的研究和亲和双水相萃取的研究,大大扩展了应用范畴并提高了选择性;使双水相萃取技术具有更大的潜力和宽阔的前景。 双水相萃取现象最早是1896年由Beijerinck在琼脂与可溶性淀粉或明胶混合时发现的这种现象被称为聚合物的“不相溶性”。本世纪60年代瑞典Lund大学的AlbertssonPA及其同事们最先提出双水相萃取技术并做了大量的工作。70年代中期西德的KulaMR和KronerKH 等人首先将双水相系统应用于从细胞匀浆液中提取酶和蛋白质,大大改善了胞内酶的提取效果。虽然双水相技术在应用方面取得了很大的进展,但几乎都是建立在实验基础上,至今还没有一套比较完善的理论来解释生物大分子在体系中的分配机理。1989年,Diamond等以Ftory—Huggins理论为基础,推导出生物分子在双水相体系中的分配模型,但尚有局限性,仍需继续探索,不断完善。 双水相萃取技术真正工业化的例子也很少,其原因是成本较高,使它在技术上的优势被削弱。双水相萃取中,原材料成本占了总成本的85%以上并且总成本随生产规模的扩大而增加很多。因此产业化成了问题,若要发挥其技术优势,降低原材料成本是关键。合成价格低廉并且具有良好的分配性能的聚合物及将其从后续的操作过程中回收是双水相萃取技术研究中的一个主要方向。 一、双水相的形成 在聚合物—盐或聚合物—聚合物系统混合时,会出现两个不相混溶的水相,典型的例子如在水溶液中的聚乙二醇(PEG)和葡聚糖,当各种溶质均在低浓度时,可以得到单相匀质液体,但是,当溶质的浓度增加时,溶液会变得浑浊,在静止的条件下,会形成两个液层,实际上是其中两个不相混溶的液相达到平衡,在这种系统中,上层富集了PEG,而下层富集了葡聚糖。

双水相萃取

实训1 双水相萃取相图的制作 一、实训目的 1. 学习双水相分离萃取的原理和方法 2. 学习双水相萃取相图的制作 二、实训原理 双水相萃取法是利用物质在互不相容的两个水相间分配系数的差异来进行萃取的方法。 两水相的形成:高聚物与无机盐在水中由于盐析的作用会形成两个相,如PEG 与硫酸盐或碱性磷酸盐。两种亲水性高聚物在水中由于聚合物的不相容性也会形成两个相。但是它们只有达到一定的浓度时,才能形成两相,双水相形成的定量关系可用相图来表示。 相图是一根双节线, 把均匀区和两相区分隔开来。 当成相组分的配比取在:线的下方时,为均相区; 曲线的上方时,为两相区;在曲线上,则混合后,溶液恰好从澄清变为浑浊。 相图中TMB 称为系线;T 代表上相组成;B 代表下相组成;同一条系线上各点分成的两相具有相同的组成,但体积比不同。 V T / V B = BM / MT 三、实训器材、试剂、材料 1.器材:试管,离心机,天平,离心管,三角瓶,滴定管。 2.试剂:聚乙二醇2000(PEG2000),硫酸铵。 四、实训操作步骤 1.PEG2000(NH 4)2SO 4双水相体系相图的测定 (1)取10%(g/ mL )PEG2000溶液10mL 于三角瓶中。 (2)用40%(g/mL )(NH 4)2SO 4溶液装入滴定管中滴定至三角并中溶液出现浑浊,记录)NH4)2SO 4溶液消耗的体积。加入1mL 水使溶液澄清,继续用(NH 4)2SO 4溶液滴定至浑浊,重复7~8次,记录每次(NH 4)2SO 4溶液消耗的体积,计算每次出现浑浊时体系中PEG2000和(NH 4)2SO 4的浓度(g/mL )。 (3) 以(NH 4)2SO 4的浓度(g/mL )为横坐标,PEG2000的浓度(g/mL )为纵坐标,绘制PEG2000- (NH 4)2SO 4双水相体系相图。 2. 相图制作表 10%PEG2000 10mL 温度T=20℃ PEG2000 % (NH 4)2SO 4 % 两相 均相

