当前位置:文档之家› fluent入门经典例子

fluent入门经典例子

fluent入门经典例子
fluent入门经典例子

冷热水混合器内的三维流动与换热问题

问题描述:冷水与热水分别自混合器的两侧沿水平切向方向流入,在容器内混合后经过下部渐缩通道流入等径的出流管,最后流入大气,混合器简图见下图所示。

一.利用gambit建立混合器计算模型

步骤1:启动gambit并选定求解器(fluent5/6)

步骤2:创建混合器主体大圆柱

图1圆柱体设置对话框图2混合器主体

步骤3:设置混合器的切向入流管

1.创建小圆柱

图3小圆柱设置对话框图4创建的小圆柱体及混合器主体2将入流管移到混合器中部的边缘

图5移动复制对话框 图6将入流管移到混合器主体的边缘上

3.将小入流管以Z 轴为轴旋转1800复制

图7旋转复制对话框图8将入流管旋转复制后的混合器

步骤4:去掉小圆柱与大圆柱相交的多余部分,并将三个圆柱联接成一个整体

图9体积列表框图10合并体积后的混合器

步骤5:创建混合器下部的圆锥台

图11锥台设置对话框图12创建锥台后的混合器

步骤6:创建出流小管

1.创建出流小圆管

图13出流小管设置对话框图14创建出流小管后的混合器2.将其移动并与锥台相接

图15移动小出流圆管设置对话框图16移动小出流圆管后的混合器步骤7将混合器上部、渐缩部分和下部出流小管组合为一个整体

图17体积列表框图18合并体积后的混合器

步骤8:混合内区域划分网格

图19网格设置对话框

图20划分好的表面网格图步骤9检查网格划分情况

图21网格检查设置对话框

步骤10设置边界类型

步骤11msh文件的输出

二.利用fluent3D求解器进行求解步骤1启动fluent并选择求解器3D

步骤2检查网格并定义长度单位

1.读入网格文件(下图为读入的图示)

2.确定单位长度为cm

图24长度单位设置对话框3.检查网格

4.显示网格

图25显示网格设置对话框

图26显示网格图

步骤2创建计算模型

1.设置求解器

图27求解器设置对话框2.启动能量方程

图28能量方程设置对话框2.使用ε

k湍流模型

-

步骤3设置流体的材料属性

图30材料属性设置对话框

步骤4设置边界条件

图32边界条件设置对话框

图33速度边界设置对话框2.设置入口2的边界条件

图34速度入口2的设置对话框

图35出口边界设置对话框步骤5:求解初始化

图36初始化设置对话框

步骤6:设置监视器

图37监视器设置对话框

步骤7:保存case和data文件步骤8:求解计算

图38迭代计算设置对话框

图39残差曲线图

图40出口速度监控图

三.计算结果的后处理步骤1:创建等(坐标)值面

1.创建一个z=4cm的平面,命名为surf-1

2.创建一个x=0的平面,命名为surf-2

图41等值面设置对话框

步骤2:绘制温度与压强分布图

1.绘制温度分布图

图42水平面上的温度分布图2.绘制壁面上的温度分布

fluent燃烧简介

FLUENT燃烧简介 FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。 1.1 FLUENT燃烧模拟方法概要 燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。FLUENT可以模拟宽广范围内的燃烧问题。然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。FLUENT在模拟燃烧中的应用可如下图所示: 图 1 FLUENT模拟过程中所需的物理模型 1.1.1 气相燃烧模型 一般的有限速率形式(Magnussen模型) 守恒标量的PDF模型(单或二组分混合分数) 层流火焰面模型(Laminar flamelet model) Zimount 模型 1.1.2 离散相模型 煤燃烧与喷雾燃烧 1.1.3 热辐射模型 DTRM,P-1,Rosseland 和Discrete Ordinates 模型 1.1.4 污染物模型 NOx模型,烟(Smoot)模型 2.1气相燃烧模型 ·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: 有限速率燃烧模型---预混、部分预混和扩散燃烧 混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧

反应进度方法(Zimont模型)---预混燃烧 混合物分数和反应进度方法的结合---部分预混燃烧 2.2.1 有限速率模型 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。 求解积分的输运方程,得到每种组分的时均质量分数值,如下: -----(1) 其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率: -----(2) -----(3) 计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。 有限速率模型的有缺点: 优点:适用于预混、部分预混和扩散燃烧,简单直观; 缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 2.2.2守恒标量的PDF模型 守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)。 该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。 -----(4) -----(5) 其中-----(6) 混合分数定义-----(7)

fluent 介绍

想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。 FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT成为企业选择CF D软件时的首选。 网格技术,数值技术,并行计算 计算网格是任何CFD计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。

六面体核心网格 四边形平铺网格 在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix平台,而且既适用单机的多处理器又适用网络联接的多台机器。动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。

Fluent经典问题及解答

Fluent经典问题及解答 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)

六斜叶式搅拌器流场数值模拟

大学 Zhengzhou University Cae课程论文 六斜叶式搅拌器流场数值模拟 Numerical Simulation of Shell-side Fluid-flow in the Six pitched blade stirrer 专业班级:过程装备与控制工程3班 作者:郝苒杏 作者学号:20090360310 完成时间:2012年12月16日

目录 摘要 (1) Abstract (1) 1、背景与意义 (1) 2、研究现状 (2) 3、数学物理模型 (2) 3.1基本控制方程 (2) 3.2湍流模型介绍 (3) 4、六斜叶搅拌器fluent数值模拟 (3) 4.1搅拌器结构 (3) 4.2几何建模 (4) 4.3网格划分 (4) 4.4模型求解设置 (5) 4.5边界条件设置 (6) 4.6残差设置 (7) 4.7初始化并且迭代求解 (8) 5结果分析 (8) 5.1网格独立性考核 (8) 5.2搅拌器流场速度矢量分析 (9) 5.3搅拌器压力场分析 (10) 6结论 (11) 7参考文献 (11)

六斜叶式搅拌器流场数值模拟 摘要 本文以常规六斜叶搅拌器设备为研究对象,采用数值模拟的方法,研究了搅拌器搅拌釜的流场特性的分布规律。研究结果表明:六斜叶搅拌器流动呈现为一个位于搅拌叶片外侧的大漩涡和一个位于叶片下方的小漩涡,两个漩涡之间存在流体和能量的交换,在六斜叶搅拌器中,桨叶区湍动能较大,能量耗散率高。将CFD技术应用于搅拌器搅拌流场的分析,基于Naives-Stokes方程和标准k-e 紊流模型,求解搅拌器的湍流场,数值模拟的结果对搅拌器水力优化设计具有指导意义。 Abstract In this paper, numerical simulation is eateries out to study the flow fields in three stirred tanks such as the general Pitched blade turbines(PDT),the standard RUSHTON,and a stirred equipment with special usage. The results show that there is a large-scale vortex in the outer of the blade and a small vortex below the blade. The ruction stirred is vary little flow exchange between the vortices. The region of the stirred bale has a relative large turbulence and high turbulence dissipation rate. Stirrer CFD technology is applied to the analysis of the flow field, which is based on the Naives-Stokes equations and the standard k-e turbulence model and to solve agitator turbulence field. The numerical simulation results of the agitator is helpful to guide the design of its hydraulic optimization. 1、背景与意义 搅拌与混合是应用最广泛的过程操作之一,搅拌设备也大量应用于化工、轻工、医药、食品、造纸、冶金、生物、废水处理等行业中。由于相际接触面积大、传热传质效率高、操作稳定、结构简单、制造方便等优点,使得搅拌设备既可以当做反应器应用于很多场合,例如在合成橡胶,合成纤维和合成塑料这三大合成材料的生产中,搅拌设备作为反应器的约占反应器总数的85%一90%。同时也有大量的搅拌设备并不是仅用在化学反应中应用物料的混合、传热、传质以及制备乳液、悬浮液等。在很多化工过程中,例如水煤浆和原油的输送是煤化工,石油化的重要特征,这种高浓度的液体输送前需要有相应的搅拌过程来防止进行前可能的沉淀。 在发酵工业中,搅拌操作同样占有非常重要的地位。发酵工业涉及到很多有氧呼吸的微生物,同时氧气在发酵液中的溶解度一般都很低。为了保证微生物基本代活动所需要的氧气,氧气的迅速有效的供给尤为重要。有氧发酵过程中所涉及到的搅拌操作主要是气液传质和分散。此外,(l)发酵过程中一般都伴随有中间补给,搅拌操作可以使补给原料和基料迅速混合,避免了局部的浓度过高。(2)微生物的代活动和搅拌过程都能产生大量的热,这些可以通过搅拌来强化传热从而使搅拌釜的物料温度保持均匀。(3)可以使发酵液中的菌体和固体基质均匀的悬浮。 在实现混合操作的过程中,转轮的搅拌推流形式起着很重要的作用。不同的转轮造成的搅拌推流效果差别很大,而不同的生产过程有不同的搅拌推流目的。本文将CFD软件应用于搅拌器的搅拌流场分析,对以后的设计和分析具有指导性的意义。

