当前位置:文档之家› iTRAQ定量蛋白质组学结题报告

iTRAQ定量蛋白质组学结题报告

iTRAQ定量蛋白质组学结题报告
iTRAQ定量蛋白质组学结题报告

蛋白质组学答案终稿

1,基因组:一个细胞或病毒所包含的全部基因。 2,蛋白质组(Proteome)的概念最先由Marc Wilkins提出。定义:蛋白质组是由一个细胞,一个组织或一个机体的基因组所表达的全部相应的蛋白质。是一个整体概念。 3,蛋白质组学:是一门以全面的蛋白质性质研究(如表达水平、转录修饰、相互作用等)为基础,在蛋白质水平对疾 病机理、细胞模式、功能联系等方面进行探索的科学,包括表达蛋白质组学,细胞谱蛋白质组学以 3,等电聚焦:分离两性分子,特别是分离蛋白质的一种技术。根据在一个电场的影响下这些两性分子在ph梯度上的分布情况进行分离 等电聚焦技术:在一个pH梯度和外加电场下,蛋白质有移向pH梯度中使其净电荷为零的点的倾向。(带正电荷移向阴极,带负电荷移向阳极)。IEF可以基于极微小的电荷差异而分离蛋白,具有高分辨率。4,负染就是用重金属盐(如磷钨酸、醋酸双氧铀)对铺展在载网上的样品进行染色;吸去染料,样品干燥后,样品凹陷处铺了一薄层重金属盐,而凸的出地方则没有染料沉积,从而出现负染效果(图2-15),分辨力可达1.5nm左右 5,质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。 质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。 7,分子离子峰:子受电子束轰击后失去一个电子而生成的离子M+成为分子离子。在质谱图中,由M+所形成的峰称为分子离子峰。 7.碎片离子峰当电子轰击的能量超过分子离子电离所需要的能量(50~70eV)时,可能使分子离子的化 学键进一步断裂,产生质量数较低的碎片,称为碎片离子。在质谱图上出现相应的峰,称为碎片离子峰。 碎片离子峰在质谱图上位于分子离子峰的左侧。研究最大丰度的离子断裂过程,能提供被分析化合物的结构信息。 8.软电离技术在质谱分析中,离子源是将分子离解成离子或解离成碎片,在这里分子失去电子, 生成带正电荷的分子离子。分子离子可进一步裂解,生成质量更小的碎片离子。由于离子化所需要的能量随分子不同差异很大,因此,对于不同的分子应选择不同的离解方法。通常称能给样品较大能量的电离方法为硬电离方法,而给样品较小能量的电离方法为软电离方法,后一种方法适用于易破裂或易电离的样品。 9.源内衰变技术(insource-decay,ISD)源内衰变发生在离子源区域内,时间为激光撞击之后几 百纳秒之内,是离子的“即可片段化”。这些片段离子通过衰减离子取出,能在线性飞行时间质谱中被发现,许多蛋白质和大的肽常在MOLDI-TOF-MS的离子源区域内变成肽离子片段。主要产生含N端的b型和含C端的y型片段离子,通过分析这些片段离子谱可鉴定蛋白质。 10.肽质量指纹图谱是指蛋白质被酶切位点专一的蛋白酶水解后得到的肽片段质量图谱。由于 每种蛋白质的氨基酸序列都不同,蛋白质被酶水解后,产生的肽片段序列也各不相同,其肽混合物质量数据也具特征性,这种特征就像指纹一样,所以称为指纹谱。肽质量指纹图谱可用于蛋白质的鉴定,用实验测得的PMF与蛋白数据库中的蛋白质理论PMF比对,就可以鉴定该蛋白质 肽序列标签是由一个多肽的部分氨基酸序列和该肽的质量以及该肽未测序部分的质量等组成。

蛋白质组学研究方法选择及比较

蛋白质组学研究方法选择及比较 目前研究蛋白组学的主要方法有蛋白质芯片及质谱法,本文将从多方面对两种研究方法进行了解与比较; 蛋白质芯片(Protein Array) 将大量不同的蛋白质有序地排列、固定于固相载体表面,形成微阵列。利用蛋白质分子间特异性结合的原理,实现对生物蛋白质分子精准、快速、高通量的检测。 主要类型: ●夹心法芯片(Sandwich-based Array) ●标记法芯片(Label-based Array) ●定量芯片(Quantitative Array) ●半定量芯片(Semi-Quantitative Array) 质谱(Mass Spectrometry) 用电场和磁场将运动的离子按它们的质荷比分离后进行检测,测出离子准确质量并确定离子的化合物组成,即通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种方法。 主要类型:

