当前位置:文档之家› 氟树脂硅溶胶复合涂层的制备和超疏水性能研究

氟树脂硅溶胶复合涂层的制备和超疏水性能研究

氟树脂硅溶胶复合涂层的制备和超疏水性能研究
氟树脂硅溶胶复合涂层的制备和超疏水性能研究

第7期段辉等:氟树脂/硅溶胶复合涂层的制备和超疏水性能研究

表1各种溶胶一凝胶参数、溶胶(s01)与FR(以纯FR量计算)及FR与唧重量比

无裂纹无裂纹无裂纹GHI

2.2接触角

通常,水滴在光滑表面的接触角最大不超过120。,这是通过单纯表面化学改性所能达到的接触角的极限值[1]。从表1可见,复合材料表面对水的接触角均大于本实验中纯FR表面的接触角102。(图1a)。由此说明,复合材料形成的涂层表面存在着不同程度的粗糙度,从而在不同程度上增强了涂层的疏水性。当FR/sol重量比<1:1时,若PTFE用量过低,膜的刚性过大,使表面产生裂纹。随着PTFE用量增大,减少了膜的刚性,所得到的涂层膜连续而无裂纹,并形成表面微观结构。PTFE/FR的重量比>o.5:1时,则微米级结构占主导作用,使接触角迅速降低。当树脂含量进一步增大时,表面粗糙度降低,使涂层表面的接触角迅速减小。当s01/FR重量比为1:1,FR/PTFE重量比为1:o.5时,o.6肚L的水滴在涂层表面的接触角高达155。(图1b).

图1不同涂层对o.6“L水滴的接触角

a一纯FR涂层表面,CA一102。.b—Sol/FR重量比为1:1,踊/眦重量比为l/o.5时的涂层表面,CA=】55。

2.3表面微观结构及疏水性数学模型

由涂层表面的SEM图可以看到,纯FR涂层表面平滑(图2a)。图2b表明,FR/Si02/PTFE复合涂层表面由3~11灶m的PTFE原始粒子和附聚体组成,类似荷叶表面微米结构中平均直径5~9肛m的乳突[6]。每个“乳突”上,分散着300nm左右大小的Si02粒子。这种微米结构与纳米结构相结合的阶层结构,与天然荷叶表面极其相似,是引起表面超疏水的根本原因。

图2不同样品涂层表面的SEM图

a一纯碌涂层表面.b—Sol/职重量比为1:1,F剐咖重量比为1:o.5时的涂层表面

这种微米与纳米阶层结构类似于Koch曲线所描述的分形结构,据此,我们可以建立1个超疏水与阶层结构的数学模型。即利用分形结构方程来计算粗糙因子,粗糙表面的接触角(et)与光滑表面的接触角(0)之间有下列关系式:

.c。嘶一^…吨cos臼一^(1)式中,fs和fv分别为表面上固体与空气所占的分数(f。+f,一1);L和1分别对应微米级“乳突”的直径和纳米结构的尺寸;D为分形维数。Koch曲线是瑞典数学家Koch于1904年提出的,该曲线的生成方法就是把一条直线3等份,中间为夹角60。的2条等长折线,为生成的第一元;然后,每条直线段用生成元迭代,就呈现出l条无穷多弯曲的Koch曲线。相似维数是从分形的自相似对称性出发而定义的一种分形维数,其定义为:如果某个图形是由把全体缩小为1/n的nd个相似图形构成的,那么指数d就称为相似维数,记为DS。因此,Koch曲线就是把全体缩小1/3的4个相似形构成的,4—31’2618,则D。一1.2618。三维空间中:D—DS+1—1.2618+1—2.2618。根

(下转第61页)

氟树脂/硅溶胶复合涂层的制备和超疏水性能研究

作者:段辉, 白晨, 汪厚植, 赵雷, 赵惠中, Duan Hui, Bai Chen, Wang Houzhi, Zhao Lei, Zhao Huizhong

作者单位:段辉,Duan Hui(武汉科技大学,湖北省耐火材料与高温陶瓷国家重点实验室培育基地,武汉,430081;海军工程大学化学与材料系,武汉,430033), 白晨,汪厚植,赵雷,赵惠中,Bai

Chen,Wang Houzhi,Zhao Lei,Zhao Huizhong(武汉科技大学,湖北省耐火材料与高温陶瓷国

家重点实验室培育基地,武汉,430081)

刊名:

化工新型材料

英文刊名:NEW CHEMICAL MATERIALS

年,卷(期):2006,34(7)

被引用次数:5次

参考文献(6条)

1.Venkateswara A Rao;Manish M Kulkarni;Sharad D Bhagat Transport of Liquids Using Superhydrophobic Aerogels[外文期刊] 2005(1)

2.Venkateswara A Rao;Manish M Kulkarni;Amalnerkar D P Superhydrophobic Silica Aerogels Based on Methyltrimethoxysilane Precursor[外文期刊] 2003

3.Shang H M;Wang Y;Limmer S J Optically Transparent Superhydrophobic Silica-Based Films[外文期刊] 2005

4.Akira Nakajima;Kouki Abe;Kazuhito Hashimoto Preparation of Hard Super-Hydrophobic Films with Visible Light Transmission[外文期刊] 2000(1/2)

5.Hrubesh L W;Poco J F Thin aerogel films for optical,thermal,acoustic and electronic applications [外文期刊] 1995(1-2)

6.Feng Lin;Li Shuhong;Li Yingshun Super-Hydrophobic Surface:From Natural to Artificial[外文期刊] 2002(24)

本文读者也读过(3条)

1.段辉.汪厚植.熊征蓉.赵雷.顾华志.DUAN Hui.WANG Houzhi.XIONG Zhengrong.ZHAO Lei.GU Huazhi表面凝胶化技术构建粗糙细微结构[期刊论文]-化工进展2006,25(11)

2.段辉.汪厚植.赵雷.邓承继.顾华志.DUAN Hui.WANG Houzhi.ZHAO Lei.DENG Chengji.GU Huazhi采用表面凝胶化技术制备超疏水性涂膜[期刊论文]-膜科学与技术2007,27(6)

3.段辉.汪厚植.赵雷.邓承继.顾华志.Duan Hui.Wang Houzhi.Zhao Lei.Deng Chengji.Gu Huazhi氟化丙烯酸/二氧化硅杂化超疏水涂层的性能研究[期刊论文]-涂料工业2006,36(12)