fluent经典问题整理

网格质量与那些因素有关? 网格质量本身与具体问题的具体几何特性、流动特性及流场求解算法有关。因此,网格质量最终要由计算结果来评判,但是误差分析以及经验表明,CFD计算对计算网格有一些一般性的要求,例如光滑性、正交性、网格单元的正则性以及在流动变化剧烈的区域分布足够多的网格点等。对于复杂几何外形的网格生成,这些要求往往并不可能同时完全满足。例如,给定边界网格点分布,采用Laplace 方程生成的网格是最光滑的,但是最光滑的网格不一定满足物面边界正交性条件,其网格点分布也很有可能不能捕捉流动特征,因此,最光滑的网格不一定是最好的网格。对计算网格的一个最基本的要求当然是所有网格点的Jacobian必须为正值,即网格体积必须为正,其他一些最常用的网格质量度量参数包括扭角(skew angle)、纵横比(aspect ratio、Laplacian)、以及弧长(arc length)等。通过计算、检查这些参数,可以定性的甚至从某种程度上定量的对网格质量进行评判。Parmley等给出了更多的基于网格元素和网格节点的网格质量度量参数。有限元素法关于插值逼近误差估计的理论,实际上也对网格单元的品质给出了基本的规定:即每个单元的内切球半径与外切球半径之,应该是一个适当的,与网格疏密无关的常数。 实体与虚体的区别 在建模中,经常会遇到实体、实面与虚体、虚面,虚体的计算域也可以进行计算并得到所需的结果。那么它们的区别是什么呢? 对于求解是没有任何区别的,只要你能在虚体或者实体上划分你需要的网格。关键是看你网格生成的质量如何,与实体虚体无关。 gambit的实体和虚体在生成网格和计算的时候对于结果没有任何影响,实体和虚体的主要区别有以下几点: 1.实体可以进行布尔运算但是虚体不能,虽然不能进行布尔运算,但是虚体存在merge,split 等功能。 2.实体运算在很多cad软件里面都有,但是虚体是gambit的一大特色,有了虚体以后,gambit 的建模和网格生成的灵活性增加了很多。 3.在网格生成的过程中,如果有几个相对比较平坦的面,你可以把它们通过merge合成一个,这样,作网格的时候,可以节省步骤,对于曲率比较大的面,可能生成的网格质量不好,这时候,你可以采取用split的方式把它划分成几个小面以提高网格质量。 在Fluent中进行非稳态(unsteady)计算时如何设置步长?

