当前位置:文档之家› 分离膜的改性方法

分离膜的改性方法

分离膜的改性方法
分离膜的改性方法

高分子分离膜的改性方法

张爱娟(04300036)

[摘要]:随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水

性,提高膜的抗污染能力已成为有待解决的迫切问题。由于单一的膜材料很难同时具有良好的亲水性、成膜性、热稳定性、化学稳定性、耐酸碱性、耐微生物性侵蚀、耐氧化性和较好的机械强度等优点,因此采用膜材料改性或膜表面改性的方法来提高膜的性能,是解决这一问题的关键。其中,化学改性可以通过膜材料和膜表面的化学改性来实现;而物理改性则主要是通过材料共混改性和表面涂覆或表面吸附来实现。

[关键词]:膜;改性;物理改性;化学改性

一 引言

膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程的领域得到广泛的应用。然而,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。目前使用的大多数膜的材料是聚丙烯(PP)。聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和聚氯乙烯等。当这些膜与欲分离的物质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运行时间的延长而下将,特别时当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜便面吸附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集,导致一系列的生物反应,例如形成血栓及免疫反应。即使当蛋白质对分离膜的影响可以忽略,膜基体材料的亲水性、荷电性及荷电密度等性质对蛋白质的吸附都会产生重要的影响。因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面的物理化学性能,赋予传统分离膜更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物相容性。对膜材料的改性的方法有物理改性,化学改性和表面生物改性。

二物理改性

2.1 表面物理改性

2.1.1 表面涂覆改性【1】

以分离膜为支撑层,将表面活性剂涂覆在支撑层表面而达到改性的目的,表面活性剂可以是有机物或无机物。但膜表面涂覆方法的改性效果并不十分理想,存在的最大问题是活性剂易从高分子表面脱离,不能得到永久的改性效果。但这种方法显示了制备一系列具有不同截留率分离膜的可能性。

2.1.2 表面吸附改性【2】

表面活性剂是由至少两种以上极性或亲媒性显著不同的官能团,如亲水基和疏水基所构成。由于官能团的作用,在溶液与它相接的界面上形成选择性定向吸附,使界面的状态或性质发生显著变化。表面活性剂在膜表面的吸附使膜表面形成一层亲水层,其带电特性又形成了对蛋白吸附的阻挡作用。从而在增大膜的初始通量的同时又能降低使用过程中通量衰减和蛋白

质的吸附。韩式荆等[3]研究了多种表面活性剂对超滤膜分离性能的影响,认为表面活性剂的表面张力及其临界胶束浓度 (CMC) 值是影响膜分离性能的主要因素。李伟等[4]将非离子表面活性剂作为第二添加剂加入聚砜超滤膜中,结果发现,它能明显改变成膜时的凝胶速度,因而改变所成膜的结构和性能,由此制得孔径均匀,分离性能优良的聚砜超滤膜。同时由于表面活性剂在膜表面形成厚的致密亲水层而使水通量得到改善,这对低孔系率的超滤膜是很重要的。

2.2膜材料的物理改性

2.2.1 高分子材料与高分子材料的的共混改性

高分子材料的共混是指两种以上高分子混合,形成一种新材料,它除了综合原有材料本身性能外,还可克服原有材料中的各自缺陷,并产生原有材料中所没有的优异性能。而聚合物间的相容性[5]直接影响着高分子共混膜的相分离孔的形成与结构,通过调节聚合物合金的相容性可以调节相分离孔的形成和结构,从而改变合金膜的表层结构和断面结构,达到提高膜的分离性能和渗透性能的目的。高分子共混改性膜主要从以下3 个方面改善膜的性能:1、改善膜的亲水性能及聚合物的成膜性;2、改善膜的耐污染性;3、提高膜的物化稳定性 (提高膜的耐蚀性、耐热性和机械强度)。

[9]

共混组分性质、合金比例、分子结构对膜的亲水性及其性能都有很大的影响。以憎水性的PVC 为例,在一定的比例条件下,所选用共混组分的亲水性越强,膜的亲水性越好,膜的通量越大(见表1) 。

表1 P2 (第二聚合物) 对PVC/ P2 合金膜的亲水性及膜性能的影响

膜材料 接触角/θ0纯水通量/ L·m- 2·h - 1

PVC 66 61

PVC/ PMMA 62 770

PVC/ VC2co2Vac 57 482

PVC/ VC-co-VAc-co-MIL 54 603

[9]

对于憎水性膜材料,混入含亲水基团的组分,亲水组分的含量对膜的亲水性及膜性能影响

很大,随亲水组分的含量增加,膜的亲水性增强,水通量增大。SPSF 是PSF 经磺化处理而生成的亲水性材料,这种材料与PSF 共混,材料性质相似,相容性好,对膜结构的影响也小。但由于增强了膜的亲水性,膜的渗透性提高,随膜中SPSF 含量的增加,水通量增大(见表2) 。相反,在CDA/ CTA 组成的合金脱盐膜中,憎水性CTA 含量的增加导致膜的透水率下降,脱盐率上升。

表2 PSF/ SPSF 合金组分的比例对膜性能的影响

-----------------------------------------------------------------------

材料比例水通量/ L·m- 2·h - 1 截留率

---------------------------------------------------------------------------- 70∶30 8~14 79.9

65∶35 12~22 79.9

60∶40 6~28 79.7

---------------------------------------------------------------------------

[9]

改变膜亲水性的另一个方法就是改变共混组分分子上取代基的含量。在PSF/ CPSF 组成

的共混体系中,CPSF 的羧基取代度为0.87 的合金膜,水的溶胀趋势明显高于取代度为0.45

的膜。梁国明研究了聚醚酮( PEK) / SPSAF 合金体系中SPSF 的SO3Na 基团的交换当量对合

金膜的亲水性的影响,发现随SPSF 交换当量的增加,合金膜的纯水接触角减小,亲水性增加。

若共混组分分子上的取代基为憎水基团,则其取代度越高,合金膜的亲水性越弱,这种膜可获

得较高的分离率。醋酸纤维素脱盐膜随乙酰取代度的增加,材料的亲水性下降,其致密膜水蒸

汽吸附顺序为CDA > CDA/ CTA > CTA ,因此通过改变醋酸纤维素的乙酰取代度可以在保持

一定通量条件下,获得一个理想的脱盐率

PS 是当前最为广泛应用的膜材料,它的憎水性也是人所皆知的,PS 超滤膜在保持一

定截留率下其通量往往不够理想。PS 与亲水性较强的材料PVA、CA (醋酸纤维素)、AN-Vac (丙烯腈-醋酸乙烯共聚物)、聚原酸酯-b-聚乙二醇嵌段共聚物等共混都不同程度地提高了PS

的亲水性[6] 。邱运仁等[7]用聚乙烯醇 (PVA)、CA、冰醋酸、水为制膜原料,用相转化法制

备了PVA-CA 共混超滤膜。在一定范围内研究了不同膜液组成对超滤膜性能的影响,得到

了较佳的膜液配方。制备的PVA-CA共混超滤膜在操作压力0.3MPa 下,处理质量浓度为1000mg/L 的水油型模拟含油乳化液,其渗透速率约40L/m2·h,除油率可达90%以上,并且,此超滤膜的耐水性和溶胀性均优于未改性的PVA 超滤膜。裴广铃[8]等以聚砜/螯合树脂作为