引证文献(5条)

1.顾春元.狄勤丰.施利毅.吴非.王文昌.余祖斌纳米粒子构建表面的超疏水性能实验研究[期刊论文]-物理学报2008(5)

2.邵会菊.徐艳莲.胡炳环一种疏水性生漆膜的性能研究[期刊论文]-福建师范大学学报(自然科学版) 2009(1)

3.何易.郑燕升.易波.卓志吴.莫倩溶胶-凝胶法制备PTFE/SiO2疏水涂层[期刊论文]-塑料工业 2012(2)

4.蔡锡松.肖新颜超疏水表面涂层研究进展[期刊论文]-现代化工 2013(1)

5.王新亮.狄勤丰.张任良.顾春元超疏水表面滑移理论及其减阻应用研究进展[期刊论文]-力学进展 2010(3)

本文链接:https://www.doczj.com/doc/4f9599733.html,/Periodical_hgxxcl200607017.aspx

关于某超疏水涂层综述1

自洁净技术 当今世界现有的技术很多都是来自于大自然中的,自洁净技术就是其中之一。在自然界中的许多生物都表现出自洁净的性质。蝴蝶的翅膀和植物的叶子,例如卷心菜和莲花。自洁净技术的应用围很广,从窗户玻璃的清洗到太阳面板的清洁,从水泥到纺织品。这项技术在20世纪末得到了极大的重视。世界各地都在开发着具有增强光学性质的高效耐用的表面涂层。除了应用方面的好处,这项技术还提供了各种各样的好处,包括减少维护成本,消除繁琐的手工工作,花在清扫工作上的时间也会减少。 自洁净涂料大致分为两个主要的类别,亲水和疏水,这两个类别都是通过水的作用来达到自我清洁的效果。在一个亲水涂层,水在表面扩散,会带走污垢和其他杂质。而在疏水技术中,水在表面滚动滑落,从而达到清洗的目的。然而,亲水性涂料使用合适的金属氧化物具有一个额外的属性,在的辅助作用下,化学分解复杂的污垢,达到清洁的作用。 自清洁的应用,就是超疏水材料的应用。氏方程制定在200年前,现在在湿润科学上仍然是基本的方程。氏方程是描述固气、固液、液气界面自由能γsv ,γSL ,γLv 与接触角θ之间的关系式。表达式为:γsv-γSL=γLvCOS θ。 该方程适用于均匀表面和固液间无特殊作用的平衡状态。COS θ=(уSV-уSL)/уLV 式中уSV 为固体表面在饱和蒸气下的表面力,уLV 为液体在它自身饱和蒸汽压下的表面力,уSL 为固液间的界面力,θ为气、固、液三相平衡时的接触角。当θ>90°时固体表面表现为疏水性质,θ<90°时表现为亲水性质。将与水接触角大于150°的物体表面称为超疏水表面。温泽尔就膜表面的粗糙情况对疏水性的影响进行了深入的研究.对氏方程进行了修正。指出由于实际表面粗糙使得实际接触面积要比理想平面大,提出了Wenzel 方程:cos θ1=r(уSV-уSL)/уLV 。式中r 为实际接触面积/表观接触面积。亲水膜在增加粗糙度后将更亲水.疏水膜则更疏水。在研究织物疏水性能时.提出了另一种表面粗糙新模型——空气垫模型。Cassie 提出接触面由两部分组成,一部分是液滴与固体表面(R)突起直接接触,另一部分是与空气垫(fv)接触,并假定θ1 =180°,引入表面系数f=fs /(fs+fv),Cassie 推导的方程为:cos θ1=fcos θ+f-1=f(cos θ+1)-1。根据Cassie 的模型及公式的理论计算.提高空气垫部分所占的比例将会增强膜表面的超疏水性能。 1.D. Byun, J. Hong, J. H. Saputra Ko, Y. J. Lee, H. C. Park,B.-K. Byun and J. R. Lukes, J. Bionic Eng., 2009, 6, 63–70.【Wetting Character is ticsof Insect Wing Surface 】我们调查了昆虫翅膀表面在微小和纳米比例下的、发现多层的粗糙表面有利于提高疏水性。在检测了10组24个会飞有翅昆虫标本之后,我们发现微小和纳米尺寸下典型存在于昆虫上下翅膀表面。在昆虫翅膀表面的微小的齿状结构与刚毛提高了疏水性,同时也使翅膀更容易被清洗。疏水昆虫翅膀经历了从cassie 到wenzel 的状态的转换。 2.C. Dorrer and J. Ruhe, Soft Matter, 2009, 5, 51–61.【Some thoughts on superhydrophobic wetting 】一滴水接触疏水材料的表面会形成一个近乎完美的球形,即使是一个轻微的倾斜都足以使水滴滚落。根据Cassie 的模型及公式的理论计算.提高空气垫部分所占的比例将会增强膜表面的超疏水性能。液滴必须足够的小以保证不出现显著的重力变形,大小被认为满足直径低于各自毛细管长度。毛细管长度被定义为 g lg ργλ=C ,水的毛细管长度是2.7mm 。应用施加压力,震动底物,应用电压,水滴蒸发实