固液萃取

第十章固液浸取 第一节萃取原理 教学目标: 理解萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 掌握单级萃取、多级逆流萃取、多级错流萃取的物料流动过程。 教学重点: 萃取过程和萃取原理。理解萃取分配定律的含义,掌握分配常数的计算公式。 单级萃取、多级逆流萃取的物料流动过程。 教学难点: 萃取分配定律的含义,分配常数计算公式的具体应用。 教学内容: 一、萃取基本原理 1.萃取过程 如图10—1所示,假设一种溶液的溶剂A与另一个溶剂B互不相容,且溶质C在B中的溶解度大于在A中的溶解度,当将溶剂B加入到溶液中经振摇静臵后, 则会发生分层现象,且大部分溶质C转移到了溶剂B中。这种溶质从一种体系转移到另一个体系的过程称为萃取过程。

在萃取过程中起转移溶质作用的溶剂称为萃取剂,由萃取剂和溶质组成的溶液叫萃取液,原来的溶液在萃取后则称为萃余液。如果萃取前的体系是液态则称为液—液萃取,如果是固态则称为固——液萃取,又称固液浸取,如用石油醚萃取青蒿中的青蒿素就是典型的固液浸取实例。 2.萃取原理 物质的溶解能力是由构成物质分子的极性和溶剂分子的极性决定的,遵守“相似相溶”原则的,即分子极性大的物质溶于极性溶剂,分子极性小的物质溶解于弱极性或非极性溶剂中。例如,还原糖、蛋白质、氨基酸、维生素B 族等物质,其分子极性大,可溶于极性溶剂水中,而不溶解于非极性溶剂石油醚中。又如大多数萜类化合物的分子极性小,易溶于石油醚和氯仿等极性小的溶剂中,但不溶于水等极性强的溶剂。因此,同一种化合物在不同的溶剂中有不同的溶解能力。当一种溶质处于极性大小不相当的溶剂中时,其溶解能力小,有转移到相当极性的溶剂中去的趋势,假设这种极性相当的溶剂与原来的溶剂互不相溶,则绝大部分溶质就会从原来的相态扩散到新的溶剂中,形成新的溶液体系,即形成萃取液。 在萃取过程时,溶质转移到萃取剂中的程度遵守分配定律。指出,在其他条件不变的情况下,萃取过程达到平衡后,萃取液中溶质浓度与萃余液中溶质浓度的比值是常数,这个规律叫分配定律,常数0k 叫分配系数。如图10—2所示,在 进行第一次萃取时,设原料液中溶质的摩尔浓度为C,萃取相中溶质的摩尔浓度为X ,萃余相中溶质的摩尔浓度为Y ,则: 假设进行多次萃取才能将目的产物提取完,则进行第n 次萃取时,原料液中0 10--1X k Y ==萃取相()萃余相

固相萃取技术及其应用

固相萃取技术及其应用 Solid-phase Extraction and its Applications 华运有限公司市场销售部 陈小华博士

目录 再版序 (4) 一. 引言 (5) 一. 固相萃取的基本原理 (8) 吸附剂和分析物之间作用力 (8) 非极性作用力 (8) 极性作用力 (9) 离子作用力 (10) 多种作用力 (14) 三. 固相萃取的基本程序 (15) 萃取柱的预处理 (15) 样品的添加 (15) 萃取柱的洗涤 (15) 萃取柱的干燥 (15) 分析物的洗脱 (15) 极性指数 (15) 溶剂强度 (15) 溶剂选择性 (15) 固相萃取中应当考虑的几种作用力 (20) 建立固相萃取方法 (20) 评估萃取问题 (20) 评估分析的要求..................... . (22) 评估样品的特性 (22) 建立初步的萃取方法 (26) 建立SPE方法的实例 (30) 四. 新型固相萃取材料 (35) 混合型硅胶固相萃取柱 (35) 聚合树酯固定相 (35) 薄膜型固相萃取柱 (36) 固相萃取膜 (39)

超临界固相萃取 (39) 固相微萃取 (39) 五. 固相萃取柱的重复使用 (40) 六. 固相萃取中常见的问题及解决方法 (41) 七. 固相萃取的自动化 (44) 吉尔森自动化固相萃取系统 (45) 吉尔森固相萃取仪在方法优选中的应用................................. .50 八. 部分固相萃取应用方法 (52) 滥用药物的固相萃取 (52) 常见药物的固相萃取 (55) 自动在线SPE-GC/MS萃取分析马尿中的药物 (64) 有机磷杀虫剂的SPE固相萃取 (65) 有机氯杀虫剂的萃取 (65) 非脂肪海水鱼食品中有机氯杀虫剂残留的固相萃取 (66) 除草剂固相萃取 (67) 氨基甲酸酯杀虫剂的固相萃取 (68) 新鲜水果和蔬菜中90种杀虫剂残留的固相萃取 (71) 蜂蜜中杀虫剂的固相萃取-气相色谱分析 (75) 残留氯霉素 (Chloramphenicol) 的萃取 (77) 动物组织及蛋类中抗菌素的萃取 (81) 蜂蜜中磺胺类药物的萃取及分析 (81) 克喘速(盐酸克仑特罗)及舒喘宁(沙丁胺醇) 残留的检验 (82) 水溶液中蛋白质的萃取及浓缩 (84) 水溶液中免疫球蛋白G(IgG)的萃取 (84) 从血红细胞中萃取血色素 (85) 合成寡合苷酸的萃取及纯化 (86) 附录一 (87) 附录二 (93)