●二维电泳+质谱(2D/Mass Spectrometry, MS) ●表面增强激光解吸电离飞行时间质谱(Surface-enhanced laser desorption/ionization- time of flight, SELDI) ●同位素标记相对和绝对定量(Isobaric tags for relative and absolute quantitation, iTRAQ) Protein Array or Mass Spectrometry? 如何选择合适的研究方法?以下将从六个方面进行比较与推荐: 1.筛查蛋白组学表达差异 建议选择:RayBiotech(1000个因子的芯片)+质谱 a)不同的方法学有不同的特点:对于质谱,可以筛查到未知的蛋白,但是对于分子量大、 低丰度的蛋白质,质谱的灵敏度和准确性有一定的限制。 b)不同的方法能筛查到的目标不同:根据Proteome Analysis of Human Aqueous Humor 一文中报道,质谱筛查到的差异蛋白集中在小分子与代谢物。而用RayBiotech芯片筛查到的结果,多是集中在细胞因子、趋化、血管、生长等等。 c)质谱筛查到355个蛋白,而RayBiotech抗体芯片也筛查到328个蛋白,且用定量芯片 验证25个蛋白有差异,这些蛋白是质谱找不到的。目前RayBiotech夹心法抗体芯片已经可以检测到1000个蛋白,采用双抗夹心法,尤其是对于低丰度蛋白,有很好的灵敏度和特异性,很多的低丰度蛋白是抗体芯片可以检测出来,而质谱检测不到的,且样品不经过变性和前处理,保持天然状态的样品直接检测,对于蛋白的检测准确度高。 d)质谱的重复性一直是质谱工作者纠结的问题,不同操作者的结果,不同样品处理条件, 峰值的偏移等影响因素都会产生大的影响;RayBiotech的夹心法芯片重复性高。

蛋白质思考题总汇

蛋白质化学思考题总汇 绪论 基因组,蛋白质组,功能基因组 为什么从基因组到蛋白质组是一个十分复杂而漫长的过程? 蛋白质一级结构 1、各种氨基酸的三字母符合和单字母符合。 2、名词概念:同源蛋白质、趋异突变、趋同、变异、蛋白质家族、蛋白质超家族、蛋白质、亚家族、单位进化周期、中性突变、蛋白质的一级结构。 3、各种氨基酸的性质与蛋白质空间结构的关系. 蛋白质的空间结构 1、名词及符号:蛋白质构象、蛋白质二级结构、超二级结构、三级结构、四级结构、结构域、连接条带、无规卷曲、无序结构、α-螺旋、β-折叠、β-转角、EF-手、3.6 13螺旋、HTH、HLH、b-Zip、motif、Zn指、domain、 2、稳定球蛋白构象有哪些的化学键. 3、二级结构的类型有哪些? 4、举例说明5种motif的结构特征。 蛋白质的分离纯化 1.透析、超滤、盐溶、盐析、亲和层析、电泳。 2.如何理解分子筛分离pr的原理。 3.有机溶剂分级分离pr的基本原理。 4.据支持物不同,电泳可分为哪几种类型? 5.常用的选择性吸附剂有哪几种? 6.哪些物质可作用蛋白质亲和层析的配体? 7.测定pr分子量有哪些方法? 8.如何理解蛋白质电泳中的浓缩效应,电荷效应及分子筛效应。 9.聚焦法测定pr、pI的基本原理。 10.可用哪些方法来分要蛋白质的N-末端和C-末端AA。