超疏水微纳米涂层的制备

ZnO/E-51复合涂料超疏水涂层的制备 1.选题的意义 润湿性是固体表面的重要性质之一,通常用液体在固体表面的接触角来表征。一般把与水的接触角大于150°且滚动角小于10°的固体表面,称为超疏水表面。由于超疏水表面与水滴的接触面积非常小,水滴极易从表面滚落,因此,超疏水表面不仅具有自清洁功能,而且还具有防腐蚀、防水、防雾、防雪、防霜冻、防黏附、防污染等功能[1,2],因而在建筑、包装、服装纺织、液体输送、生物医学、交通运输以及微观分析等领域具有广泛的应用前景[3,4]。 2.实验的目的 荷叶表面具有极佳的疏水性和自清洁能力,研究发现其表面的双重微观粗糙结构和低表面能植物蜡的协同作用是形成疏水性能的主要原因。目前人工制备疏水表面的主要有两个途径:,一类是在低表面能的物质表面构造出一定的粗糙结构[5-6],另一类则是在粗糙度合适的物质表面覆盖低表面能材料[7-8]。大量研究表明合适尺度的粗糙结构是指具有微-纳米尺度的二元粗糙结构[5]。当前有关超疏水表面制备技术和方法报道得较多,但大多采用复杂、高成本的纳米技术如光刻、静电纺丝、溶胶-凝胶和相分离、化学反应沉积、层层自组装等。受技术与实验条件的限制,这些超疏水表面制备技术与实际应用还有较大差距。本实验通过ZnO微粉与环氧树脂机械混合,制备ZnO/E-51复合涂料,固化后通过简单的化学刻蚀和表面修饰,形成微-纳米尺度二元粗糙结构,获得具有超疏水特性的大面积表面。 3.实验方法 3.1原材料 原材料ZnO微粉,粒径范围为0.1~1.5um;硬脂酸、冰醋酸和无水乙醇,环氧树脂(CYD-128),去离子水,实验室自制;50%的冰醋酸溶液由去离子水与冰醋酸按比例混合,实验室自制;1%的硬脂酸溶液由无水乙醇和硬脂酸按比例混合,实验室自制。 3.2.ZnO/E-51复合涂料的固化 采用真空袋压法制备固化的ZnO/环氧树脂复合涂料。将环氧树脂E-51和ZnO微粉按质量比1:2称量,采用机械搅拌方法混匀,制备环氧树脂浆料;在环氧树脂浆料中加入质量比为10%的二乙烯三胺固化剂,搅拌均匀;再将加入固化剂后的环氧树脂浆料均匀地涂在处理好的模具表面,铺敷真空袋,抽真空并保持;最后,固化、脱模得到固化后的ZnO/环氧树脂复合涂料。 3.3超疏水表面的制备 首先,将上述固化后的ZnO/E-51复合涂料表面用150#水砂纸打磨,再用丙酮清洗,除去污渍;其次,把试件悬挂在50%冰醋酸溶液中刻蚀预定的时间;第3步,把刻蚀后的试件用去离子水在超声作用下清洗,除出试件表面空隙中的残留物,再在60℃烘箱中烘30min;第4步,把试件悬挂在1%硬脂酸的无水乙醇溶液中浸泡预定的时间,进行表面修饰;最后,把修饰后的试件放在50℃烘箱中烘干,即获得具有超疏水性表面的ZnO/E-51复合涂料表面。 3.4表征分析 采用扫描电镜(SEM,Quanta-200,FEI)在电压为20KV下观察表面形貌;与水的接触角采用动/静态接触角仪(SL200B, 上海梭伦信息科技有限公司)测量,去离子水滴直径约为1.5mm,采用微量注射器滴加到试件表面,取3个不同位置

硅溶胶的制备方法简述

硅溶胶的制备方法简述 目前,硅溶胶的制备主要有两种方法,即凝聚法和分散法。利用在溶液中的化学反应首先生成SiO2超微粒子,然后通过成核、生长,制得SiO2溶胶的方法为凝聚法;利用机械分散将SiO2微粒在一定条件下分散于水中制得SiO2溶胶的方法,即分散法。根据使用原料及工艺的不同,上述两种方法可细分成下面多种常见的制备方法。 1.离子交换法 用离子交换法制备硅溶胶的历史较长,1941年首先由美国人Bird 发明,其后发展迅速,到目前为止该项技术被国内外大多数硅溶胶生产企业所采用。该方法通常可分为3个步骤:活性硅酸制备,胶粒增长和稀硅溶胶浓缩。 首先,将稀释后的一定浓度的水玻璃依次通过强酸型阳离子交换树脂和阴离子交换树脂,分别除去水玻璃中的钠离子及其它阳离子和阴离子杂质,制得高纯度活性硅酸溶液。此溶液在酸性条件下不稳定,可用适当的NaOH或氨水调节其PH为8.5-10.5,以提高稳定性。在此步骤中使用的离子交换树脂应尽快再生。避免残余的硅酸形成凝胶,使交换柱失效。然后,将上述硅酸溶液加入到含晶种的母液中,通过控制加入速度和反应温度,使硅溶胶胶粒增长到所需粒径即可。最后将完成结晶聚合过程的聚硅酸溶液进行加热蒸发浓缩,或超滤浓缩,以得到合适浓度的产品。如果要进一步进行纯化,可采用离心分离法除去其中杂质,制得高纯硅溶胶。 可见,此方法本身具有不可克服的缺点:一是起始原料水玻璃受离

子交换的限制其浓度不能太高,这就致使第3部中的浓缩过程较长,能耗大,不利于能源的节约;二是离子交换树脂再生时会产生大量废水,对水的浪费较大且废水处理需要一定的成本;三是该法工艺程序多,生产周期长,反应过程中影响产品性能的因素众多以至较难控制。 2.直接酸中和法 一般采用稀水玻璃作为起始原料,经过离子交换出去钠离子,然后通过制备晶核,直接酸化反应,晶粒长大等步骤可制得硅溶胶。 (1) 离子交换除去钠离子:用离子交换树脂除去原料中的钠离子,制得SiO2/Na2O重量比较大的稀溶胶,稀溶胶中钠离子含量已较低。 (2)制备晶核:将上步骤制得的稀溶胶加热并停置一段时间,在稀溶胶中逐步形成数毫微米大小的晶核,与离子交换法中的离子增长反应步骤相似。 (3)直接酸化反应:将稀水玻璃原料及酸化剂(如稀硫酸)持续加入到前述制得的含晶核的稀溶液中,加入过程应注意控制混合液中钠离子的浓度、混合液加热温度、PH值、加入时间等条件。 (4)晶粒长大:上述混合液在控制适当条件下,进行晶粒长大过程,持续长大过程之后,即可制得硅溶胶成晶。 3.电解电渗析法 这是一种电化学方法。在电解电渗析槽中加入电解质,调节电解质溶液的PH值,控制电解电渗析反应的电流密度、温度等反应条件,在制备有合适的电极(如析氢电极、氧阴极)的电解电渗析槽中反应后可制取硅溶胶成品。