化工原理第十章 液-液萃取和液-固浸取电子教案

化工原理第十章液-液萃取和液-固浸取

第十章液-液萃取和液-固浸取 1. 25℃时醋酸(A)–庚醇-3(B)–水(S)的平衡数据如本题附表所示。 习题1附表1 溶解度曲线数据(质量分数/%) 习题1附表2 联结线数据(醋酸的质量分数%) 试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。(2)确定由200 kg醋酸、200 kg庚醇-3和400 kg水组成的混合液的物系点位置。混合液经充分混合并静置分层后,确定两共轭相的组成和 k及选择性系数 。(4)从上述混合液中蒸质量。(3)上述两液层的分配系数 A 出多少千克水才能成为均相溶液? 解:(1)溶解度曲线如附图1中曲线SEPHRJ所示。辅助曲线如附图1曲线SNP所示。分配曲线如附图2 所示。 (2)和点醋酸的质量分率为

25 .0 400 200 200 200 A = + + = x 水的质量分率为 50 .0 400 200 200 400 S = + + = x 由此可确定和点M的位置,如附图1所示。由辅助曲线通过试差作图可确定M 点的差点R和E。由杠杆规则可得 kg 260 kg 800 40 13 40 13 = ? = =M R ()kg 540 kg 260 800= - = - =R M E 由附图1可查得E相的组成为 A S B 0.28,0.71,0.01 y y y === R相的组成为 A S B 0.20,0.06,0.74 x x x === (3)分配系数 A A A 0.28 1.4 0.20 y k x === B B B 0.01 0.0135 0.74 y k x === 习题1 附图1 习题1 附图2

固_液萃取技术及应用

固—液萃取技术及应用Ξ 王春华 (兰州石化职业技术学院,内蒙古呼和浩特 010010) 摘 要:本文以甜菜中糖份的萃取为例,深入探讨了固—液萃取技术以及在制糖、油脂工业上的应用。 关键词:萃取;技术;应用 1 概述 固—液萃取在日常生活与工业中有着广泛地应用。如用酒精提取药物或香水(如玫瑰花)中的有效成份,制成药酒或香精;在制糖工业中,用水为萃取剂将甜菜中的糖份萃取出来;在油脂工业中,以酒精或汽油为萃取剂对大豆等油料作物中油类的萃取,还有许多风糜一时的保健品如麦饭石营养液,枣露等都是采用萃取方法取得的,可以说萃取技术与人们的生活休戚相关,在工业过程中起着举足轻重的作用。下面着重介绍固—液萃取技术与应用。 2 固—液萃取技术及应用 根据固体物料与萃取剂的接触方式,萃取操作流程有:单级萃取流程,多级萃取流程及带有洗涤系统的萃取流程等,以萃取甜菜糖份为例,分别介绍上述萃取流程。 211 单级固—液萃取流程 图1所示为一用水为萃取剂,萃取甜菜中糖份的单级固—液萃取流程。萃取时,将要处理的甜菜切碎放在萃取器内,加入一定量的水,经过一定时间后甜菜中的糖份进入水溶液。当水溶液中的糖份达到所需浓度之后,将含糖水溶液放出,重新加入水,进行第二次萃取。如此反复操作,直至甜菜中糖含量降到所需值为止。萃取结束后,将菜渣放出,加入新料,仍按上述过程操作。上述流程虽然简单,但只能在第一次萃取中得到浓溶液,后面的几次萃取中,由于甜菜中的糖份不断地减少,能被萃取出的糖份也就越来越少。为了尽可能地萃取出糖份就需要加入大量的水,并且萃取较长的时间,这显然是不经济的。为克服上述流程的缺点,故一般采用多级固—液萃取流程。 图1 单级固—液萃取流程 212 多级固—液萃取流程 多级固—液萃取流程如图2所示,图中所表示的是一个四级萃取流程。操作时先将要处置的固体物料加入各个萃取器中,萃取剂由第一级萃取器中加入,依次通过各级萃取器,与第一级的固体物料接触,浓度不断增加,从最后一级出来的萃取相浓度达到最高。当第一级萃取器中物料被萃取成份的含量达到残渣的排放要求时,将第一级自流程中切断,卸出残渣,装入新物料,并入流程中。此时,新装入物料的萃取器在流程中成为最后一级萃取器,原来的第 二级现在成为第一级,即萃取剂流动方向由原来1→2→3→4变为2→3→4→1。采用多级固—液萃取流程,可以用少量的萃取剂,达到较高的萃取率,获得浓度较高的萃取相。 图2 多级固—液萃取流程 52  2007年第11期 内蒙古石油化工 Ξ收稿日期:2007-08-15 作者简介:王春华,女,出生于1964年3月,毕业于华南理工大学机械设计与制图专业,现系兰州石化职业技术学院机械系教师,曾任机械制图、化工制图、计算机绘图等课程,职称为讲师。