Fluent动网格----layering个一个简单实例(作者Snow)

Fluent动网格----layering个一个简单实例我这几天看了点动网格技术方面的东西,在学习过程中发现这方面的例子很少,自己也走了一些弯路。现在还好,弄明白了一些,能够应付现在我的工作。为了让更多学习者快速了解动网格,我打算尽量把我学习心得在这里和大家分享,这里给出一个layering的一个简单例子。 1.Gambit画网格 本例很简单,在Gambit里画一个10*10的矩形,网格间隔为1,也就是有100个网格,具体见下图。都学动网格的人了,不至于这个不会做! 这里需要注意一个问题:设置边界条件的时候,一定要把要移动的边单独设定,本例中一右边界作为移动的边,设成wall就可以,这里再后面需要制定。 2.编写UDF #include "udf.h" #include "unsteady.h" #include "stdio.h" #include "stdlib.h" /************************************************************/ real current_time = 0.0 ; Domain * domain ; Thread * thread ; real NV_VEC( origin ),NV_VEC( force ),NV_VEC( moment ) ; /************************************************************/ DEFINE_CG_MOTION(throttle,dt,vel,omega,time,dtime) { current_time = CURRENT_TIME ; vel[0] = 30; Message("time=%f omega=%f\n",current_time) ; }

FLUENT基础知识总结

======== FLUENT基础知识总结 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit 对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。所以,用fluent 做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的

fluent全攻略(探索阶段)

GAMBIT使用说明 GAMBIT是使用FLUENT进行计算的第一个步骤。在GAMBIT 中我们将完成对计算模型的基本定义和初始化,并输出初始化结果供FLUENT的计算需要。以下是使用GAMBIT的基本步骤。 1.1定义模型的基本几何形状 如左图所示的按钮就是用于构造模型的基本几何形状的。当按下这个按钮时,将出现 如下5个按钮,它们分别是用以定义点、线、面、体的几何形状的。 值得注意的是我们定义这些基本的几何元素的一般是依照以下的顺序: 点——线(两点确定一线)——面(3线以上确定一面)——体(3面以上确定体)对各种几何元素的操作基本方式是:首先选中所要进行的操作,再定义完成操作所要的其他元素,作后点“APPL Y”按钮完成操作。以下不一一重复。 下面我们分别介绍各个几何元素的确定方法: 1.1.1点的操作 对点的操作在按下点操作按钮后进行(其他几何元素的操作也是这样)。点有以下几种主要操作 定义点的位置按钮,按下后出现下面对话框 Coordinate Sys.:用以选择已有坐标系中进行当前操 作的坐标系 Type:可以选择3种相对坐标系为当前坐标系:笛卡 儿坐标、柱坐标、球坐标。 以下通过在Global 中直接输入点的x、y、z值定义点, 注意这里的坐标值是绝对坐标值,而Local中输入的是相 对坐标值,一般我们使用绝对坐标值。 Label:为所定义的点命名。 在完成以上定义后就可以通过进行这个点 的定义,同时屏幕左半部的绘图区中将出现被定义的点。 用关闭此对话框。 查看所有点的几何参数按钮(在以后的操作中也可以查看其他元素的几何参数) 在Vertices栏中选择被查询的点,有两种选择方式(其他几 何元素的选择与此类似): ①按住shift键的同时用鼠标左键取点