超疏水表面涂层的制备

超疏水表面涂层的制备 摘要:近年来,由于超疏水膜表面在自清洁、微流体系统和特殊分离等方面的潜在应用,超疏水性膜的研究引起了极大的关注。本文着重介绍了超疏水表面涂层的几种制备方法,并对超疏水表面涂层的发展前景进行了展望。 关键字:超疏水、自清洁、制备方法 超疏水表面已在自然界生物的长期进化中产生,许多动植物(如荷叶、水稻叶、蝉翼和水黾腿)表面具有超疏水和自清洁效果,最典型的代表是所谓的荷叶效应超疏水表面是指与水的接触角大于150°而滚动角小于10°的表面[1]。Barthlott和Neinhuis[2]通过观察植物叶表面的微观结构,认为自清洁特征是由粗糙表面上微米结构的乳突以及表面的存在蜡状物共同引起的。江雷[3]认为荷叶表面微米结构的乳突上还存在着纳米结构,而这种纳/微米阶层结构是引起表面超疏水的根本原因。固体表面超疏水性是由固体表面的化学成分和微观几何结构共同决定的。由于超疏水涂层独特的表面特性和潜在的应用价值而成为功能材料领域的研究 热点,,并获得越来越广泛的应用。 超疏水涂层的制备方法 通常,制备超疏水表面有两种途径一种是在具有低表面能的疏水性材料表面进行表面粗糙化处理;另一种是在具有一定粗糙度的表面上修饰低表面能物质。查找和整理前人对于超疏水薄膜的研究,整理下来超疏水薄膜的制备方法可分为6种方法[4],分别为:气相沉淀法、相分离法、模板法及微模板印刷法、刻蚀法、粒子填充法和其他方法。 气相沉积法 气相沉积法包括物理气相沉积法(PVD)、化学气相沉积法(CVD)等。它是将各种疏水性物质通过物理或化学的方法沉积在基底表面形成膜的过程。 Julianna A等[5]通过气相沉积法,在聚丙烯膜表面沉积多孔晶状聚丙烯涂层,使聚丙烯膜呈现超疏水性,接触角达到169°,其接触角提高了42°。他们同时对聚四氟乙烯膜进行沉积处理,接触角提高30°左右。他们用原子力显微镜表征其表面形貌,两种膜表面都呈高低不同的各种突起,他们认为正是这种高低不同的突起使膜的疏水性增强。 相分离法 相分离法是在成膜过程中通过控制成形条件,使成膜体系产生两相或多相,形成均一或非均一膜的成膜方式。该方法制备过程简便,实验条件较为容易控制,可以制备均匀、大面积的超疏水薄膜,具有较大的实际应用价值。 Takahiro Ishizaki和Naobumi Saito[6]把镁合金浸渍在硝酸铈水溶液中20分钟,二氧化铈结晶膜就可以在镁合金表面纵向生长了。晶体的密度随着浸渍时间的增加而增加。然后,把结晶膜浸泡在含有FAS和四(三甲基硅氧基)钛(TTST)甲苯溶液中,FAS分子就可以覆盖在结晶膜上,形成超疏水的涂层。这里TTST作为催化剂,促进FAS分子的水解和/或者聚合。 模板法及微模板印刷法 模板及软模板印刷法是以具有微米或纳米空穴结构的硬的或软的基底为模

硅溶胶的制备

硅溶胶的制备 摘要:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。本文介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学;硅溶胶制备;硅溶胶应用;综述 1 技术领域 本发明一般涉及适合用于造纸的含水二氧化硅基溶胶(Silica—based sols)。更具体地,本发明涉及二氧化硅基溶胶,它们的制备方法和在造纸中的用途。 本发明提供一种用于制备具有高稳定性、高含量SiO2和提高的滤水(drainage )性能的二氧化硅基溶胶的改进方法。 2技术背景[1, 2] 在造纸领域中,含有纤维素纤维以及任选的填料和添加剂的含水悬浮液(称为纸料)被装人流浆箱,该流浆箱将纸料喷到成型网架(wire)上。水从纸料中滤出,从而在网架上形成湿纸幅,然后在造纸机的干燥段对该纸幅进行进一步的脱水和干燥。 通常将滤水和留着(retention)助剂引人到纸料中,以便促进滤水并增加颗粒在纤维素纤维上的吸附,这样它们与纤维一起被保留在网架上。 虽然高比表面积和一定的聚集或微凝胶形成的程度对性能来说是有利的,但太高的比表面积和大量的颗粒聚集或微凝胶形成会导致二氧化硅基溶胶稳定性的显著降低,因此需要使该溶胶极其稀释,以避免形成凝胶。 国际专利申请公开WO 98/56715公开了一种用于制备含水聚硅酸盐微凝胶的方法,包括混合碱金属硅酸盐水溶液与pH 为11或更小的二氧化硅基材料的水相。该聚硅酸盐微凝胶与至少一种阳离子或两性聚合物一起在纸浆和纸的生产以及水净化中

用作絮凝剂。 国际专利申请公开WO 00/66492公开了一种用于生产包含二氧化硅基颗粒的含水溶胶的方法,该方法包括:酸化含水硅酸盐溶液至pH值为1—4以形成酸溶胶;在第一碱化步骤中碱化该酸溶胶;使碱化溶胶的颗粒生长至少10分钟和/或在至少30℃的温度下热处理该碱化溶胶;在第二碱化步骤中碱化所得到的溶胶;并且任选地,用例如铝对该二氧化硅基溶胶进行改性。 美国专利US 6372806公开了一种用于制备S值为20-50的稳定胶态二氧化硅的方法,其中所述二氧化硅具有大于700 m2/g的表面积,该方法包括: (1)在反应容器中加人阳离子型离子交换树脂(其离子交换能力的至少40%为氢形式),其中所述反应容器具有用于将所述离子交换树脂与所述胶态二氧化硅分离的装置; (2)向所述反应容器中加人SiO2与碱金属氧化物的摩尔比为15:1至1:1且pH值为至10.0的含水碱金属硅酸盐; (3)搅拌所述反应容器的内容物,直到所述内容物的pH 值为8.5—11.0; (4)用额外量的所述碱金属硅酸盐调节所述反应容器的内容物的pH值至大于10.0 ;并且将所得的胶态二氧化硅与所述离子交换树脂分离,同时将所述胶态二氧化硅移出所述反应容器。 (5)美国专利US 5176891公开了一种用于生产表面积为至少约1000m2/g的水溶性聚 铝硅酸盐微凝胶的方法,该方法包含下述步骤: (a)酸化包含约0.1—6重量%SiO2的碱金属硅酸盐稀溶液至pH值为2—10.5以制备聚酸;然后在该聚硅酸胶凝之前使其与水溶性铝酸盐进行反应,从而得到氧化钥/二氧化硅摩尔比大于约1/100的产物; (b) 然后在胶凝化发生之前稀释该反应混合物至SiO2含量为约2.0%(重量)或更少,以稳定该微凝胶。因此,有利地是能够提供一种具有高稳定性和SiO2含量及改进的 滤水性能的二氧化硅基溶胶。还有利地是能够提供用于生产具有高稳定性和SiO2含 量及改进的滤水性能的二氧化硅基溶胶的改进方法。还有利地是能够提供一种改进滤水的造纸方法。