化工原理第十章_液_液萃取和液_固浸取

第十章 液-液萃取和液-固浸取 1. 25℃时醋酸(A )–庚醇-3(B )–水(S )的平衡数据如本题附表所示。 习题1附表1 溶解度曲线数据(质量分数/%) 试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。(2)确定由200 kg 醋酸、200 kg 庚醇-3和400 kg 水组成的混合液的物系点位置。混合液经充分混合并静置分层后,确定两共轭相的组成和质量。(3)上述两液层的分配系数A k 及选择性系数β。(4)从上述混合液中蒸出多少千克水才能成为均相溶液? 解:(1)溶解度曲线如附图1中曲线SEPHRJ 所示。辅助曲线如附图1曲线SNP 所示。分配曲线如附图2 所示。 (2)和点醋酸的质量分率为 25.0400 200200200A =++= x 水的质量分率为 50.0400 200200400S =++=x 由此可确定和点M 的位置,如附图1所示。由辅助曲线通过试差作图可确定M 点的差点R 和E 。由杠杆规则可得 kg 260kg 80040134013=?==M R ()kg 540kg 260800=-=-=R M E

由附图1可查得E 相的组成为 A S B 0.28, 0.71,0.01y y y === R 相的组成为 A S B 0.20,0.06,0.74x x x === (3)分配系数 A A A 0.28 1.40.20y k x === B B B 0.010.01350.74 y k x === 选择性系数 7.1030135 .04.1B A ===k k β (4)随水分的蒸发,和点M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变为均相物系。由杠杆规则可得 kg 5.494kg 80055 345534=?== M H 需蒸发的水分量为 ()kg 5.305kg 5.494800=-=-H M 2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为30%的醋酸–庚醇-3混合液中提取醋酸。已知原料液的处理量为1 000 kg/h ,要求萃余相中醋酸的质量分数不大于10%。试(1)水的用量;(2)萃余相的量及醋酸的萃取率。操作条件下的平衡数据见习题1。 解:(1)物系的溶解度曲线及辅助曲线如附图所示。 由原料组成x F =0.3可确定原料的相点F ,由萃余相的组成x A =0.1可确定萃余相的相点R 。借助辅助曲线,由R 可确定萃取相的相点E 。联结RE 、FS ,则其交点M 即为萃取操作的物系点。由杠杆规则可得 习题1 附图1 习题1 附图2

液液萃取

绪论 4.1 液液萃取过程 4.2 液液相平衡 4.3 萃取过程计算 4.4 萃取设备 4.5 萃取过程的新进展 基本概念 利用组分在两个互不相溶的液相中的溶解度差而将其从一个液相转移。到另一个液相的分离过程称为液液萃取,也叫溶剂萃取,简称萃取。待分离的一相称为被萃相,萃取后成为萃余相,用做分离剂的相称为萃取相。萃取相中起萃取作用的组分称为萃取剂,起溶剂作用的组分称为稀释剂或溶剂。 具有处理量大、分离效果好、回收率高、可连续操作以及自动控制等特点,因此得到了广泛的应用。 1. 液液萃取过程的特点 (1)萃取过程的传质前提是两个液相之间的相互接触; (2)两相的传质过程是分散相液滴和连续相之间相际传质 过程。 (3)两相间的有效分散是提高萃取效率的有效手段。