蛋白质转运和修饰 1、名词及符号:翻译同步转运、翻译后转运、信号肽、易位子、SRP、I、II型膜蛋白、内部信号序列、分子伴侣、hsp70、内体、靶向序列、靶向班块、网格蛋白、包被体、停靠蛋白、PDI、ARF、COP、内质网分拣信号(KDEL)、核定位信号(PKKKRKV)、过氧化体分拣信号(SKF)、线粒体基质信号(N-端15-35AA形成两亲a螺旋或b折叠)、溶酶体分拣信号(M6P)、泛蛋白。 2、蛋白质的修饰包括哪些内容。 3、决定蛋白质半衰期的因素及泛素化作用。 4、受体介导的内化的生物学意义。 5、简述翻译同步转运和翻译后转运的基本内容。 6、如何理解小泡介导的蛋白质转运的“生物膜不对称性”的意义。 7、简述SRP介导的蛋白质转运。 免疫球蛋白 1、Ig, V区,C区,抗原决定族,D基因,J基因,超变区(补体决定区,CDR),类别转换(CH启换),12-23bp规则,茎环结构,Fab,Fc,去环缺失模式,Ig的分类与重链。 2、描述Ig四链单位的分子特征(结构域,功能域)。 3、如何根据Ig分子的V区和C区的结构变化,将Ig分子的变异体分成类、亚类、型、亚型、群和亚群。 4、如何从基因水平上解释Ig的多样性。 脂蛋白 1、名词及符号: LP,Apo,TG,FC,PL,CM,VLDL,LDL,HDL,IDL,HL,LPL,LCAT,LTP;郭清作用,增加调节。 2、简述一种脂蛋白受体的分子结构特征。 3、主要脂蛋白的密度分类、电泳分类、功能及缩写符号间的关系。 4、Apo可分哪些大类。 5、CM,VLDL,LDL,HDL代谢的基本情况及其相互关系 细胞黏附分子 1、名词及符号:ECM、Fn、Ln、FAK、TPK、SH、Ln-R、CD44,Ig-SF;血管地址素、整联蛋白、层连蛋白、钙粘蛋白、粘着班激酶、酪氨酸蛋白激酶、纤连蛋白。

医学细胞生物学 课后思考题

课后思考题 1.请描述细胞的发现与“细胞学说”的主要内容 1604年荷兰眼镜商詹森发明了第一台显微镜 1665年英国物理学家虎克最早观察到细胞 1675年荷兰生物学家列文虎克发现活细胞 细胞学说:施来登和施旺 1、一切生物都是由细胞组成的 2、细胞是生物体形态结构和功能活动的基本单位 3、“细胞来源”:一切细胞只来源于原来的细胞,一切病理现象都基于细胞的损伤 2. 如何理解细胞生物学说在医学科学中的作用地位 细胞生物学是现代医学的重要基础理论。细胞生物学的研究有助于医学重大课题的解决,治病机理的阐明、诊断、治疗、预防都依赖于(分子)细胞生物学的发展 4.简述DNA的结构特点和功能 结构特点: (1)两条脱氧核苷酸组成双链,为右手螺旋。两条单链走向相反,一条由5'-3',另一条由3'-5' (2)亲水的脱氧核糖——磷酸位于螺旋的外侧。 (3)双螺旋内侧碱基互补配对:A=T;C≡T;A+G=C+T(嘌呤数等于嘧啶数) (4)碱基平面垂直螺旋中心轴,每10对碱基螺旋一周,螺距 功能: (1)携带和传递遗传信息——遗传信息的载体; (2)表达:产生生物的遗传性状——作为模版转录RNA,从而控制蛋白质的合成 (3)突变:产生变异,引导进化