中国在超疏水材料研究方面的进展

中国在超疏水材料研究方面的进展 分子一班 张雷 3013207391 Abstract : 摘要:具有超疏水性、超双疏性等的微纳复合材料在人们的日常生活和国民生产各个部门都有着广泛的应用前景,因而也引起科学界的广泛关注。由于固体表面的浸润性决定于其表面的化学组成和表面形貌,因此通过改变固体的表面自由能和表面形貌可以实现对固体材料表面浸润性控制。近些年来,这方面的研究吸引了许多科学家和课题组的注意。可以说,超疏水、超双疏材料的制备正成为一个研究的热点问题。本文在查阅有关文献的基础上,分析中国在超疏水、超双疏材料制备方面的进展。 关键词:超疏水、超双疏、表面改性、润湿性

1、背景: 表面润湿性是指液体(通常为水)在固体材料表面的铺展能力。它是固体表面的重要性质之一, 许多物理化学过程,如吸附、润滑、黏合、分散和摩擦等均与表面的润湿性密切相关1。研究表明, 固体表面的润湿性是由其化学组成和微观几何结构共同决的, 定外场如光、电、磁、热等对固体表面的润湿性也有很大的影响2。固体表面的润湿性通常用水滴在其表面上形成的接触角来衡量, 接触角小于9 0°的表面称为亲水表面,大于9 0°的表面称为疏水表面, 而超疏水固体表面是指与水的接触角为1 5 0°以上的表面。 自然界中存在很多超疏水表面, 最典型的如以荷叶为代表的多种植物叶子表面(荷叶效应Lotus-effect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等3。受这些自然界中现象的启发,许多课题组都开展了超疏水材料制备方面的研究。 2、超疏水材料制备方法分类: 2.1 模板法: 江雷课题组组报道了一种以多孔氧化铝为模板制备超疏水材料的方法2。具体是将一定孔径的氧化铝模板覆盖在聚碳酸酯(PC)膜上,然后加热PC膜将其溶化并将其压入模板的孔内,最后除去模板即可得到纳米棒状的阵列结构。将模板制备成圆筒状重复上述过程可以得到大面积的阵列PC纳米棒。

超疏水表面

关于超疏水表面的基本介绍及其制备 【摘要】超疏水表面材料具有防水,防污,可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。其中关于超疏水表面材料性能的研究及其制备是关键,从微观角度对其性能的说明,介绍和评述超疏水的制备方法,并对该领域的发展进行了展望。 【引言】尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。自从Onda等1996年首次报道在实验室合成出人造超疏水表面以来,这引起了研究人员的广泛兴趣。总体来说,目前的研究主要集中以下几个领域:1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。2)使用无机物或在金属表面制备具有超疏水性表面的材料。3)使用高分子材料制备具有超疏水性的表面。4)理论研究,主要是通过构建模型以探讨表面结构状况与接触角或滚动角的关系。 超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米纳米级粗糙结构;另外一类是用低表面能物质在微米纳米级粗糙结构上进行修饰处理。其中,制备合适微米纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。 【超疏水表面特性】根据水在固体表面的浸润程度,固体可以分为亲水性和疏水性,所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。只有拥有较大的接触角(CA>150和较小的滚动角(SA<10)的表面才是真正意义上的超疏水表面。所谓接触角,就是液滴在固体表面形成热力学平衡时所持有的角。通过液体-固体-气体接合点中水珠曲线的终点和固体表面的接触点测定出来。滚动角可作为评价表面浸润性的另一指标,指的是一定质量的液滴在倾斜面上开始滚动的临界角度。滚动角越小,固体表面表现出的疏水性越好。因为地球的重力作用,水滴在倾斜的固体表面有下滑的趋势。随着固体倾斜角的变大,水滴沿斜面方向的下滑分力也在不断增大,当倾斜角增大到某一临界角度时,水滴会从固体表面滑落下来,这时的临界角就是水在此种固体表面的滚动角。滚动角越小,固体表面的超疏水性能越好。 接触角三大理论 杨氏方程(1805年)

硅溶胶制备与应用

硅溶胶制备与应用 材料学院化工一班李彦辉20090583 内容摘要: 硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液,广泛应用于陶瓷、纺织、造纸、涂料、水处理、半导体等行业。介绍了硅溶胶的各种制备方法及几种特殊用途的硅溶胶的制备。阐述了影响硅溶胶稳定性的因素及其性能测试方法。 关键词:无机化学硅溶胶制备硅溶胶应用高分子 正文:硅溶胶是高分子二氧化硅微粒分散于水中或有机溶剂中的胶体溶液。1915年美国人首先用电渗析法制备出SiO2质量分数为2.4%的硅溶胶,硅溶胶得以大规模生产和应用,是在年美国人发明利用离子交换法生产硅溶胶以后。目前硅溶胶已被广泛应用于纤维、织物、纸张、橡胶、涂料、油漆、陶瓷、耐火涂料、地板蜡等行业中。另外其在半导体硅晶片的抛光、水处理、矿物浮选和啤酒、葡萄酒酿造等工艺中也有应用。 自1996年以来,随着电子工业迅速发展,作为硅晶片抛光液的原料———硅溶胶的产量快速增加。瑞士公司在2001年第1季度将它位于Martin的硅溶胶厂的生产能力提高了1倍,达到1.4万t/a。同期,日本Fuso Chemial公司也将它位于东京的硅溶胶厂的生产能力由原来的0.7万t/a提高到2.5万t/a. 从20世纪90年代开始,有机硅溶胶的研究和应用也得到较大发展。有机硅溶胶可应用于非水性体系,如用于制造磁性胶体和记录介质,高技术陶瓷化合物和催化剂载体需要有机硅溶胶特殊用途的改性产品研制也得到快速发展,如日本日产化学工业株式会社提出的用于墨水容纳层和喷墨记录介质的念珠状硅溶胶的制备方法。另外该公司申请的中国专利提供了一种含细长形非晶体胶体SiO2粒子的稳定硅溶胶的制备方法。铝改性硅溶胶的研究也取得了进展,这种硅溶胶的最大特点是体系呈中性时很稳定,而采用碱金属氢氧化物作稳定剂的硅溶胶,在体系呈中性时很快就凝胶 我国硅溶胶的研制和生产始于20世纪50年代,南京大学配位化学研究所、天津化工研究院、兰州化学工业公司化工研究院、青岛海洋化工厂、大连油漆厂、广州人民化工厂等都从事硅溶胶产品的研制和生产,但品种和产量与国外都有很大差距。 2002年11月4~8日,全国无机硅化合物技术与市场信息交流大会在广西桂林市召开,大会认为硅溶胶、层硅、聚硅、气相法白炭黑等将是行业发展的新热点。 【一】硅溶胶制备方法 1.1渗析法 渗析法是用酸中和硅酸钠水溶液,经陈化后,再通过半透膜渗析钠离子。该法缺点是渗析所需时间太长,不适于工业化生产。 1.2硅溶解法 采用无机或有机碱作催化剂,以单质硅与纯水反应来制备硅溶胶的方法称硅溶解法。Joseph等在1950年申请的专利中,利用可溶性有机碱作催化剂,使水和硅粉反应来制备 硅溶胶。其中的有机碱ph值(20~25摄氏度时)为6~12,含1~8个碳原子的脂肪胺或脂环胺,硅粉粒径为80~320目。硅粉在使用前应预活化,除去硅粉表面形成的惰性膜。活化时先用质量分数为48%的氢氟酸洗涤,然后依次用纯水、醇、醚冲洗,最后在氮气保护下干燥。活化后的硅粉与水在胺催化作用下,于20~100温度下反应,可制备粒径8~15mm的硅