(4)两相的分离需借助两相的密度差来实现。 (5)液液萃取过程可以在多种形式的装置中通过连续或间 歇的方式实现。 2. 液液萃取的主要研究内容 (1)确定萃取体系包括被萃相体系和萃取相体系的构成,如被萃相的酸碱度、萃取相的稀释剂等。 (2)测定相平衡数据分配系数和分离系数。 (3)确定工艺和操作条件相比、萃取剂和稀释剂用量、被萃物浓度、萃取温度等。 (4)萃取流程的建立完整的萃取和反萃流程。 (5)设备的确定设备形式和结构。 1. 萃取剂的选择 (1) 萃取剂应具备的特点 ①萃取剂中至少要有一个能与被萃物形成萃合物的官能团。常见的萃取官能团通常是一些包含N、O、P、S的基团。 ②萃取剂中还应包含具有较强亲油能力结构或基团,如长链烃、芳烃等,以利于萃取剂在稀释剂中的溶解,并防止被萃相对它的溶解夹带损失。

第8章双水相萃取技术

第8章双水相萃取技术 第8章双水相萃取技术 1双水相萃取现象:最早是1896年由Beijernek在琼脂和可溶性淀粉或明胶混合时发现的,这种现象称之为聚合物的“不相溶性”。70年代中期西德的Kula和Kroner等人首先将双水相系统应用于从细胞匀浆 液中提取酶和蛋白质,大大地改善了胞内酶的提取效果。 双水相萃取技术:某些亲水性高分子聚合物的水溶液超过一定浓度后可形成两相,并且在两相中水分均占很大比例,即形成双水相系统。利用亲水性高分子聚合物的水溶液可形成双水相的性质进行物质分离的方法称双水相萃取技术,又称水溶液两相分配法。 2双水相萃取技术基本原理:①双水相的形成一聚合物的不相容性:混合是熵增加的过程,可自发进行。但是,分子间的相互作用力也会随分子量的增大而增大。当两种高分子聚合物之间存在相互排斥作用时,由于分子量较大,分子间的相互排斥作用与混合过程的熵增加相比占主导地位,一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。这种含有聚合物分子的溶液发生分相的现象称为聚合物的不相容性。 双水相的形成一系统举例:绝大多数天然的或合成的亲水性聚合物水溶液,在与第二种亲水性聚合物混合,并达到一定浓度时,就会产生两相,两种高聚物分别溶于互不相溶的两相中。如用等量的 1.1 %右 旋糖酐溶液和0.36 %甲基纤维素溶液混合,静止后产生两相,上相中含右旋糖酐0.39 %,含甲基纤维素 0.65 %;而下相含右旋糖酐 1.58 %,含甲基纤维素0.15 %。聚合物与无机盐的混合溶液也可形成双水相,例如,PEG^磷酸钾、PEG^磷酸铵、PEG^硫酸钠等常用于生物产物的双水相萃取。PEG^无机盐系统的上 相富含PEG下相富含无机盐。 Dextran-PEG体系的相图:(1)TKB称为双节线,双节线以下的区域为均相区,以上的区域为两相区。(2)TMB称为系线,是连接双节线上两点的直线,在系线上各点处系统的总浓度不同,但均分成组成相同而体积不同的两相。 萃取原理:双水相萃取与水-有机相萃的原理相似,都是依据物质在两相间的选择性分配。当萃取体系的性质不同时,物质进入双水相系后,由于表面性质、电荷作用和各种力(如疏水键、氢键和离子键等)的存在和环境因素的影响,使其在上、下相中的浓度不同。 几个常用的术语:(1)分配系数:、二G/C2 = C_/C=.(分配系数K等于物质在两相的浓度比,由于各种物质的K值不同,可利用双水相萃取体系对物质进行分离)。(2)萃取率: 该相中被提取物质的量 Y%= 100% %=体系中被提取物质的总量% 双水相体系萃取分离的特点:条件温和;操作方便;回收率高、提纯的倍数可达2-20倍,如体系选择 适当,回收率可达80%-90%A上,且分离速度快。 3双水相相图的操作:①把刻度离心管放置于电子天平上,调零;②向刻度离心管滴加一定量50% PEG-6000(简称A),记录重量;③调零,再滴加40%硫酸铵溶液(简称B),振荡,继续滴加B,直到混合物 呈现混浊状态,显示已形成不溶的两相,记录B的重量;④电子天平调零,然后,向混合物滴加一定重量 的水(0.4-0.5ml),经振荡后,重新呈现澄清状态,此现象表明溶液又回复成单相,记录此时的W重量;⑤ 电子天平调零。接着,再一次滴加B;⑥重复上述步骤。最后可得一系列成单相的点。 双水相相图的绘制:以PEG-6000和硫酸铵构成的双水相系统的相图曲线可根据如下公式计算获得: X=[0.4B/(A+B+W)]100% , 丫二[0.5A/(A+B+W)]100% (公式符号含义:Y :在某成单相点时 PEG-6000占总量的百分数;X :在某成单相点时硫酸盐占总量的百分数; A :在某成单相点时PEG-6000溶 液在系统中的总量(g);B:在某成相点时硫酸铵溶液在系统中的总量(g);W:在某成单相点时水在系统中的总量(g))。以丫为纵坐标,X为横坐标,丫对X作图得双水相系统相图。相图中曲线左边部分为单相区(含 曲线),曲线以右为双相区。 4双水相萃取的应用:①分离和提取各种蛋白质(酶):PEG /硫酸铵双水相体系提取 a -淀粉粉酶和蛋白酶时a -淀粉粉酶收率90%分配系数为19.6,蛋白酶的收率高于60%分离系数高达15.1 :②提取抗生素;③双水相电泳分离氨基酸、蛋白质④基因工程药物的分离与提取:用PEG 4000/磷酸盐从大肠杆 菌碎片中提取人生长激素,用PEG -磷酸酯/磷酸盐提取a 1-干扰素和3 -干扰素。 5双水相萃取分离技术的发展方向:①新型双水相体系的开发:用变性淀粉取代葡聚糖;用羟基纤维 素取代聚乙二醇。②后续色谱纯化工艺研究:双水相萃取与层析技术。③金属亲和双水相萃取技术:利用金属离子和蛋白质中精氨酸、组氨酸的亲和作用。