膜材料,用相转化法制备了孔径在5nm~60nm 之间的共混螯合平板超滤膜,通过增加树脂

含量,延长膜的挥发时间使膜通量显著提高。

2.2.2 高聚物与陶瓷材料的共混改性

有机高分子具有弹性高、韧性好,分离性能优良等优点,但存在透气率低、抗腐蚀性差及不耐高温等弱点。虽然已合成了许多耐高温的高聚物,如聚四氟乙烯、聚硅氧烷、聚醚砜酮等,但这些耐高温的高聚物在成膜时大多需用支撑体,虽也可制成自支撑型膜,但由于膜较厚、透气率低,难以满足实用要求。高聚物支撑体也面临着类似的弱点。无机膜,尤其是陶瓷膜,则有许多独特的物理、化学性能,尤其在涉及高温以及有腐蚀性环境的分离过程中,有着高聚物膜材料所无可比拟的优势,但因受Knudsen扩散限制,分离性能很差。在膜材料的研究过程中人们发现,将两种材料有效地结合在一起,得到一种新型的有机/无机复合材料,可以同时得到既具有优良的分离性能又能耐受较苛刻的环境条件的新型的超滤膜。

【10】

赵梓年,等以聚氨酯为基质,添加二氧化硅及界面改性剂,通过湿法相转化法制备聚氨酯杂

化超滤膜。实验结果表明,二氧化硅可以显著改善膜孔的结构,膜水通量有较大幅度的提高,

二氧化硅用量在一定范围内,截留率也有一定增加。界面改性剂的加入可使二氧化硅在聚氨

酯铸膜液中均匀分散,进一步增加聚氨酯与二氧化硅之间的界面微孔数量及细化微孔,使该膜

的水通量和截留率进一步增加。用扫描电镜对膜的结构形态进行了观察。

姜云鹏等[10]以PVA 和纳米SiO2 为原料,通过相转化法,制备出不同SiO2 含量的

PVA/SiO2 共混均质膜。通过示差量热扫描法 (DSC) 和力学性能测试表明,与PVA 膜相比,PVA/SiO2 膜具有更高的热稳定性和耐溶剂性,并具有较好的抗污染能力。A. Bottino 等[11]

以PVDF 和ZrO2 为原料制得了PVDF/ZrO2 共混超滤膜,并通过改变制备参数,如:PVDF 的溶剂、PVDF/ZrO2 比率等制备了一系列共混超滤膜,通过电镜观测和超滤性能测试,发

现膜的结构和性能有了显著的改变。张裕卿等人[12]则将亲水的Al2O3 添加到PS 铸膜液中,采用相转化法制备了PS/Al2O3 共混膜。通过对该膜微观结构的分析发现,Al2O3 颗粒均匀

地分布于整个膜中,同时Al2O3 和PS 之间存在的中间过度相使它们牢固地结合在一起,同

时膜的亲水性得到改善。

高分子材料的合金化用于调节膜的亲水性及膜性能的方法简单、经济,膜材料的选择范

围广,可调节的参数多,膜性能改善的幅度大,为膜材料的开发及膜性能的进一步完善开辟了

一条新路,有着广阔的发展前景。

三化学改性

3.1 膜表面化学改性

与膜表面物理改性相比,膜表面化学改性使得功能基团以化学键与膜表面键合,从而不会在物质透过膜时被稀释,不会引起功能基团得流失,另外,接枝反应发生在聚合物表面,不会影响聚合物的内部结构。这样,不仅可以赋予聚合物膜新的性质,而且不会降低原聚合物膜的力学性能。接枝改性可以通过几种方法来实现,如紫外辐照、γ射线辐照接枝

聚合、等离子体表面聚合改性、界面缩聚等方法。

3.1.1 等离子体改性

等离子体是气体在电场作用下,部分气体分子发生电离,生成共存的电子及正离子、激发态分子及自由基,气体整体呈电中性,这就是物质存在的第4 种状态-等离子状态。实验室中获得等离子体的方法有热电离法、激光法、光电离法、射线辐照法及气体放电法等。等离子体中所富集的这些活性离子具有较高的能量,能激活物质分子,发生物理或化学变化。用等离子体对超滤膜进行表面处理具有简单、快速、工艺干法化、改性仅涉及表面而不影响本体结构和性能等优点,已引起研究者的广泛关注。对改善高分子材料的亲水性、染色性、渗透性、电镀性、粘合性等方面具有广泛的应用前景

杨牛珍等人【14】研究了聚丙烯腈 (PAN) 平板超滤膜的低温氧等离子体表面改性。结果表明,改性后的PAN 超滤膜透水率降低,截留率上升。研究了低温等离子体条件 (放电功率、反应腔压力、改性处理时间) 对改性结果的影响。实验研究表明,改变低温等离子体条件,可以控制改性程度。

3.1.2 光化学接枝[15]

光化学接枝也称光接枝,始于1957 年; O ster等人的研究,20 世纪80 年代以来,由于其简便快速的特点日益受到重视。近十几年来,分离膜的光接枝改性和功能化成为研究热点。光接枝通常采用的是紫外光,接枝聚合的首要条件是生成表面引发中心———表面自由基。依据表面自由基产生方式的不同,光接枝过程可以分为以下四类

(1)聚合物辐照分解法

对于一些含光敏基团(如羰基) ,特别是侧链含有光敏基的聚合物,当紫外光照射其表面时会发生Norrish Ⅰ型反应,产生表面自由基,这些自由基可引发乙烯类单体聚合,生成接枝聚合物,

羰基和烷基自由基则可引发产生均聚物。具体反应过程如图1 所示。由于适合于此方法的聚合物较少,因而该方法不常用。

图1 聚合物辐照分解引发光接枝

(2) 自由基链转移法

自由基链转移法是利用自由基向聚合物的转移,在聚合物表面上产生自由基,进一步引发接枝反应。安息香类光敏剂是一类常用的光敏剂(以安息香双甲醚为例) ,当受到紫外光照射时,发生NorrishΙ型反应,产生两个自由基(R·) ,反应如图2 所示

图2 自由基链转移引发光接枝

在单体浓度很低的情况下,两个自由基均会向聚合物表面或大分子链转移,产生表面自由基,引发接枝聚合反应。此类引发体系在光敏剂产生的自由基向大分子转移生成接枝聚合物的同时,也能引发单体聚合,生成均聚物。当控制单体浓度很低,表面自由基浓度又很大时,可以实现有效的表面接枝

(3) 氢提取反应法

芳香酮类光敏剂受到紫外光照射后,被激发到单线态(S3 ) ,然后又迅速通过系间跃迁到稳定的三线态 (T3 ) 。如果有供氢体存在,则发生光还原反应,光敏剂分子的羰基夺取氢而被还原成羟基,供氢体成为烷基自由基,当供氢体是聚合物表面时,就会形成表面自由基,这些表面自由基与单体反应,生成接枝聚合物。以二苯甲酮(BP) 为例,其引发机理如图3 所示。该反应体系中供氢体可以是任何有机材料,因而几乎所有的聚合物材料表面均可进行接枝聚合反应

图3 BP 引发接枝反应原理

(4) 光生过氧基热裂解法

该方法属于一种间接光引发自由基聚合反应的方法,就是通过紫外光照射,在聚合物表面生成过氧基团,然后过氧基团热裂解引发自由基聚合反应(图4) 。

图4 光诱导过氧基热裂解引发接枝

由于紫外的能量相对高能辐射低,反应所需的时间较长,另外,不适用于对紫外光敏感的材料。实际应用中常加入光敏剂促进过氧基团的生成。

表面光接枝改性技术的实施方法主要包括三类:气相接枝、液相接枝、连续液相接枝。其中连续液相接枝因能连续操作而更受青睐。

3.1.3 化学接枝法

化学接枝即采用化学试剂引发接枝聚合反应。可以先制得接枝型的膜材料,然后制膜,也可以直接在成品膜表面进行接枝反应。常用的引发剂为自由基型引发剂,如:过氧类和过硫酸盐等。此种方法报道较少。