神奇的超疏水材料:我虐水滴千百遍水滴待我如初恋

神奇的超疏水材料:我虐水滴千百遍,水滴待我如初恋! 神奇的超疏水材料:我虐水滴千百遍,水滴待我如初恋!一盆水泼向一块金属板,水珠像钢珠一样滚落,金属板仍然干爽;一只船桨浸入水缸,拿出来竟然未带出一滴水珠,就像是从没放进去过一样;一杯水倒在一块经过特殊处理的玻璃板上,水紧紧靠在中央“不越雷池半步”,即使用手搅出来一两滴也立即跑回去……这些违背我们肉眼“常识”的现象,就是“超疏水材料”捣的鬼。这种通过改变材料的表面自由能和表面粗糙度获得的新型材料,灵感来自于自然界中的荷叶。由于其防水、防腐蚀、抗菌的特殊效果,如今已经成为国际热门的研究领域,可以在环保、工业、医疗等各种你想象不到的领域大展身手。一、超疏水简介超疏水技术是一种具有特殊表面性质的新型技术,具有防水、防雾、防雪、防污染、抗氧化、防腐蚀和自清洁以及防止电流传导等重要特点,在科学研究和生产、生活等诸多领域中有极为广泛的应用前景。超疏水技术对于建筑工业、汽车工业、金属行业等的防腐防锈及防污也很有现实意义。特别是近年来的微电子系统、光电子元器件及纳米科技等高新技术的高速发展,给超疏水涂层的研究和应用于勃勃生机。超疏水材料的研究以诗句“出淤泥而不染,灌清涟而不妖”为契机,以科学的手段向我们解释这一奇特的自然现象,荷花表面覆盖的天然

超疏水薄膜,使得水滴聚集成股,顺势流下,冲刷着荷叶表面的淤泥,营造了出淤泥而不染的状态。因此荷叶在雨后会变得一尘不染,这种现象在生活中很常见,我们称之为“荷叶效应”。二、超疏水现象荷叶效应--超疏水性原理为什么“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”。而一般疏水表面的接触角仅大于90度。三、自然界中的超疏水现象1999年,Barthlott和Neihuis认为:自清洁的特征是由于粗糙表面上的微米结构的乳突以及表面蜡 状物的存在共通引起的;乳突的平均直径为5~9um。荷叶表面的微/纳米复合结构2002年,江雷等提出微米结构下面还存在纳米结构,二者相结合的阶层结构才是引起表面超疏水的根本原因。单个乳突由平均直径为120nm结构分支组成。超疏水各向异性的水稻叶子水稻叶表面存在滚动的各向异性,水滴更容易沿着平行叶边缘的方向流动。超疏水的蝉翼表面蝉翼表面由规则排列的纳米柱状结构组成,纳米柱的直

超疏水材料研究进展

超疏水材料研究进展

超疏水材料研究进展 摘要: 本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b) 图1 接触角示意图

自清洁超疏水涂层的研究

自清洁超疏水涂层的研究 摘要:本文综述了具有自清洁超疏水涂层的研究进展,介绍了实现自清洁目的的涂层所要具备的超疏水条件,并对超疏水的理论模型进行了综述。此外,介绍了几种自清洁超疏水涂层的类型,如:“仿生荷叶”型、有机硅型、有机氟型、有机氟硅型。 关键词:自清洁超疏水理论模型 一、前言 自清洁涂层是能够不通过人工,而是自身可以通过外部环境保持洁净的表面。例如,阳光的照射、风的作用以及雨水的冲洗。此外,当水在这固体表面上表现出很明显的疏水性,水滴和涂层表面的接触角大于150°,并且滞后角不超过10°的涂层叫做超疏水涂层。 二、超疏水的理论模型 对大自然中的超疏水表面研究后发现,表面能达到超疏水的两个条件,一是低的表面能,二是表面有粗糙的结构。这里,简要介绍超疏水的理论模型。 1 Wenzel 模型 在1936年,通过热力学定律,Wenzel计算出了液体和不平整表面相接触时产生的接触角,以及液滴和平整表面接触时所产生的接触角之间的关系[1]。 可以有效地运用仿生的方法来在表面构建粗糙度,Woo Kyung Cho和他的团队[3]通过将有机硅水解,然后通过有低表面性质的氟硅进行改性。从而制备得到了有一定粗糙度的超疏水涂层。经过测定发现,水滴在涂层表面的接触角达到了160°以上,并且滞后角为2.4°,这里的粗糙度主要是由于F-的作用。另有团队[4]将γ-氨丙基三乙氧基硅烷(APS)添加在纳米级的SiO2溶胶中,反应之后,在基材表面经过浸渍提拉法涂层。干燥后在SEM下能看到有微米级的颗粒团聚在一起,这和荷叶表面的结构十分的相似,如此所得的涂层水接触角能够达到156°,滞后角在3°以下,而且在整个过程中的稳定性好,能够在工业上进行推广。 现如今,欧美地区的各国以及我国香港等很多企业都开发出了此类涂料或助剂。此类先进的研究和新的产品对今后自洁领域的进一步扩大有很大的帮助。而基于这一理念的涂层仍是研究的热点。 2 基于超疏水理论的自清洁涂层 在超疏水表面上的水滴能自动收缩成球状,使得其与表面的接触面积在很大程度上减小。如果污染物的表面能高于涂层的表面能,这样,污染物想要附着在