化工原理液液萃取概念题

化工原理液液萃取概念 题 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

化工原理《液-液萃取》概念题 一、单项选择题 1、单级萃取中,若增加纯溶剂S的加入量,则萃取液的浓度y A 将。 A.不变 B.减小 C.增大 D.不确定 2、单级萃取操作时,若降低操作温度,其他条件不变,则溶剂的选择性 将。 A.变差 B.变好 C.不变 D.不确定 3、选用溶剂进行萃取操作时,其必要条件为。 A.分配系数k A <1 B.萃取相含量y A ≤萃余相含量x A C.选择性系数β>1 D.分配系数k B =1 4、单级萃取中,若升高操作温度,则萃取液中溶质的浓度y A 将。 A.不变 B.减小 C.增大 D.不确定 5、对于萃取过程,若溶剂的选择性好,则溶剂的溶解度也将。 A.变大 B.变小 C.不变 D.不确定 6、当萃取过程溶剂比S/F减小时,萃取液中溶质A的浓度,所需理论级数。 A.不变,减小 B.减小,减小 C.增大,减小 D.减小,增大 7、萃取过程的能耗主要集中在。 A.萃取操作时溶剂的输送 B.萃取操作时原溶液的输送 C.萃取操作时溶剂的回收 D.萃取操作时温度的升高 8、以下说法错误的是。

A.临界混溶点位于溶解度曲线最高点 B.临界混溶点左方曲线表达式为:)(A S x x ψ= C.临界混溶点右方曲线表达式为:)(A S y y ?= D.溶解度曲线内的平衡联结线两端的表达式为:)(A A x f y = 9、一般情况下,稀释剂B 组分的分配系数k B 值 。 A.大于1 B.小于1 C.等于1 D.难以判断,都有可能 10、单级(理论)萃取中,在维持进料组成和萃取相浓度不变的条件下,若用含有 少量溶质的萃取剂代替纯溶剂所得萃余相浓度将 。 A. 增加 B.减少 C.不变 D.不一定 11、单级(理论)萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取 剂代替纯溶剂,则萃取相量与萃余相量之比将 。 A.增加 B.不变 C.降低 D.不定 12、单级(理论)萃取操作中,在维持相同萃余相浓度下,用含有少量溶质的萃取 剂代替纯溶剂,萃取液的浓度(指溶质)将 。 A.增加 B.不变 C.降低 D.不定 13、萃取剂加入量应使原料和萃取剂的和点M 位于 。 A.溶解度曲线之上方区 B.溶解度曲线上 C.溶解度曲线之下方区 D.座标线上 14、萃取是利用各组分间的 差异来分离液体混合物的。 A.挥发度 B.离散度 C.溶解度 D.密度 15、采用多级逆流萃取与单级萃取相比较,如果溶剂比、萃取相浓度一样,则多 级逆流萃取可使萃余相分率 。