3.1.4 辐射接枝

【2】通过高能辐射线引发单体聚合,称为辐射聚合。辐射线可分为γ-射线、X-射线、β-射线、α-射线及中子射线。其中γ-射线的能量最高。60Co-γ射线穿透力强,反应均匀,而且

操作容易,应用最广。主要是利用高能γ射线促使材料表面产生自由基,引发单体接枝聚合,把某些性能的基团或聚合物支链接到膜材料的高分子链上致使高分子膜的内部结构或表面性能发生变化,从而达到聚合物膜改性的目的。陆晓峰等对聚偏氟乙烯 (PVDF) 超滤膜进行了辐照接枝改性。在膜表面先通过60Co-γ射线辐照,然后接枝乙烯基单体,再进行磺化,使PVDF 膜成为具有磺酸基团的超滤膜。研究了辐照剂量、接枝时间对接枝率的影响和磺化反应条件等。实验结果表明,改性后的PVDF 超滤膜的截留率提高,污染度下降,亲水性增强。

【2】近年来,出现了用高速重离子辐照进行PVDF 超滤膜表面改性的方法[11]。其辐照能从几个MeV 到几百个MeV,通常用79Br2+ (160MeV)、35Cl6+ (90MeV)、35Cl9+ (150MeV),通过ESR 光谱分析,这种离子辐照与γ射线很相近,室温下与空气接触,所引发的自由基会与O2 反应生成含氧自由基。有人研究了高速重离子辐照引发接枝反应的影响因素,包括辐照参数 (辐照计量、电子阻止本领)、基材参数 (厚度) 和高聚物参数 (单体种类和浓度、辐照时间等)。通过对PVDF 膜上接枝甲基丙烯酸甲酯和苯乙烯单体的研究发现,这些参数不仅对接枝共聚物的结构有影响,而且对接枝链的长度也有影响。聚合反应的接枝率主要取决于所用激发离子的类型。

以上四种接枝方法,各自的优缺点如下表3所示

表3

接枝改性方法优点缺 点

------------------------------------------------------------------------------- 化学接枝条件易控制反应速度慢,均聚物很难去除

辐射接枝反应迅速、可选膜材料多设备要求高,对材料本体有损伤

等离子体反应迅速,可控制在材料的表面反应条件苛刻,处理部件体积不能太大光化学接枝反应迅速,基本在材料表面和亚对异型材料不太适合

表面进行,设备要求低,可以连续化操作对不同材料和引发剂,接枝反应活性不同—————————————————————————————————————— 3.2 膜化学改性【5】

膜材料化学改性包括材料的共聚、接枝、用化学方法赋予亲水基团等。其中共聚改性如分别将42乙基吡啶与丙烯腈、苯乙烯共聚以改善丙烯腈、苯乙烯与水的亲和性。接枝也是较为常用的一种膜材料改性方法,如在PVDF 分子上接枝丙烯酸、丙烯酰胺等。化学改性的方法有在原有膜材料的分子上引入其它官能团,如新型的高分子材料PES-C、PEK-C 在保留了PES、PEK原有性能的基础上增加了酞基基团,提高了材料的亲水性; PVC 分子上引入-CN、-COOH ;在PSF 分子引入-SO3H、- COOH等基团; 在氧化剂存在下用强碱处理PVDF 引入亲水基团;改变CA分子上的乙酰基取代度或引入-CN基团;调节聚酰胺分子中亲水性的酰胺基

团的比例等。以上方法都不同程度地改变了膜材料的亲水性

四 结束语

随着膜技术的广泛应用和发展,高聚物作为主要的膜材料,其性能的研究已成为人们关注的热点。开发研制新材料的同时,必将出现更多的膜改性方法。相比较而言,膜表面改性只是在一定程度上改了膜表面的孔径、孔径分布及亲水性,其改性过程中存在一些不确定因素,特别是经过表面物理改性膜在使用过程中常常存在吸附、涂敷层脱落的现象,使膜的性能显

著下降;而膜材料改性则可避免这不利因素,并且改性效果持久稳定。在膜材料改性中,共混改性以其操作简便、效果好而受到青睐。其是有机/无机膜材料的共混,可以综合有机、无机膜的优点,使膜的性能进一步改善,以满足特定的离过程。由于共混体系的相容性机理及无机材料在有机相中的分散等方面的研究还有待于深入,因此滤膜的共混改性必将是今后膜分离技术发展的重要方向之一。

五 参考文献

1 徐又一,徐志康等高分子膜材料化学工业初版社 2005年4月第1版

2 杨亚楠改性高分子超滤膜的研究进展离子交换与吸附 2005/01

3 韩式荆, 刘忠洲, 刘建维水处理技术[J], 1989, 5(2): 87~92

4 李 伟, 黄硕安, 华东理工大学学报[J], 1995, 21(1): 13~16

5 罗川南, 杨 勇, 化学研究与应用[J], 2003, 15(2): 177~181

6 宋艳秋, 原续波, 盛 京, 化学工业与工程[J], 2002, 19(1): 32~36

7 邱运仁, 张启修, 现代化工[J], 2001, 21(10): 28~31

8 裴广铃, 成国祥, 杜起云, 离子交换与吸附[J], 2001, 17(2): 138~144

9 罗传楠,杨勇,高分子膜分离材料亲水改性对膜性能的影响,合成技术及应用,2002,17(2):23~26

10 赵梓年,许昆鹏,文志红聚氨酯杂化超滤膜的制备及其性能研究 塑 料 2005,34(6):41~44

11 姜云鹏, 王榕树, 高分子材料科学与工程[J], 2002, 18(5): 177~180

12 Bottino A., Capannelli G., Comite A., Desalination [J], 2002, 146(5): 35~40

13 张裕卿, 丁 健, 化学工程[J], 2000, 28(5): 42~44

14 杨牛珍, 王英特, 郭明远 等, 西北纺织工学院学报[J], 2000, 14(3): 314~317

15 杨 彪,聚合物分离膜接枝改性技术及应用,中 国 塑 料,2004,18(6):9~10

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

聚合物表面改性方法综述

聚合物表面改性方法综述 连建伟 (中国林业科学研究院林产化学工业研究所) 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由 1mol的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有 31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓

各种金属材料的特点

各种金属材料的特点

————————————————————————————————作者:————————————————————————————————日期: ?