硅溶胶的性质_制备和应用_田华

硅溶胶的性质、制备和应用 田 华,陈连喜,刘全文 (武汉理工大学理学院,武汉430070) 摘 要: 硅溶胶是二氧化硅的胶体微粒分散于水中的胶体溶液,由硅溶胶的特殊性质和特点出发,讨论总结了硅溶胶的制备方法。作为一种重要的无机粘结剂,硅溶胶被广泛应用于化工、铸造、纺织、造纸、材料、涂料、电子、抗静电剂、催化剂等工业领域。同时对硅溶胶的研究和开发前景进行了展望。 关键词: 硅溶胶; 性质; 制备; 应用 Prosper ities,M anufactures and Appl ica tion of Sil ica Sol T IA N H ua,CH EN L ian2x i,L IU Q uan2w en (Schoo l of Sciences,W uhan U niversity of T echno logy,W uhan430070,Ch ina) Abstract: Silica so l is a k ind of co llo id so luti on w ell dispersing co rpuscles of silica in w ater.F rom the special characteristic and p roperties,summ arize k inds of m anufactures of silica so l。A s a k ind of i m po rtant ino rganic adhesi on agent,it has been w idely used in the areas of chem ical engineering,casting,textile m ak ing,paper m ak ing, m aterials,coating,electron,antistatic agent,catalyst industry,etc.M eanw h ile,the p ro spects fo r m anufacture and research of silica so l are also fo recast. Key words: silica so l; characteristic; m anufacture; app licati on 硅溶胶是二氧化硅的胶体微粒分散于水中的胶体溶液,又名硅酸溶胶,或二氧化硅水溶胶。硅溶胶最早的研究始于1915年,Schw erin以水玻璃为原料,采用电渗析法制备了硅溶胶,不过由于硅溶胶浓度太稀,Si O2质量分数仅为2.4%,因而实用意义不大。直到1941年B ird以离子交换法制得稳定的较高浓度硅溶胶,才使得硅溶胶能够实现大规模的工业化生产和应用。据统计,目前世界硅溶胶年消费量达2.5~2.8万t(以Si O2计)。作为一种重要的无机高分子材料,硅溶胶已广泛应用于化工、精密铸造、纺织、造纸、涂料、食品、电子、选矿等领域[123]。我国从1958年就开始了硅溶胶的研制与生产,但在硅溶胶品种、质量方面还远远不及发达国家,特别是在高浓度、大粒径硅溶胶和快干增强硅溶胶的生产和应用上还刚刚起步,有待于进一步研究与开发。介绍了硅溶胶的性质,以及硅溶胶制备及应用的研究进展。1 硅溶胶的性质 硅溶胶外观为乳白色半透明的胶体溶液,多呈稳定的碱性,少数呈酸性。硅溶胶中Si O2的浓度一般为10%~35%,浓度高时可达50%。硅溶胶粒子比表面积为50~400m2 g,粒径范围一般在5~100 nm,即处于纳米尺度,与一般粒径为0.1~10Λm的乳液相比,其颗粒要小得多。 硅溶胶的胶团结构用以下化学式表示 {[Si O2]m n Si O2-3 2(n-x)H+}2x-?2x N a+, 胶核 吸附层 扩散层 胶粒 (反离子) 胶团 m,n很大,且mνn。 硅溶胶具有如下特点: 1)硅溶胶是低粘度的胶体溶液,分散性好,可充 8

超疏水性材料

揭秘超疏水性表面 哈工大报讯(潘钦敏)[编者的话] 宋代周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染”。一千年后的今天,人们已经可以从科学的角度解释莲这种“出淤泥而不染”的特性。与之相关的“仿生超疏水性表面”的研究已成为化学模拟生物体系研究中的一个新领域。本期,化工学院副教授潘钦敏为我们揭开“超疏水性表面”的神秘面纱。 浸润性是固体表面的重要特征之一,它由表面的化学组成和微观形貌共同决定。超亲水和超疏水特性是表面浸润性研究的主要内容。所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。人们对超疏水表面的认识,主要来自植物叶——荷叶表面的“自清洁”现象。比如,水珠可以在荷叶的表面滚来滚去,即使在上面浇一些污水,也不会在叶子上留下污痕。荷叶这种出污泥而不染的特性被称作“自清洁”效应。 荷叶效应——超疏水性原理 尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。 为什么这样的“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。 自然界里具有“自清洁”能力的植物除了荷叶之外,还有水稻、芋头之类的植物以及鸟类的羽毛。这种“自清洁”效应除了保持表面的清洁外,对于防止病原体的入侵还有特别的意义。因为即使有病原体到了叶面上,一沾水也就被冲走了。所以象荷花这样的植物即使生长在很“脏”的环境中也不容易生病,很重要的原因就是这种自清洁能力。 超疏水表面制备方法 人们知道荷叶自清洁效应已经很多年了,但是很长的时间内却无法做出荷叶那样的表面来。通过对自然界中典型的超疏水性表面——荷叶的研究发现,在低表面能的固体表面构建具有特殊几何形状的粗糙结构对超疏水性起重要的作用。基于这些原理,科学家们就开始模仿这种表面。现在,关于超疏水粗糙表面的研制已有相当多的报道。一般来说, 超疏水性表面可以通过两种方法来制备:一种是在疏水材料表面上构建粗糙结构;另一种是在粗糙表面上修饰低表面能的物质。比如材料学家们可以通过表面处理仿生制备了碳纳米管阵列、碳纳米纤维、聚合物纳米纤维等多种超疏水性表面。关于超疏水表面的研制方法总结起来主要有:熔融物的固化、刻蚀、化学气相沉积法、阳极氧化法、乳液聚合、相分离法以及模板法等。但是这些方法涉及复杂的化学物质和晶体生长,实验条件比较苛刻,成本高,还不能进行工