液液萃取传质单元高度的测定实验

一、实验目的 1、了解液—液萃取设备的结构和特点。 2、掌握液—液萃取塔的操作。 3、掌握传质单元高度的测定方法,并分析搅拌转速对液—液萃取塔传质单元高度和萃取率的影响。 二、基本原理 萃取是分离液体混合物的一种常用操作。它的工作原理是在待分离的混合液中加入与之不互溶(或部分互溶)的萃取剂,形成共存的两个液相。利用原溶剂与萃取剂对各组分的溶解度的差别,使原溶液得到分离。 1.液液传质特点 液液萃取与精馏、吸收均属于相际传质操作,它们之间有不少相似之处,但由于在液液系统中,两相的重度差和界面张力均较小,因而影响传质过程中两相充分混合。为了促进树相的传质,在液液萃取过程常常要借甩外力将一相强制分散于另一相中(如利用外加咏小的脉冲塔、利用塔盘旋转的转盘塔等等)。然而两相一旦混合,要使它们充分分离也很小.因此萃取塔通常在顶部与底部有扩大的相分离段。 在萃取过程中,两相的混合与分离好坏,直接影响到萃取设备的效率。影响混合、分离的因素很多,除与液体的物性有关外,还有设备结构,外加能量,两相流体的流量等等有关,很难用数学方程直接求得。因而表示传质好坏的级效率或传质系数的值多用实验直接测定。 研究萃取塔性能和萃取效率时,观察操作现象十分重要,实验时应注意了解以下几点: (1)液滴分散与聚结现象; (2)塔顶、塔底分离段的分离效果; (3)萃取塔的液泛现象; (4)外加能量大小(改变转速)对操作的影响。 本实验重点考察桨叶转速对传质单元数和萃取率的影响。 2.液液萃取传质单元高度和总传质系数的计算 萃取过程与气液传质过程的机理类似,如求萃取段高度目前均用理论级数、

级效率或者传质单元数、传质单元高度法。对于本实验所用的桨叶式旋转萃取塔这种微分接触装置,一般采用传质单元数、传质单元高度法汁算。当溶液为稀溶液,且溶剂与稀释剂完全不互溶时,萃取过程与填料吸收过程类似,可以仿照吸收操作处理。 本实验以水为萃取剂,从煤油中萃取苯甲酸,苯甲酸在煤油中的浓度约为0.2%(质量)。水相为萃取相(用字母E表示,在本实验中又称连续相、重相),煤油相为萃余相(用字母R表示,在本实验中又称分散相)。在萃取过程中苯甲酸部分地从萃余相转移至萃取相。萃取相及萃余相的进出口浓度由容量分析法测定之。考虑水与煤油是完全不互溶的,且苯甲酸在两相中的浓度都很低,可认为在萃取过程中两相液体的体积流量不发生变化。 按萃取相计算的传质单元数计算公式为: 用Y E─X R图上的分配曲线(平衡曲线)与操作线可求得 1 * Y Y ~Y E关系。再 进行图解积分或用辛普森积分可求得N OE。液相的平衡关系可用体系的分配曲线求得。 传质单元高度: 式中:H——萃取段高度,m; H OE、H OR——分别以连续相和分散相计算的总传质单元高度,m; 体积总传质系数: N OE、N OR——分别以连续相和分散相计算的总传质单元: 式中:K Ea——为连续相总体积传质系数,kg/(m3·s); K Ra——为分散相总体积传质系数,kg/(m3·s) V E、V R——分别为连续相和分散相的质量流量,kg/s; Ω——塔的截面积,m2; Y t、Y b——分别为连续相进、出塔时溶质的质量比浓度,kg/kg; X t、X b——分别为连续相出、进塔时溶质的质量比浓度, kg/kg; 3.萃取塔中的物料衡算——操作线方程 液—液萃取过程的物料衡算如右图。对划定的区域进行物料衡算:X t Y t B S

化工基本知识第十章液-液萃取和液-固浸取

第十章液-液萃取和液-固浸取 1. 25℃时醋酸(A)–庚醇-3(B)–水(S)的平衡数据如本题附表所示。 习题1附表1 溶解度曲线数据(质量分数/%) 习题1附表2 联结线数据(醋酸的质量分数%) 试求:(1)在直角三角形相图上绘出溶解度曲线及辅助曲线,在直角坐标图上绘出分配曲线。(2)确定由200 kg醋酸、200 kg庚醇-3和400 kg水组成的混合液的物系点位置。混合液经充分混合并静置分层后,确定两共轭相的组成和质量。(3)上述两液层的分配系数 k及选择性系数 。(4)从上述混合液中蒸出多少千克水才能成为均相溶液? A 解:(1)溶解度曲线如附图1中曲线SEPHRJ所示。辅助曲线如附图1曲线SNP所示。分配曲线如附图2 所示。