各种金属材料的特点 铝材类 铝材属于金属类别中有色金属之一,由于应用较广,单独介绍如下:常用有铝型材和压铸铝合金两种。其中主要由纯度高达92%以上的铝锭为主要原材料,同时添加增加强度、硬度、耐磨性等性能金属元素,如碳、镁、硅、硫等,组成多种成分“合金”。 1.1铝型材 铝型材常见如屏风、铝窗等。它是采用挤出成型工艺,即铝锭等原材料在熔炉中熔融后,经过挤出机挤压到模具流出成型,它还可以挤出各种不同截面的型材。主要性能即强度、硬度、耐磨性均按国家标准GB6063。优点有:重量轻仅2.8,不生锈、设计变化快、模具投入低、纵向伸长高达10米以上。铝型材外观有光亮、哑光之分,其处理工艺采用阳极氧化处理,表面处理氧化膜达到0.12m/m厚度。铝型材壁厚依产品设计最优化来选择,不是市场上越厚越好,应看截面结构要求进行设计,它可以在0.5~5mm不均。外行人认为越厚越强硬,其实是错误的看法。 铝型材表面质量也有较难克服的缺陷:翘曲、变形、黑线、凸凹及白线。设计者水平高者及模具设计及生产工艺合理,可避免上述缺陷不太明显。检查缺陷应按国家规定检验方法进行,即视距40~50CM来判别缺陷。 铝型材在家具中用途十分广泛:屏风骨架、各种悬挂梁、桌台脚、装饰条、拉手、走线槽及盖、椅管等等,可进行千变万化设计和运用! 铝型材虽然优点多,但也存在不理想的地方: 未经氧化处理的铝材容易“生锈”从而导致性能下降,纵向强度方面比不上铁制品.表面氧化层耐磨性比不上电镀层容易刮花.成本较高,相对铁制品成本高出3~4倍左右。 1.2压铸铝合金 压铸合金和型材加工方法相比,使用设备均不同,它的原材料以铝锭(纯度92%左右)和合金材料,经熔炉融化,进入压铸机中模具成型。压铸铝产品形状可设计成像玩具那样,造型各异,方便各种方向连接,另外,它硬度强度较高,同时可以与锌混合成锌铝合金。 压铸铝成型工艺分: 1、压铸成型 2、粗抛光去合模余料 3、细抛光 另一方面,压铸铝生产过程,应有模具才能制造,其模具造价十分昂贵,比注塑模等其它模具均高。同时,模具维修十分困难,设计出错误时难以减料修复。 压铸铝缺点: 每次生产加工数量应多,成本才低。抛光较复杂生产周期慢产品成本较注塑件高3~4倍左右。螺丝孔要求应大一点(直径4.5mm)连接力才稳定 适应范围:台脚、班台连接件、装饰头、铝型材封口件、台面及茶几顶托等,范围十分广泛。 (2)五金类 “五金”概念属通俗说法,标准分类应划分为黑色金属和有色金属两大类,它在家具中运用有管状、棒状、板状、线、角状几种。 2.1黑色金属件

金属材料表面改性涂层的新进展(专业课)试题及答案

1、工艺参数对合金元素吸收率的影响重要程度由大到小排列正确的是()。 A、工件电压>气压>源极电压>极间距 B、工件电压>极间距>源极电压>气压 C、气压>源极电压>极间距>工件电压 D、气压>极间距>工件电压>源极电压 2、激光熔覆陶瓷涂层不包括()。 A、激光热源 B、陶瓷高硬度、高耐磨 C、金属韧性 D、金属耐磨性 3、在1995年,()生产的Hastelloy C-2000镍基耐蚀合金为苑极,进行Ni-Cr-Mo-Cu多元共渗工艺研究。 A、美国 B、日本 C、中国 D、英国 4、下列对良好熔覆层的客观要求描述不正确的是()。 A、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最小 B、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最大 C、熔覆层与基体间要避免形成脆性相,以保证界面结合强度高 D、两种材料都要有一定塑性,以补偿热应力,保证界面不形成裂纹 5、下列哪项不是熔覆技术的应用()。 A、耐磨涂层 B、抗老化涂层 C、抗氧化涂层 D、耐蚀涂层 6、下列是结合力的定量测试方法的是 A、喷砂法 B、弯折法 C、锉刀法 D、张力法 7、工艺参数对合金元素的影响重要程度由小到大排列正确的是()。 A、工件电压>气压>源极电压>极间距

B、工件电压>气压>极间距>源极电压 C、气压>源极电压>极间距>工件电压 D、气压>极间距>工件电压>源极电压 1、激光熔覆尚待研究和解决的问题是()。 A、大功率激光器及适于自动化工业生产的光路转换系统 B、快速凝固理论的建立与复合涂层界面精细结构的深入研究 C、工艺过程的稳定性与反馈控制 D、涂层质量的监测与缺陷控制 2、下列哪项是熔覆技术的应用()。 A、耐磨涂层 B、耐蚀涂层 C、抗氧化涂层 D、抗老化涂层 3、下列对冲刷腐蚀描述正确的是()。 A、简称冲蚀,是材料在应力和化学介质协同作用下材料的过早失效现象 B、在石油、化工。水电等过程中广泛存在 C、暴露在运动流体中的多有类型的设备如料浆泵的过流部件、弯头、三通和换热器管,都会遭受到冲蚀的破坏 D、在含固相颗粒的双相流中,破坏更为严重,它大大缩短设备的寿命 4、激光熔覆陶瓷涂层包括()。 A、激光热源 B、陶瓷高硬度、高耐磨 C、金属韧性 D、金属耐磨性 5、下列为结合力的测试方法的是()。 A、喷砂法 B、弯折法 C、锉刀法 D、划格法 6、下列对良好熔覆层的客观要求描述正确的是()。 A、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最小 B、熔覆层材料和基体材料的熔点相近,以保证二者间稀释最大 C、熔覆层与基体间要避免形成脆性相,以保证界面结合强度高 D、两种材料都要有一定塑性,以补偿热应力,保证界面不形成裂纹

无机分体表面改性方法综述

无机粉体表面改性方法综述 唐亚峰 (南华大学化学化工学院无机非金属材料系湖南衡阳) 摘要:表面改性是无机粉体的主要加工技术之一,表面改性对提高无机粉体的应用性能起着关键的作用。改性后的无机粉体分散性提高,同时也改善了粉体和有机高聚物的相容性。本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型改性方法,并对无机粉体表面改性方法进行展望。 关键词:无机粉体;表面改性;改性方法;新型方法; 前言 无机粉体具有很高的应用性能和应用价值,添加到聚合物材料当中不仅能降低其生产成本,还提高了复合材料的力学性能和综合性能,甚至赋予其绝缘、阻燃等特殊的物理化学性质。 无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。 本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型的改性的方法,并分析了这些方法各自的优缺点。最后对无机粉体表面改性方法进行了展望。 1 无机粉体表面改性的机理 由于无机矿物材料是极性或强极性的亲水矿物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材

离子注入对金属材料改性

离子注入材料表面改性的研究方法 【摘要】本文论述了离子注入材料表面改性的特点和发展应用,阐述了离子注入材料表面改性的机理。大量研究表明,离子注入通过改变材料表面和界面的物理化学特性及微观结构,能够显著提高材料的抗磨损,抗疲劳,抗腐蚀,抗氧化特性。离子注入不仅可以提高材料表面性能,延长材料使用寿命,还可以节约贵金属资源,具有很好的经济效益和应用前景。 【关键词】离子注入技术;材料表面改性;研究方法 1.前言 20世纪70年代,离子注入应用于材料表面改性并逐渐发展成一种新颖有效的材料表面改性方法。它是把工作(金属,合金,陶瓷等)放在离子注入机的真空靶室中,通过加高电压,把所需元素的离子注入到工件表层的一种工艺。材料经离子注入后,在其零点几微米的表层中增加注入元素和辐照损伤,从而使材料的物理化学性能发生显著变化。 大量实验证实,离子注入能使金属和合金的摩擦因素,耐磨性,抗氧化性,抗腐蚀性,耐疲劳性以及某些材料的超导性能,催化性能,光学性能等发生显著变化,能够大大提高材料的性能和使用寿命。离子注入在工业中应用能取得很好的效益,除延长工件的使用寿命外,还由于离子注入仅用较少量的合金元素,就可以得到较高的表面合金浓度,因而可以节约贵重金属[1]。 2.离子注入特点 与通常的冶金方法不同,离子注入是用高能量的离子注入来获得表面合金层的,因而有其特点: (1)离子注入是一个非热平衡过程,注入离子的能量很高,可以高出热平衡能量的2-3个数量级。因此,原则上周期表中的任何元素都可以注入任何基体材料。 (2)注入元素的种类,能量,剂量均可选择,用这种方法形成的表面合金,不受扩散和溶解度的经典热力学参数的限制,即可得到用其他方法难以获得的新合金相。 (3)离子注入层相对基体材料没有明显的界面,因此表面不存在粘附破裂或