超疏水材料的制备及推广

超疏水材料的制备及推广 杨文俊 (兰州理工大学兰州730050) 摘要:简述了对超疏水材料表面的特征,介绍了目前比较先进的制备方法以及在日常生活,农业、工业、医学、国防等方面的推广,最后阐述了超疏水材料的市场前景。 关键字:超疏水材料;薄膜;物流;战略;应用 文献标识码:A 落在荷叶上的雨滴形成水珠顺着叶面缓缓滚动而落下, 这种抗水性称为荷叶效应. 这是由于荷叶表面的疏水层呈现纳米级的凹凸 不平, 减少了水珠与叶面的接触面积. 植物叶子表面具有的超疏水 自清洁的特性, 为构建人工疏水表面及设计浸润性可控的界面提供 了灵感, 引起了研究者的极大关注. 近年来, 超疏水性表面的研究已成为比较活跃的研究课题之一, 这对制备新的高性能的功能材料表 面有重要的作用。 目前国家在积极倡导可持续发展,地球的燃料越来越紧缺,在传统燃料输送设备中, 剩余燃料都会造成很大的浪费,我们可以通过利用我们的薄膜技术,在管道内壁涂一层超疏水材料薄膜,这样我们就可以减少资源的浪费,同时也有利于管道的保护。与此相关的应用是使用超疏油表面进行燃料经济性操作, 即在设备内制得超疏油表面, 虽然所用的表面是超疏油性的, 但其制备原理与超疏水表面制 备方法极其类似, 在油料输送管道和储油罐内制备出以低表面能物 质修饰的粗糙表面, 同样可以适用于低表面能油料流体的输送。这一成果具有很高的工业应用价值, 其规模化应用潜力巨大。这仅仅是在能源方面的应用。我们可以扩大超疏水材料的应用,使他能够渗透到我们的各个领域,通过利用超疏水材料薄膜,去改善我们生活中的各

类物品。 如果将超疏水材料推广到诸多领域,将很好地推动超疏水薄膜材料的应用,他将有很好的前途。值得一提的是在交通方面,超疏水材料有很大的推广,无论是在汽车的玻璃还是在电池,发动机都能起到很好的改善。 1、超疏水的理论依据 固体表面的润湿性是由固体的表面化学组成和表面三维微结构决定的,液滴在固体表面的润湿特性常由杨氏方程描述( Young’s Eq. ,Fig.1) 。液滴与固体表面间的接触角大,润湿性差,其疏液体性强。通常有两种方法提高固体表面的水接触角和疏水性。一是通过化学方法降低固体的表面自由能,二是在疏水表面提高固体表面的粗糙度。目前已知的疏水材料有机硅、有机氟材料的表面能低,并且含氟基团的表面能依- CH2- > - CH3 > - CF2 - > C -F2H > - CF3的次序下降。- CF3基团的表面能小至617 mJ/ m2,水接触角最大,通过Dupre公式可计算为11512°[2],长链碳氢基团的自组装有序单层膜的水接触角可达112°。而通常低表面能无序排列的有机硅、有机氟聚合物的水接触角分别为101°、110°[3]。自然界植物荷叶表面的超疏水自清洁现象启发了科学工作者,他们通过观察植物叶表面的微观结构,认为这种自清洁的特征是由纳米与微米双微观粗糙表面结构引起的。Wenzel[4]发展了杨氏方程,提出了固体粗糙表面的接触角方程(Fig. 1) ,引入了粗糙度因子r。提高固体表面粗糙度,对于疏水表面(θ> 90°) 则可大大提高其疏水性,可高达150°以上。Cassie[5]在此基础上考虑到实际中固2液界面中的空气气泡,提出了应用更为广泛的Cassie 模型和方程(Fig. 1) 。由此可见,超疏水涂膜的实现离不开疏水材料和特定的表面粗糙度。 2.超疏水表面的制备方法

超疏水材料的应用前景

超疏水材料的应用前景 (超疏水材料技术发展及军事应用前景) 超疏水材料技术是涉及生物、物理、化学以及材料等多学科交叉的前沿技术。21世纪以来,在表面科学、仿生学以及多领域学科的交叉融合推动下,新型超疏水材料层出不穷,其优秀的润湿特性和广泛的应用前景,引起了各国的广泛关注。2017年4月,在美国海军研究署等机构支持下,密歇根大学开发出新型自愈型超疏水涂层材料。该材料拥有百倍于同类涂料的耐久性,可为舰船、飞机和战车提供兼具耐久性的防水、防结冰、自清洁能力。 一、超疏水材料技术概述 超疏水性是一种特殊的润湿性,一般指水滴在固体表面呈球状,接触角大于150度,滚动角小于10度。材料表面能(材料表面分子比内部分子多出的能量)越低,疏水性越好,且当低表面能材料具有微观

粗糙结构时,水滴与材料之间会形成一层空气膜,阻碍水对材料表面的润湿,从而形成超疏水状态。 构造超疏水表面有两种方法,一是在疏水材料表面上构建微观粗糙结构,二是用低表面能物质对微观粗糙表面进行改性。 材料的超疏水性越好,水滴在材料表面上越接近球形,与材料的接触面积越小,越易从材料表面滑落。此外,水滴在超疏水材料表面滚落时可带走污染物,使材料表面保持清洁。因此超疏水材料具有防水、防腐蚀、防冰以及防附着等多重特性。 二、国外超疏水材料技术进展 1. 多学科交叉融合成为超疏水材料技术发展的主要动力 自然界中的动植物表皮具有特殊的微观结构和特殊的润湿性能,为构造超疏水材料提供了启示,如模拟荷叶结构可以获得超疏水性能、模仿鲨鱼皮结构可以获得水下减阻性能等。仿生材料的研究,为超疏水材料的持续进步提供了动力。2017年5月,德国弗莱堡大学开发出一种具有多层结构的自愈型超疏水涂层。这种超疏水材料表面具有类似蛇褪去外皮的特性,可实现表面受损后超疏水性的自愈,为新型耐久自愈型超疏水材料的研发提供了新思路。此外,增材制造、材料计算与模拟仿真等技术的应用,大大简化了材料表面微结构的设计、构造与控制难度,使超疏水材料的制备快速精准,结构和性能可控,实

相关主题
文本预览
相关文档 最新文档