(2)和点醋酸的质量分率为 25.0400 200200200 A = ++= x 水的质量分率为 50.0400 200200400 S =++= x 由此可确定和点M 的位置,如附图1所示。由辅助曲线通过试差作图可确定M 点的差点R 和E 。由杠杆规则可得 kg 260kg 80040 134013=?== M R ()kg 540kg 260800=-=-=R M E 由附图1可查得E 相的组成为 A S B 0.28, 0.71,0.01y y y === R 相的组成为 A S B 0.20,0.06,0.74x x x === (3)分配系数 A A A 0.28 1.40.20 y k x = == 习题1 附图1 习题1 附图2

B B B 0.010.01350.74y k x === 选择性系数 7.1030135 .04.1B A === k k β (4)随水分的蒸发,和点M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变为均相物系。由杠杆规则可得 kg 5.494kg 80055 345534=?== M H 需蒸发的水分量为 ()kg 5.305kg 5.494800=-=-H M 2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为30%的醋酸–庚醇-3混合液中提取醋酸。已知原料液的处理量为1 000 kg/h ,要求萃余相中醋酸的质量分数不大于10%。试(1)水的用量;(2)萃余相的量及醋酸的萃取率。操作条件下的平衡数据见习题1。 解:(1)物系的溶解度曲线及辅助曲线如附图所示。 由原料组成x F =0.3可确定原料的相点F ,由萃余相的组成x A =0.1可确定萃余相的相点R 。借助辅助曲线,由R 可确定萃取相的相点E 。联结RE 、FS ,则其交点M 即为萃取操作的物系点。由杠杆规则可得 3726F S ?=? kg 1423kg 100026 37 2637=?=?=F S

化工原理第十章-液-液萃取和液-固浸取

第十章液-液萃取和液-固浸取 1.25 C时醋酸(A)-庚醇-3 (B)-*(S)的平衡数据如本题附表所示。习题1附表1溶解度曲线数据(质量分数/%) 曲线。(2)确定由200 kg醋酸、200 kg庚醇-3和400 kg水组成的混合液的物系点位置。混 合液经充分混合并静置分层后,确定两共轭相的组成和质量。(3)上述两液层的分配系数k A及 选择性系数。(4)从上述混合液中蒸出多少千克水才能成为均相溶液? 解:(1)溶解度曲线如附图1中曲线SEPHR所示。辅助曲线如附图1曲线SNP所示。分配曲线如附图2所示。 (2)和点醋酸的质量分率为 200 X A200 200 400 水的质量分率为 和E。由杠杆规则可得 E M R 800 260 kg 540kg 0.25 X S 400 200 200 400 0.50 由此可确定和点M的位置,如附图1所示。由辅助曲线通过试差作图可确定M点的差点R 13M 40 800kg 260kg 40

由附图1可查得E 相的组成为 y 0.28, y 0.71, y 0.01 R 相的组成为 X A 0.20, X S 0.06, X B 0.74 (3 )分配系数 k A y A X A 0.28 彳 / 1.4 0.20 k B 匹 X B 0.01 0.0135 0.74 选择性系数 (4)随水分的蒸发,和点 M 将沿直线SM 移动,当M 点到达H 点时,物系分层消失,即变 为均相物系。由杠杆规则可得 习题1附图1 习题1附图2

需蒸发的水分量为 M H 800 494.5 kg 305.5 kg 2. 在单级萃取装置中,以纯水为溶剂从含醋酸质量分数为 30%勺醋酸-庚醇-3混合液中 提取醋酸。已知原料液的处理量为 1 000 kg/h ,要求萃余相中醋酸的质量分数不大于 10% 试(1)水的用量;(2)萃余相的量及醋酸的萃取率。操作条件下的平衡数据见习题 1。 解:(1)物系的溶解度曲线及辅助曲线如附图所示。 由原料组成X F =0.3可确定原料的相点 F ,由萃余相的组成 X A =0.1可确定萃余相的相点 R 。借 助辅助曲线,由 R 可确定萃取相的相点 E 。联结RE FS,则其交点 M 即为萃取操作的物系点。 由杠杆规则可得 34 55 800kg 55 494.5kg

相关主题
文本预览
相关文档 最新文档