橡胶与各指标的关系

浅谈橡胶的各种物性与密度的关系 前言: 在橡胶制品过程中,一般必须测试的物性实验不外乎有: 拉伸强度 2、撕裂强度 3、定伸应力与硬度 4、耐磨性 5、疲劳与疲劳破坏 6、弹性 7、扯断伸长率。 各种橡胶制品都有它特定的使用性能和工艺配方要求。为了满足它的物性要求需选择最适合的聚合物和配合剂进行合理的配方设计。首先要了解配方设计与硫化橡胶物理性能的关系。硫化橡胶的物理性能与配方的设计有密切关系,配方中所选用的材料品种、用量不同都会产生性能上的差异。 1、拉伸强度:是制品能够抵抗拉伸破坏的根限能力。 它是橡胶制品一个重要指标之一。许多橡胶制品的寿命都直接与拉伸强度有关。如输送带的盖胶、橡胶减震器的持久性都是随着拉伸强度的增加而提高的。 A:拉伸强度与橡胶的结构有关: 分了量较小时,分子间相互作用的次价健就较小。所以在外力大于分子间作用时、就会产生分子间的滑动而使材料破坏。反之分子量大、分子间的作用力增大,胶料的内聚力提高,拉伸时链段不易滑动,那么材料的破坏程度就小。凡影响分子间作用力的其它因素均对拉伸强度有影响。如NR/CR/CSM这些橡胶主链上有结晶性取代基,分子间的价力大大提高,拉伸强度也随着提高。也就是这些橡胶自补强性能好的主要原因之一。一般橡胶随着结晶度提高,拉伸强度增大。 B:拉伸强度还跟温度有关: 高温下拉伸强度远远低于室温下的拉伸强度。 C:拉伸强度跟交联密度有关: 随着交联密度的增加,拉伸强度增加,出现最大值后继续增加交联密度,拉伸强度会大幅下降。硫化橡胶的拉伸强度随着交联键能增加而减小。能产生拉伸结晶的天然橡胶,弱键早期断裂,有利于主健的取向结晶,因此会出现较高的拉伸强度。通过硫化体系,采用硫黄硫化,选择并用促进剂,DM/M/D也可以提高拉伸强度,(碳黑补强除外,因为碳黑生热作用)。 D:拉伸强度与填充剂的关系: 补强剂是影响拉伸强度的重要因素之一,填料的料径越小,比表面积越大、表面活性越大补强性能越好。结晶橡胶的硫化胶,出现单调下降因为是自补强性非结晶橡胶如丁苯随着用量增加补强性能增加、过度使用会有下降趣向。低不和橡胶随着用量的增加达到最在值可保持不变。 E:拉伸强度与软化剂的关系:

材料表面改性方法

材料表面改性方法 材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。 现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。现代材料表面改性技术就是应用物理、化学、电子学、机械学、材料学的知识,对产品或材料进行处理,赋予材料表面减磨、耐磨、耐蚀、耐热、隔热、抗氧化、防辐射以及声光电磁热等特殊功能的技术。 分类: 1、传统的表面改性技术: 表面热处理:通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。 表面渗碳:面渗碳处理:将含碳(0.1~0.25)的钢放到碳势高的环境介质中,通过让活性高的碳原子扩散到钢的内部,形成一定厚度的碳含量较高的渗碳层,再经过淬火\回火,使工件的表面层得到碳含量高的M,而心部因碳含量保持原始浓度而得到碳含量低的M,M的硬度主要与其碳含量有关,故经渗碳处理和后续热处理可使工件获得外硬内韧的性能. 2、60年代以来:传统的淬火已由火焰加热发展为高频加热 高频加热设备是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内磁力线通过金属材质时,使锅炉体本身自行高速发热,然后再加热物质,并且能在短时间内达到令人满意的温度。 3、70年代以来: 化学镀:是指在不用外加电流的情况下,在同一溶液中使用还原剂使金属离子在具有催化活性的表面上沉积出金属镀层的方法。 4、近30年来: 热喷涂:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备

氟碳橡胶改性涂层材料赋予橡胶表面的耐磨防粘等-中国聚合物网

氟碳橡胶改性涂层材料赋予橡胶表面的耐磨、防粘等特性V1.0 在航空航天工业、汽车工业、机械制造、石油开采、炼油及其他工业生产中,需要大量在燃油、润滑油、液压油等油类中使用的橡胶制品,然而按标准工艺生产的橡胶制品均存在耐磨性、耐油等方面的不足,人们通过采用各种化学粘结、等离子喷涂、离子注入等方法,对橡胶进行处理,皆因过程复杂、设备昂贵、性能不理想, 而得不到广泛应用;即使是二氟化氙(XeF2)表面氟化的表面处理也因需要特殊设备而无法进入寻常生产厂而同样得不到广泛的应用。 因此操作简单,处理效果好的表面处理是工业界急需要找寻的工艺方法。氟碳表面改性涂层材料赋予普通橡胶的表面耐磨、防粘、耐腐等特性来解决这类问题。 一、普通橡胶普遍存在的问题: 1、耐油问题:橡胶制品在使用过程如果和油类介质长期接触,油类能渗透到橡胶内部使其产生溶胀,致使橡胶的强度和其他力学性能降低。油类能使橡胶发生溶胀,是因为油类渗入橡胶后,产生了分子相互扩散,使硫化胶的网状结构发生变化。橡胶的耐油性,取决于橡胶和油类的极性,橡胶分子中含有极性基团,如氰基、酯基、羟基、氯原子等,会使橡胶表现出极性。极性大的橡胶和非极性的石油系油类接触时,两者的极性相差较大,此时橡胶不易溶胀。如丁腈橡胶、氢化丁腈橡胶、丙烯酸酯橡胶、氯醇橡胶、氯磺化聚乙烯橡胶、氟橡胶、氟硅胶等对非极性的油类有良好的耐油性。近年来,世界各国都在大力开发综合性能优良的耐油橡胶,主要是利用合成阶段的改性、多元共聚,加工阶段的不同橡胶共混、橡塑并用、添加有用的填充剂等方法来改善耐油橡胶的综合性能,已取得了很大的成效。 2、耐磨性问题橡胶的主要用途之一是用作活动密封件。由于旋转轴的转速较高,密封制品要承受很大的摩擦扭矩,尤其是在润滑效果不良的情况下,密封区域的生热较大,会导致胶料发粘或与金属粘合性能提高,使密封件破坏,进而导致密封失效。降低摩擦区域温度比较有效的方法之一是在橡胶中加入润滑填料,以降低胶料的摩擦因数。如二硫化钼及石墨加入橡胶生产配方中。另外,使用聚四氟乙烯(PTFE),聚四氟乙烯具有优良的耐介质和耐大气老化性能,使用范围广,有良好的自润滑性能,摩擦因数很小,将其包覆在橡胶表面可大大减小橡胶制品的表面摩擦因数,提高耐磨性能和耐介质性能。但是,聚四氟乙烯的表面能较低,很难与其它材料复合,目前研究的聚四氟乙烯包覆方法有如下几种:辐照接枝法、等离子体活化法、化学腐蚀法、静电喷涂法、媒介法。而经氟碳橡胶表面改性性处理的过的橡胶能达到比聚四氟乙烯更小的表面能。 二、一般橡胶表面化学改性的方法及应用局限性:表面改性可在不影响橡胶胶基材性能的性况下减小其表面的微观结构、致密封性、耐磨性。表面改性的方法分为表面化学改性和物理包覆。表面化学改性方法有氟化、溴化、碘化和磺化,其中氟化的方法有:XeF2氟化,等离子体活化氟化及离子注入法。用二氟化氙晶体对橡胶制品进行表面氟化已实现了工业化应用;物理包覆方法主要有聚对亚苯基二甲基薄膜包覆、润滑膜表面涂覆、聚四氟乙烯包覆和其它氟化物包覆。 1、各种表面化学改性性方法只是对橡胶表面进行改进,处理后表面改性层易磨损,使用时间有限; 2、各种改性方法只能做为表面处理剂,不能作为配方综合的提高橡胶综