Fluent经典问题及答疑2

Fluent经典问题及答疑2 51 对于出口有回流的问题,在出口应该选用什么样的边界条件(压力出口边界条件、质量出口边界条件等)计算效果会更好?(#42) 52 对于不同求解器,离散格式的选择应注意哪些细节?实际计算中一阶迎风差分与二阶迎风差分有什么异同?(#69) 53 对于FLUENT的耦合解算器,对时间步进格式的主要控制是Courant数(CFL),那么Courant 数对计算结果有何影响?(#43) 54 在分离求解器中,FLUENT提供了压力速度耦和的三种方法:SIMPLE,SIMPLEC及PISO,它们的应用有什么不同?(#44) 55 对于大多数情况,在选择选择压力插值格式时,标准格式已经足够了,但是对于特定的某些模型使用其它格式有什么特别的要求? (#60) 56 计算流体力学中在设定初始条件和边界条件的时候总是要先选择一组湍流参数,并给出其初值。如何选择并给出这些初值呢?有什么经验公式或者别的好的办法吗?(#73) 57 讨论在数值模拟过程中采用四面体网格计算效果好,还是采用六面体网格更妙呢?(#70) 58 如何将自己用C语言编辑的程序导入到FLUENT中?在利用UDF编写程序时需注意哪些问题?(#157) 59 在UDF中compiled型的执行方式和interpreted型的执行方式有什么不同?(#72) 60 在用gambit的时候,导入pro/e的stp文件后,在消去最短边的时候,有些最短边不能消去,其是空间线段,用面merge的方法和连接点的方法都不行,请问该怎么消去这类短边?(#144) 61 FLUENT help和GAMBIT help能教会我们(特别是刚入门的新手)学习什么基本知识?(#126) 62 FLUENT如何做汽车外流场计算的模拟?并且怎么可以得到汽车的阻力系数和升力系数?(#170) 63 FLUENT模拟飞行器外部流场,最高MA多少时就不准确了?MA达到一定的程度做模拟需注意哪些问题?(#125) 64 在用gambit建模,保存成*.msh文件时总是出现No entity的错误:Continuum Entity fluid does not contain any valid entity and is not written! Boundary Entity wall does not contain any validentity and is not written! 不知道是什么问题?产生的原因是什么?如何解决?(#150) 65 在做燃烧模拟的时候,入口燃料温度定义为蒸发/离解开始时的温度(也就是,为离散相材料指定的蒸发温度“Vaporization Temperature”),这是指水分蒸发温度吗?一般是多少?(#196) 66 在计算煤粉燃烧时遇到这样的问题: Warning: volatile + combustible fraction for lignite is greater than 1.0shell conduction zones 如何解决? 67 FLUENT控制方程是无因次的还是有因次的?如果是无因次的,怎么无因次的? 68 做飞机设计时,经常计算一些翼型,可是经常出现计算出来的阻力是负值,出现负值究竟是什么原因,是网格的问题还是计算参数设置的问题?(#71) 69 FLUENT中的Turbulent intensify是如何定义的?该值应该是小于等于100%,可是我的计算中该值达到400%,不知为何? 70 边界条件中湍流强度怎么设置:入口边界条件中的湍流强度和出口边界条件中的回流湍流强度怎么设置?是取默认值10%吗?(#135) 71 关于Injection中的Total Flow rate:injection 选surface,此时选了好几个面(面积不一定完全相同,但颗粒的入口速度相同),那Total Flow Rate 是指几个面的总流量还是某一个面的啊?只能处理完全相同的面吗?(#160) 72 FLUENT中能不能做插值:在ansys中的模型节点坐标和FLUENT中模型的节点坐标不一致,能

FLUENT菜鸟入门-不可不知的50个经典问题

Fluent必知的一些基本概念! 连续性方程不收敛是怎么回事? 在计算过程中其它指数都收敛了,就continuity不收敛是怎么回事 这和Fluent程序的求解方法SIMPLE有关。SIMPLE根据连续方程推导出压力修正方法求解压力。由于连续方程中流场耦合项被过渡简化,使得压力修正方程不能准确反映流场的变化,从而导致该方程收敛缓慢。 你可以试验SIMPLEC方法,应该会收敛快些。 湍流与黏性有什么关系? 湍流和粘性都是客观存在的流动性质。 湍流的形成需要一定的条件,粘性是一切流动都具有的。 流体流动方程本身就是具非线性的。 NS方程中的粘性项就是非线性项,当然无粘的欧拉方程也是非线性的。 粘性是分子无规则运动引起的,湍流相对于层流的特性是由涡体混掺运动引起的。 湍流粘性是基于湍流体的parcel湍流混掺是类比于层流体中的分子无规则运动,只是分子无规则运动遥远弱些吧了。不过,这只是类比于,要注意他们可是具有不同的属性。粘性是耗散的根源,实际流体总是有耗散的。 而粘性是制约湍流的。 LANDAU说,粘性的存在制约了湍流的自由度。 湍流粘性系数和层流的是不一样的,层流的粘性系数基本可认为是常数,可湍流中层流底层中粘性系数很小,远小于层流时的粘性系数;而在过渡区,与之相当,在一个数量级;在充分发展的湍流区,又远大于层流时的粘性系数.这是鮑辛内斯克1987年提出的。 1 FLUENT的初始化面板中有一项是设置从哪个地方开始计算(compute from),选择从不同的边界开始计算有很大的区别吗?该怎样根据具体问题选择从哪里计算呢?比如有两个速度入口A和B,还有压力出口等等,是选速度入口还是压力出口?如果选速度入口,有两个,该选哪个呀?有没有什么原则标准之类的东西? 一般是选取ALL ZONE,即所有区域的平均处理,通常也可选择有代表性的进口(如多个进口时)进行初始化。对于一般流动问题,初始值的设定并不重要,因为计算容易收敛。但当几何条件复杂,而且流动速度高变化快(如音速流动),初始条件要仔细选择。如果不收敛,还应试验不同的初始条件,甚至逐次改变边界条件最后达到所要求的条件。 2 要判断自己模拟的结果是否是正确的,似乎解的收敛性要比那些初始条件和边界条件更重要,可以这样理解吗?也就是说,对于一个具体的问题,初始条件和边界条件的设定并不是唯一的,为了使解收敛,需要不断调整初始条件和边界条件直到解收敛为止,是吗?如果解收敛了,是不是就可以基本确定模拟的结果是正确的呢? 对于一个具体的问题,边界条件的设定当然是唯一的,只不过初始化时可以选择不同的初始条件(指定常流),为了使解的收敛比较好,我一般是逐渐的调节边界条件到额定值("额定值"是指你题目中要求的入口或出口条件,例如计算一个管内流动,要求入口压力和温度为10MPa和3000K,那么我开始叠代时选择入口压力和温度为1MPa和500K(假设,这看你自己问题了),等流场计算的初具规模、收敛的较好了,再逐渐调高压力和温度,经过好几次调节后最终到达额定值10MPa和3000K,这样比一开始就设为10MPa和3000K收敛的要好些)这样每次叠代可以比较容易收敛,每次调节后不用再初始化即自动调用上次的解为这次的初始解,然后继续叠代。即使解收敛了,这并

GAMBIT实例教程4_燃烧室模型的建立.

4. 燃烧室模型的建立(3-D ) 在这份指导书中,你可以通过运GAMBIT 中的top-down 几何结构法来为燃烧室生成几何模型(用实体来生成容积)。你可以通过非结构化六面体网格法来为画出的燃烧室几何体划分网格。 在这份指导书中你可以学习到如何去: ● 移动一个体积; ● 从一个体积中扣除另一个; ● 把一个体积阴影化; ● 交叉两个体积; ● 混合一个体积的边; ● 通过对面进行扫描来生成体积; ● 为读入FLUENT/UNS来准备网格。 4.1 前提 这份指导书假定读者已经掌握了指导书1并且已对GAMBIT 界面相当熟悉。 4.2 问题描述 这个问题在图4-1中以图解的形式表示出来。此几何体包括一个简化的向燃烧腔加料的燃料喷嘴,在这个指导书中由于几何结构对称你可以仅作出燃烧室几何体的1/4模型。喷嘴包括两个同心管,其直径分别是4个单位和10个单位,燃烧室的边缘与喷嘴下的壁面融合在一起。 4.3 策略