表面改性方法

镁合金表面熔覆改性技术 Surface Overlaying Modification Technology of Magnesium Alloys 摘要评述了镁合金表面熔覆改性技术的国内外发展概况,着重介绍了热喷涂、激光熔覆及热喷涂+激光重熔复合熔覆3种处理工艺和熔覆涂层材料,提出采用热喷涂+激光熔覆合法熔覆工艺、镁合金表面熔覆非晶合金以及熔覆高熔点涂层是提高镁合金表面性能的有效方法,具有良好的应用前景。 关键字:镁合金表面改性研究进展 Abstract:Recent developments of the application of surfacing overlaying modification technology of magnesium alloys are reviewed. The main treatment processes including thermal spraying, laser cladding and a two-step composite method, thermal spraying firstly then laser cladding, are introduced emphatically. Moreover, coating materials for surface modification of magnesium alloy are also summarized. It's pointed out that the composite technology of thermal spraying firstly then laser cladding, overlaying amorphous alloys coating and high melting point materials coating are effective methods of enhancing surface performance of magnesium alloys, which have good application prospects and are worth further studying. Key words magnesium alloys, surface modification, research progresses 1 序言 镁合金因密度低.比强度、比刚度高.电磁屏蔽性好.减震性好.以及优良的切削加工性能.在航空、汽车和电子通讯等行业中得到广泛的应用。但是镁的化学稳定性低.电极电位很负(-2.34V)耐蚀性差.月_镁合金的耐磨性、硬度及耐高温性能也较差.在某种程度上制约了镁合金材料的广泛应用。因此.如何提高镁合金的耐磨、耐腐蚀及耐热等综合性能已成为当今镁合金材料研究、发展的重要课题。有效的途径之一是对镁合金表而进行表而改性处理.在基体材料的表而形成相应的保护层。 日前,镁合金表而处理上要有化学转化、阳极氧化、表而渗层、表而电镀等方法这些方法都存在一些局限性.要么对环境有较人污染.要么所制得的涂层厚度、致密性有限而不能够有效保护。然而采用表而熔覆改性处理.如热喷涂、激光熔覆等方法.就可以克服以上不足.既环保又满足使用性能。本文综述了近年来国内外镁合金表而熔覆改性处理技术和熔覆涂层材料的发展概况。 2 镁合金表面熔覆工艺 2.1 热喷涂工艺 热喷涂技术几乎适用各种材料对零件表而的喷涂.对零件的尺寸大小及形

材料改性教学总结

材料改性

浅谈表面改性 摘要:本文主要总结了各种材料的改性及改性剂对其的影响,其中还涉及到各种改性方法及对材料改性的展望。 关键字:表面改性纳米金属 1 引言 表面改性是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如亲水性、生物相容性、抗静电性能、染色性能等。表面改性的方法有很多报道,大体上可以归结为:表面化学反应法、表面接枝法、表面复合化法等。 表面改性技术(surface modified technique) 则是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 2表面改性对不同材料性能的影响 2.1 对SF/PP复合材料性能的影响 剑麻纤维(SF)因具有较高的比强度和比模量而成为树脂基体较好的天然纤维增强材料,适用于制备成本低、比模量高和耐冲击的纤维/树脂复合材料。国内常用马来酸酐接枝聚丙烯或有机硅烷为界面相容剂,来提高SF/PP复合材料的力学性能,表面改性可以提高纤维与PP基体的黏合性。使SF/PP复合材料的力学性能和流动性能提高,吸水率下降【1】。 2.2对羟基磷灰石蛋白吸附的影响 羟基磷灰石因为与人体骨组织中的无机组分相近而被广泛应用于有机/ 无机复合物中。但是, HAP 表面具有亲水性, 大多数应用于骨修复的有机材料具有疏水性, 两者的极性差异导致了界面相容性下降, 进而降低复合物的力学性能。克服这一困难最常用的方法

橡胶表面改性的方法探讨

橡胶表面改性的方法探讨 摘要:文中对橡胶表面改性的方法进行了阐述,其中包括物理技术改性和化学技术改性。 关键词:橡胶表面改性物理技术改性化学技术改性 在较多情况下,橡胶材料在日常生活、工作中的应用是通过表面和表面的性能来完成的。橡胶表面改性是在橡胶基材性质不受影响的前提下,为了使其可以使用一些特定的用途或特殊性能,而对橡胶的表平面性质进行改变。硅橡胶是一种表面疏水性物质,然而可以借助器表面改性而促进表面亲水性能的提高,从而充当生物材料,使其应用范围得到扩展;以不影响材料强度作为前提条件,通过表面改性可以使旋转轴密封圈的表面摩擦减小。按照改性目的可以将橡胶材料表面改性分成改变表面亲水性能、该表表面摩擦性能以及改变表面粘合性能等;根据其表面大分子的变化可分成化学改性和物理改性。文中根据橡胶材料的改性方法对其表面改性进行分析探讨。 一、化学技术改性 橡胶表面化学技术改性是指材料表面通过化学反应剂而生成化学反应,然后使材料表面发生化学结构的改变,促进材料某种性能的提高。这种化学技术改性属于橡胶表面的化学改性,所涉及到的化学反应假破位复杂,如取代反应、置换反应以及环化反应等。 1.表面卤化 橡胶表面卤化包括了表面氟化、表面氯化、表面溴化、表面碘化。其中表面氟化是橡胶材料表面通过氟气或二氟化氙接触形成化学反应,当前多以二氟化氙完成表面氟化。橡胶表面氟化的机理是在化学反应时间延长的情况下,氟原子取代了橡胶表面的氢原子。经过试验研究,表面氟化后增大了橡胶表面的平整性、耐腐蚀性、耐磨性与耐油性,同时也增大了橡胶的硬度,降低了其强伸性能。表面氯化则是通过含有有机溶剂的氯化剂对橡胶表面进行处理,进而促进橡胶表面能够和其他有机材料间的粘合力得到增强,最常用的表面氯化剂为三氯氰酸。表面溴化则将橡胶材料浸泡在溴化物配制的酸性水溶液中,从而促使橡胶材料的表面结构形态发生改变。研究表明:对任何硫化体系硫化胶进行表面溴化处理,均可得到相同的作用;同时不会对硫化胶的强伸性能和硬度不会产生影响,但是对橡胶的耐磨性和耐介质性有着明显的改善作用。表面碘化能够使橡胶接触工作面的面积减小,进而使摩擦因数减小。 2.表面磺化 橡胶表面改性方法中的表面磺化通常是在硫酸或者亚硫酸溶液中将橡胶材料浸渍的过程。该改性方法的效果是打开橡胶表面的C-C键,然后在中一个[C]

QPQ金属材料表面改性处理技术简介

QPQ金属材料表面改性处理技术简介 QPQ处理技术是一种可以同时大幅度提高金属表面的耐磨性、抗蚀性,而工件几乎不变形的新的金属表面强化改性技术。该技术由德国迪高沙公司开发。由于该工艺可以使金属表面的耐磨、耐蚀性及耐疲劳性能大幅度提高,已被广泛用于汽车、摩托车、机车、工程、纺织、轻工机械、仪表,工模具、办公设备等各种行业。该技术具有以下优点: 一、性能优良 1.良好的耐磨性、耐疲劳性能: 经QPQ处理的45钢,40Cr钢(退火状态)的耐磨性达到淬火及高频淬火的16倍以上,达到20钢渗碳淬火的9倍以上,为镀硬铬和离子氧化的2倍多(见附表一)。在大量生产条件下提高工模具寿命1-4倍。 2.极好的抗蚀性: 普通炭钢经QPQ处理后具有极高的抗蚀性,例如45钢经QPQ处理后在大气中和盐雾中的抗蚀性比1Cr18Ni 9Ti不锈钢高5倍;比镀硬铬高70倍以上;比发黑高280倍以上(见附表二)。 3.极小的变形: QPQ处理可以认为是变形最小的硬化方法,处理后工件的尺寸和形状变化极小,可以用来解决很多常规处理方法无法解决的热处理变形问题。 4.可以替代多道工序: 该工艺一次处理可以替代淬火——回火——发黑三道工序或渗碳——淬火——回火——镀硬铬四道工序,可以大大降低生产成本,并且大幅度节能。 二、应用范围广: 1.使用材料: 适用于各种工具钢、冷热模具钢、结构钢、不锈耐热钢、纯铁、铸铁及粉末冶金件。 2.可替代工艺: 可以大量替代渗碳淬火、高频淬火、易变形的淬火;替代离子氮化;替代发黑、磷化、硫化、镀硬铬、镀装饰铬。普通结构钢经QPQ处理,在很多情况下可以大量替代不锈钢。 3.已经成熟应用的产品: 工具:高速钢钻头、铣刀、铰刀、丝锥、滚刀、插齿刀、拉刀等,加工不锈钢、耐热钢效果尤为显著。 模具:各种冷拉模、挤压模、冲模、压铸模。对大量通用的橡胶模、塑料模、玻璃模等各种模具,由于模具承受压力不大,可以选用退火态调质的中炭钢作QPQ处理替代T12或9SiCr类钢制淬火模具。 机床件:机床摩擦片、导轨、电器铁芯等。 汽车摩托车件:曲轴、凸轮轴、气门、气簧、扭转盘、刹车控制系统、座位滑动器、保险杠、齿轮、连杆、链轮、缸套、门锁、挡风玻璃摇臂风扇电机、离和器摩擦片等…… 纺织机:络筒机件、弹力丝机热轨、罗拉、钢令圈等。 齿轮:多种大小规格齿轮。 办公设备及家用电器件:各种耐磨性、轴类件。 电力设施件:露天放置的电力设施中的耐磨蚀件。 中山市小榄镇生产力促进中心为了提高小榄镇五金产业的生产技术水平,现定于在本月23日与中山成工材料科技有限公司联合举行一次QPQ金属材料表面改性处理技术展示会,届时欢迎各五金企业参加,详情请与本中心联系。 表一:滑动磨损试验

材料改性论文2

分析杯形冲压件再结晶退火后杯底圆弧侧晶粒异常粗大的原因,并选择合适的工艺方法消除这种现象 摘要:冷变形金属经回复后使内应力得到很大程度的消除,同时又能保持冷变 形的硬化效果,因此,回复退火又称为去应力退火。在实际生产中,经常利用冷变形的工件进行去应力退火降低其内应力,如冲压件,冷拉钢丝,弹簧及锻件等。因此,一些铸件,焊接件及切削件,也须进行去应力退火。工件中的内应力的降低,可避免工件的变形或开裂,并提高其耐蚀性。 关键词:冲压件再结晶退火去应力退火工艺 一.分析杯底圆弧侧再结晶退火后晶粒异常粗大的原因。 1.再结晶退火机理 再结晶是指经冷变形的金属在足够高的温度下加热时,通过晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。和回复不同,再结晶是一个显微组织彻底改组,变形储存能充分释放、性能显著变化的过程。 下图是再结晶过程新晶核的形核与长大的过程。可见随保温的时间的延长,新的等轴晶粒逐渐增多并长大,直到完全取代了变形的晶粒。再结晶完成后组织形态及晶粒大小直接关系到金属的性能。 2.影响再结晶因素 (1)退火温度。温度越高,再结晶速度越大 (2)变形程度:变形程度越大,其储存的变形能也越高,再结晶驱动力越大,所以,不但开始再结晶的温度越低,同时等温退火时的再结晶速度也越快。但在变形量增大到一定程度时,再结晶温度趋于一个稳定的值。 (3)原始晶粒尺寸。在其他条件相同的情况下,金属的原始尺寸越小,则变形抗力越大,冷变形后储存的畸变能也越高,再结晶的驱动力也越大,再结晶的温度也越低。此外,金属的原始晶粒越细小,晶界越多,变形后

提供的再结晶形核点越多,有利于结晶。 (4)微量溶质原子:一方面,微量溶质原子灰产生一定的固溶强化作用,所以微量原子可增加变形储存能,有利于结晶。另一方面,微量原子汇 聚在晶界,阻碍了位错的运动,从而不利于再结晶。但实验表明,微量溶 质原子的存在,会阻碍金属的再结晶,从而提高其再结晶的温度。 (5)分散相粒子:分散相粒子既能促进再结晶,也能阻碍再结晶。 3.再结晶晶粒大小的控制 (1)预变形程度:当变形程度很小时不发生再结晶,故晶粒度不变。当变形程度在2%-8%的时候,再结晶晶粒特别粗大,此时的变形度即所谓 的临界变形度。当变形大于临界变形度的时候,晶粒逐渐细化。这是由于变形度增加。储存能也增加,N和G同时增大,但N增大的速度大于G 增大的速度,是G/N逐渐减小的缘故。 (2)原始晶粒尺寸:原始晶粒越细,再结晶后的晶粒也越细。因为原始晶粒细,变形储存能增高,形核驱动力大,且形核点增多,最终使G/N 减小。 (3)微量溶质元素和杂质。一方面增加储存能是驱动力增大,另一方面阻碍了晶界的移动,使G/N减小,从而使晶粒细化。 (4)退火温度。提高退火温度,不仅使再结晶后的晶粒粗大,而且还影响临界变形度的大小。退火温度越高,临界变形度越小,再结晶后的晶粒也越大。 加工率与退火温度——晶粒尺寸关系如下图 由上图可知杯形冲压件经过再结晶退火后,由于在杯底圆弧侧处加工时变形量大,从而导致再结晶退火后此处的晶粒比其他变形比较小的地方粗大。 而由于加工后,杯形冲压零件经过很大的塑性变形,留有残余应力使组织处于亚稳态,从而降低零件的性能与使用寿命,所以得对零件退火,让其组织稳定下来,再由于当退火温度高于再结晶温度时,就会存在某些地方塑性变形量大而使晶粒异常粗大,对零件的使用性能很大影响,所以退火应在其再结晶温度下进行——去应力退火。