在这份指导书中,你可以运用top-down 几何结构法来生成燃烧室几何体,你可以生成体积(在本例中为方体和圆体)并用布尔运算把它们结合起来,交叉、扣除这些体积以生成基本体积,最后,通过“融和”命令,你可以舍掉一些边界以完成几何体生成。 在这个模型例子中,简单的选择捡起几何体并用六面体单元对整个区域进行网格划分是不可能的,由于Cooper 工具(在本向导中要应用)需要两组面,一组平行于扫描路径,另一组垂直于扫描路径,不管怎样,融和边界不适合于任一组。对cooper 工具更详细的描述见GAMBIT Modeling Guide 。你需要把几何体分成许能用cooper 来划分网格的部分。在GAMBIT 中有许多分解几何体的方法。在这个例子中,你可以采用把那些挨着弯面的体积部分从主体积中分开的方法。对这个燃烧室进行分解的详细步骤在下面给出。 注意到几何体中有许多面,其默认的网格划分方案是pave 方案。这些面中的大部分与Z 方向垂直。在Z 方向有许多几何突起,因此在cooper 网格方案中应被选为主方向。为使其可能,X 、Y 方向的铺砌面(图4-2中的两个对称面)必须改变以去用Submap 或Map 网格划分方案。 默认的,GAMBIT 对这两个面选择Pave 网格划分方案,是因为它们每一个都在融合处都有一个圆边。如果你把每个面圆角分裂出来并通过一个体积把它们连接

Ansys Workbench Fluid Flow(FLUENT)经典问题

1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢? 学习任何一个软件,对于每一个人来说,都存在入门的时期。认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。 由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。如果身边有懂得FLUENT 的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。 https://www.doczj.com/doc/4f1324544.html,/dvbbs/viewFile.asp?BoardID=61&ID=1411 A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid): 流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。粘性的大小依赖于流体的性质,并显著地随温度变化。实验表明,粘性应力的大小与粘性及相对速度成正比。当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。此时我们可以近似地把流体看成无粘性的,这样的流体称为理想流体。十分明显,理想流体对于切向变形没有任何抗拒能力。这样对于粘性而言,我们可以将流体分为理想流体和粘性流体两大类。应该强调指出,真正的理想流体在客观实际中是不存在的,它只是实际流体在某些条件下的一种近似模型。 B.牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid): 日常生活和工程实践中最常遇到的流体其切应力与剪切变形速率符合下式的线性关系,称为牛顿流体。而切应力与变形速率不成线性关系者称为非牛顿流体。图2-1(a)中绘出了切应力与变形速率的关系曲线。其中符合上式的线性关系者为牛顿流体。其他为非牛顿流体,非牛顿流体中又因其切应力与变形速率关系特点分为膨胀性流体(Dilalant),拟塑性流体(Pseudoplastic),具有屈服应力的理想宾厄流体(Ideal Bingham Fluid)和塑性流体(Plastic Fluid)等。通常油脂、油漆、牛奶、牙膏、血液、泥浆等均为非牛顿流体。非牛顿流体的研究在化纤、塑料、石油、化工、食品及很多轻工业中有着广泛的应用。图2-1(b)还显示出对于有些非牛顿流体,其粘滞特性具有时间效应,即剪切应力不仅与变形速率有关而且与作用时间有关。当变形速率保持常量,切应力随时间增大,这种非牛顿流体称为震凝性流体(Rheopectic Fluid)。当变形速率保持常量而切应力随时间减小的非牛顿流体则称为触变性流体(Thixotropic Fluid)。 C.可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid):

Fluent经典问题及答疑

Fluent经典问题及答疑 1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61) 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。(13楼) 3 在数值模拟过程中,离散化的目的是什么?如何对计算区域进行离散化?离散化时通常使用哪些网格?如何对控制方程进行离散?离散化常用的方法有哪些?它们有什么不同?(#80) 4 常见离散格式的性能的对比(稳定性、精度和经济性)(#62) 5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?(#81) 6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130) 7 可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?(#55) 8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56) 9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则? 10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?(#143) 11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?(#35) 12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系? 13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?(#38) 14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169) 15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?(#154) 16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40) 17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?(#170) 18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?(#128) 19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?(#127) 20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT 是怎样使用区域的?(#41) 21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?(9楼) 22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼) 23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?(#28)

FLUENT多相流模型

FLUENT多相流模型 分类 1、气液或液液流动 气泡流动:连续流体中存在离散的气泡或液泡 液滴流动:连续相为气相,其它相为液滴 栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡 分层自由流动:由明显的分界面隔开的非混合流体流动。 2、气固两相流动 粒子负载流动:连续气体流动中有离散的固体粒子 气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流 流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。 3、液固两相流动 泥浆流:流体中的大量颗粒流动。颗粒的stokes数通常小于1。大于1是成为流化了的液固流动。 水力运输:在连续流体中密布着固体颗粒 沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。 4、三相流 以上各种情况的组合 多相流动系统的实例 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。 液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。 栓塞流:管道或容器中有大尺度气泡的流动 分层流:分离器中的晃动、核反应装置沸腾和冷凝 粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动 气力输运:水泥、谷粒和金属粉末的输运 流化床:流化床反应器、循环流化床 泥浆流:泥浆输运、矿物处理 水力输运:矿物处理、生物医学、物理化学中的流体系统 沉降流动:矿物处理。 多相流模型的选择原则

1、基本原则 1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。 2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型 或欧拉模型。 3)对于栓塞流、泡状流,采用VOF模型 4)对于分层/自由面流动,采用VOF模型 5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。 6)对于流化床,采用欧拉模型 7)泥浆和水力输运,采用混合模型或欧拉模型。 8)沉降采用欧拉模型 9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特性,选择合适的流动模 型。此时由于模型只是对部分流动特征采用了较好的模拟,其精度必然低于只包含单个模式的 流动。 2、混合模型和欧拉模型的选择原则 VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。 1)如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混合模型,反之使用欧拉模型。 2)如果相间曳力规律已知,欧拉模型通常比混合模型更精确;若相间曳力规律不明确,最好选用混合 模型。 3)如果希望减小计算量了,最好选用混合模型,它比欧拉模型少解一部分方程;如果要求精度而不在 意计算量,欧拉模型可能是更好的选择。但是要注意,复杂的欧拉模型比混合模型的稳定性差, 可能会遇到收敛困难。

Fluent软件的燃烧模型介绍

FLUENT软件的燃烧模型介绍 Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍: 一、气相燃烧模型 ·有限速率模型 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 ?PDF模型 该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。各组分浓度由混合组分分布求得。PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。在该模型中,用概率密度函数PDF来考虑湍流效应。该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。 应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。 ?非平衡反应模型 层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。 应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。

?预混燃烧模型 该模型专用于燃烧系统或纯预混的反应系统。在此类问题中,充分混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量来预测火焰面的位置。湍流效应可以通过层流和湍流火焰速度的关系来考虑。 应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。 二、分散相燃烧模型 除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型: ?在拉格朗日坐标下,模拟分散相(包括固体颗粒/油滴/气泡等)在瞬态和稳态下的运动轨迹 ?多种球形和非球形粒子的曳力规律 ?线性分布或Rosin-Rammler方程的粒子大小分布 ?连续相的湍流效应对粒子传播的影响 ?分散相的加热/冷却 ?液滴的汽化和蒸发 ?燃烧粒子,包括油滴的挥发过程和焦碳的燃烧 ?连续相与分散相的耦合 模拟油滴在湍流的影响而产生的扩散效应时,FLUENT可以采用粒子云模型和随机轨道模型。 ?随机轨道模型 该模型利用离散的随机跟踪法模拟瞬态湍流速度脉动对粒子轨迹的影响。 ?粒子云模型 该模型追踪粒子平均轨道的粒子云的形成和演化的统计过程。粒子云浓度通过粒子平均轨迹的概率密度函数来表示。

相关主题
文本预览
相关文档 最新文档