材料改性题库

1物理改性和化学改性的分类依据是什么? 是否发生化学反应 2物理改性有哪些?有何特点。 Adsorption,complex,hydrogen bonding,sharp transition by forces Additive modification ,polymer blending ,polymer composition, physical crosslinking btw polymers Simple, economic and easily processing,normally used modification method 吸附、混合、氢键、sharp transition by forces(力作用的急剧转变)、添加剂改性、聚合物共混、聚合物合成、聚合物间的物理交联。 特点:简单、经济、过程简单、通常采用改性方法 3 化学改性有哪些?有何特点? Copolymerization, grafting polymerization, chemical crosslinking Functional groups reaction in polymer 共聚,接枝聚合,化学交联,聚合物的官能团反应。 特点:长期的影响,成本高,难以形成规模,交联改性可以在加工过程中加入交联剂。 4 表面改性有哪些特点? Medification only at surface of the materials Homogeneous heterogeneous Low cost in comparison with bulk modification Chemical oxidation treatment ,surface corona treatment,surface flame treatment ,surface thermal treatment and surface graft polymerization. Internal property no change surface property enhanced (luster ,hardness,wear resistance ,antistatic ,flame retardant ,adhesion ,printability, and heat resistance)表面光泽、硬度、耐磨、防静电、阻燃、粘合性、印刷性、热合性 只在材料的表面上改造(均匀的和不均匀的),与本体改性相比成本低,具体有:化学氧化处理,表面电晕处理,表面火焰处理,表面热处理和表面接枝聚合,特点:内部属性: 没有变化; 表面性质:增强(表面光泽、硬度、耐磨、防静电、阻燃、黏合性、印刷性及热合性等 5 list the methods of polymer modification Polymer blends 共混改性 Chemical modification 化学改性 Additive and polymer fiber reinforce 填充与纤维增强改性 Surface modification 表面改性 Polymer composites 复合改性 6 tell the difference between compatibility and miscibility Compatibility 相容性 Miscibility: 混溶性,thermodynamic ability to be mixed at the molecular level . compatibility 相容性; Miscibility 混溶性;thermodynamic ability to be mixed at the molecular level(在分子水平上共混的热力学能力) 7 高分子体系能够混合的热力学条件是? ?G<0 和

医用金属材料表面处理

医用钛合金材料表面改性 摘要:金属材料是生物医学材料中应用最早的。由金属具有较高的强度和韧性,适用于修复或换人体的硬组织,早在一百多年前人们就已用贵金属镶牙。随着抗腐蚀性强的不锈钢、弹性模量与骨组织接近铜铁合金,以及记忆合金材料、复合材料等新型生物医学金属材料的不断出现,其应用范围也在扩大。 关键词:钛合金材料,表面涂层处理,表面改性 (一)医用金属与合金表面涂层处理 金属及其合金在生物体内的生物活性、磨损、腐蚀问题尚未解决,需对其表面进行改性。表面改性不仅要抑制有害金属离子的溶出,而且要促进组织的再生和加强材料与组织结合。 生物钛合金材料的表面改性技术主要可以分为: (1)物理化学方法(2)形态学方法(3)生物化学方法。 1 物理化学方法——改善金属生物材料表面性能的主要方法 (1)热喷涂 热喷涂是利用一种热源的火焰将粉末状的金属或非金属喷涂材料加热熔融并软化,并用热源自身的动力或外加高速气流雾化,使喷涂材料的液滴以一定的速度喷向经过预处理干净的基体表面,依靠喷涂材料的物理变化和化学反应,与基体形成结合层的工艺方法。可分为电弧喷涂、等离子喷涂、火焰喷涂、爆炸喷涂等。 (2)脉冲激光融敷 是在低输出功率、高扫描速速的脉冲激光照射下,将涂敷材料融敷在基体表面的方法。 (3)离子溅射 离子溅射以高速离子轰击靶材,使涂敷材料粉粒溅射并沉积在金属基体 (4)喷砂法 用喷砂机将涂敷材料粉末直接高速喷出镶入基体表面。 (5)电化学法 电化学法是用电化学的方法,通过调节电解液的浓度、PH值、反应温度,电场强度,电流等来控制反应的制备方法。 (6)离子注入法 离子注入改性是将所需的元素在离子气化室中进行气化,通过高频放

金属材料论文

目录 一、金属材料的性质 二、铁碳合金 三、金属的工艺性能 四、金属材料的改性方法 五、金属材料的发展趋势 六、参考文献

金属材料的性质 在自然界中,金属元素占75%。价电子数目少,电子层数较多,原子核对价电子的引力较弱,价电子容易脱离原子核的束缚而形成自由电子是其金属原子的结构特点。 自由电子在正离子之间作高速运动,形成带负电的电子云,正离子与电子云之间产生强烈的静电吸引力,金属原子间这种正离子与自由电子的引力结合称为金属键。金属键与非金属原子间的结合键不同。由于金属键的作用力很大,并且大量的原子结合成整体金属,固金属的强度高;金属键没有方向性,原子间也没有选择性,所以在外力作用下发生原子位置的相对移动时,金属健也不会遭到破坏,所以金属具有比较好的塑性变形能力;由于金属中的自由电子在电场的作用下作定向运动,使金属具有导电性,金属离子在平衡位置可以作热振动,且温度越高,金属离子的振幅越大,因此金属具有良好的导热性。 固态金属的原子彼此靠金属键结合在一起,表现出有规则的特征,即固态金属具有晶体结构。固态金属的晶格有多种形式,除少数具有复杂的结构外,大多数都属于体心立方,面心立方和密排六方三种中的一种: 体心立方晶格的结构特点:8个原子组成一个立方体,立方体的中心处还有一个原子。这种晶胞所占有的实际原子数为2,各棱边长度相等;具有这种结构特点的金属有:W、Cr、Mo、V、Nb等。 面心立方晶格的结构特点:8个原子组成一个立方体,立方体各面的中心处还分布有1个原子。这种晶胞所占有的实际原子数为4,各棱边长度相等;具有这种结构的金属有:Cu、Al、Ni、Pb等。 密排六方晶格的结构特点:12个原子组成一个六棱柱体,上下两个六边形中心处各有1个原子,六棱柱体的心部所占有的实际原子数为6。具有这种晶格的金属有:Mg、Be、Cd、Zn等。 以上的三种晶格是一种理想的状况,与实际金属的晶体结构有很大的差距。实际金属的原子排列不可能像理想晶体那样规则和完整,由于要受到加工、凝固以及其它因素的影响,实际晶体中总存在着偏离完整性的区域,这些区域就称为晶体缺陷。按几何特征,晶体缺陷可分为点缺陷,线缺陷和面缺陷。 (1)点缺陷结晶过程中,在高温下或由于辐照等,晶体中会产生点缺陷。其特征是三维方向上尺寸都很小,仅引起几个原子范围的不完整,该缺陷就是点缺陷。包括空位,间隙原子和异类原子三种。 (2)线缺陷指晶格中某一列或若干列原子出现有规律的错排,破坏了晶格的规则而形成的缺陷。位错的种类很多,但最简单、最基本的有两种类型:一种是刃型位错,另一种是螺型位错。 (3)面缺陷面缺陷主要是指晶界、亚晶界等。其特点是两个方向尺寸较大,一个方向尺寸很小。 铁碳合金 一合金及其结构 两种或两种以上的元素组成的金属物质称为合金。合金是金属,因而合金的组元中含有较大比例的金属元素。而其他含量少的元素可以是金属元素,也可以是非金属元素。如黄铜是铜锌合金,黄铜的组成元素都是金属元素。而钢是铁、碳等元素组成的合金,所含铁、锰等元素是金属元素,但碳、硅等则是非金属元素。合金中各组元之间相互影响、相互作用,因而可组成各种不同的结构。 1.固溶体

相关主题
文本预览
相关文档 最新文档