6.试比较DND和RNA的异同 相同点: (1)其基本单位都由一分子五碳糖,一分子磷酸和一分子碱基构成 (2)都含有磷酸二酯键 不同点: (1)两者基本单位的五碳糖不同,DNA的是脱氧核糖,RNA的是核糖 (2)DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶;RNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶 (3)DNA为双链,RNA为单链 7.试描述蛋白质的各级结构特征 (1)蛋白质的一级结构:组成蛋白质的氨基酸种类、数目和排列顺序 (2)蛋白质的二级结构:局部或某一段肽链的空间结构,由氢键维持。有以下几种构象单元: 1.α-螺旋:右手螺旋,每一周有3.6个氨基酸,螺距0.54nm 2.β-折叠:锯齿状,不同肽链间由氢键维系 3.其余有β-转角、无规则卷曲、π螺旋等 (3)蛋白质的三级结构:在二级结构的基础上,整条肽链中全部氨基酸残基的相对空间位置,主要依靠R基团(侧链)间的相互作用维持 (4)蛋白质的四级结构:两条或两条以上的多肽链所组成的蛋白质中各亚基的空间排列和相互接触的布局 8.简述膜脂和膜蛋白的类型以及各自的特点 膜脂: (1)磷脂:是细胞膜中最重要的脂类,通常大于膜脂总量的50%,磷脂酰碱基+甘油基团(鞘氨醇)+脂肪酸,前二者为极性头部(亲水),后者为非极性尾部(疏水) A 甘油磷脂:以甘油为骨架的磷脂类,因丙三醇柔性好,故甘油磷脂分子较柔软; B 鞘磷脂:以鞘氨醇为骨架的磷脂类。鞘氨醇分子刚性强,故鞘磷脂分子较硬(2).胆固醇,有极性头部(羟基)、非极性的固醇环和烃链。散布于磷脂分子间,其功能是增加膜的稳定性,调节膜的流动性 (3).糖脂:寡糖+鞘氨醇+脂肪酸 由糖基和脂类组成,占膜脂总量的5%以下。在神经细胞膜上糖脂含量较高,约占5-10%,糖脂也是两性分子。其结构与SM相似,只是由一个或多个糖残基代替了磷脂酰胆碱而与鞘氨醇的羟基结合 膜蛋白: 1.内在蛋白(整合蛋白):占膜蛋白的70-80%,是膜功能的主要承担者(运输蛋白、酶、受体等)。不同程度地镶嵌在类脂双分子层中,有的为跨膜蛋白。以疏水键和共价键镶嵌在膜内,与膜结合紧密

生化实验思考题参考答案[1].

生化实验讲义思考题参考答案 实验一淀粉的提取和水解 1、实验材料的选择依据是什么? 答:生化实验的材料选择原则是含量高、来源丰富、制备工艺简单、成本低。从科研工作的角度选材,还应当注意具体的情况,如植物的季节性、地理位置和生长环境等,动物材料要注意其年龄、性别、营养状况、遗传素质和生理状态等,微生物材料要注意菌种的代数和培养基成分的差异等。 2、材料的破碎方法有哪些? 答:(1) 机械的方法:包括研磨法、组织捣碎法; (2) 物理法:包括冻融法、超声波处理法、压榨法、冷然交替法等; (3) 化学与生物化学方法:包括溶胀法、酶解法、有机溶剂处理法等。 实验二总糖与还原糖的测定 1、碱性铜试剂法测定还原糖是直接滴定还是间接滴定?两种滴定方法各有何优缺点? 答: 我们采用的是碱性铜试剂法中的间接法测定还原糖的含量。间接法的优点是操作简便、反应条件温和,缺点是在生成单质碘和转移反应产物的过程中容易引入误差;直接法的优点是反应原理直观易懂,缺点是操作较复杂,条件剧烈,不易控制。 实验五粗脂肪的定量测定─索氏提取法 (1)本实验制备得到的是粗脂肪,若要制备单一组分的脂类成分,可用什么方法进一步处理? 答:硅胶柱层析,高效液相色谱,气相色谱等。 (2)本实验样品制备时烘干为什么要避免过热? 答:防止脂质被氧化。 实验六蛋白质等电点测定 1、在等电点时蛋白质溶解度为什么最低? 请结合你的实验结果和蛋白质的胶体性质加以说明。

蛋白质是两性电解质,在等电点时分子所带净电荷为零,分子间因碰撞而聚沉倾向增加,溶液的粘度、渗透压减到最低,溶解度最低。结果中pH约为4.9时,溶液最浑浊,达到等电点。 答: 2、在分离蛋白质的时候,等电点有何实际应用价值? 答: 在等电点时,蛋白质分子与分子间因碰撞而引起聚沉的倾向增加,所以处于等电点的蛋白质最容易沉淀。在分离蛋白质的时候,可以根据待分离的蛋白质的等电点,有目的地调节溶液的pH使该蛋白质沉淀下来,从而与其他处于溶液状态的杂质蛋白质分离。 实验七氨基酸的分离鉴定-纸层析法 1、如何用纸层析对氨基酸进行定性和定量的测定? 答: 将标准的已知氨基酸与待测的未知氨基酸在同一张层析纸上进行纸层析,显色后根据斑点的Rf值,就可以对氨基酸进行初步的定性,因为同一个物质在同一条件下有相同的Rf 值;将点样的未知氨基酸溶液和标准氨基酸溶液的体积恒定,根据显色后的氨基酸斑点的面积与点样的氨基酸质量成正比的原理,通过计算斑点的面积可以对氨基酸溶液进行定量测定。 3、纸层析、柱层析、薄层层析、高效液相层析各有什么特点? 答:

细胞生物学思考题及答案

第八章细胞信号转导 1、名词解释 细胞通讯:指一个细胞发出的信息通过介质传递到另一个细胞并与其受体相互作用,产生特异性生物学效应的过程。 受体:指能够识别和选择性结合某种配体(信号分子)的大分子。多数为糖蛋白,少数为糖脂或二者复合物。 第一信使:由信息细胞释放的,经细胞外液影响和作用其它信息接收细胞的细胞外信号分子 第二信使:第一信使与受体作用后在胞内最早产生的信号分子称为第二信使。 2、细胞信号分子分为哪两类?受体分为哪两类? 细胞信号分子:亲脂性信号分子和亲水性信号分子; 受体:细胞内受体:位于细胞质基质或核基质,主要识别和结合脂溶性信号分子; 细胞表面受体:主要识别和结合亲水性信号分子(三大家族;G蛋白耦联受体,酶联受体,离子通道耦联受体) 3、两类分子开关蛋白的开关机制。 GTPase开关蛋白:结合GTP活化,结合GDP失活。鸟苷酸交换因子GEF引起GDP从开关蛋白释放,继而结合GTP并引起G蛋白构象改变使其活化;随着结合GTP水解形成GDP和Pi,开关蛋白又恢复成失活的关闭状态。GTP水解速率被GTPase促进蛋白GAP和G蛋白信号调节子RGS所促进,被鸟苷酸解离抑制物GDI所抑制。 普遍的分子开关蛋白:通过蛋白激酶使靶蛋白磷酸化和蛋白磷酸酶使靶蛋白去磷酸化活性调节蛋白质活性。 4、三类细胞表面受体介导的信号通路各有何特点? (1)离子通道耦联受体介导的信号通路特点:自身为离子通道的受体,有组织分布特异性,主要存在与神经、肌肉 等可兴奋细胞,对配体具有特异性选择,其跨膜信号转导无需中间步骤,其信号分子是神经递质。 (2)G蛋白耦联受体介导的信号通路特点:信号需与G蛋白偶联,其受体在膜上具有相同的取向,G蛋白耦联受体一 般为7次跨膜蛋白,会产生第二信使,G蛋白在信号转导过程中起着分子开关的作用。 (3)酶连受体信号转导特点:a.不需G蛋白,而是通过受体自身的蛋白酶的活性来完成信号跨膜转换;b.对信号的 反应较慢,且需要许多细胞内的转换步骤;c.通常与细胞生长、分裂、分化、生存相关。 5、试述cAMP信号通路。 信号分子→G蛋白耦联受体(Rs)→G蛋白(Gs)→腺苷酸环化酶(C)→ cAMP →cAMP依赖的蛋白激酶A(PKA)→细胞质中靶蛋白→细胞反应 →基因调控蛋白→基因表达 6、试述磷脂酰肌醇信号通路。 胞外信号分子→G蛋白耦联受体→Gq蛋白→磷脂酶C(PLC )→PIP2 →IP3→胞内Ca2+浓度升高→Ca2+结合蛋白(如钙调蛋白CaM)→靶酶(如CaM蛋白激酶)→细胞反应 →靶蛋白→细胞反应 →DAG→激活PKC →抑制蛋白(磷酸化)→基因调控蛋白→调控基因表达 →MAPK(磷酸化)→基因调控蛋白→调控基因表达 7、试述RTK-Ras信号通路及其主要功能。 细胞外信号→RTK二聚体化和自身磷酸化→接头蛋白(如GRB2)→GEF(如Sos)→Ras与GTP结合并活化→ MAPKKK(即Raf)活化→MAPKK(即MEK)磷酸化并活化→MAPK(即ERK)磷酸化并活化,进入细胞核→其他激酶或转录因子磷酸化修饰→基因表达→细胞应答和效应 8、比较cAMP信号通路和磷脂酰肌醇信号通路的异同点。 相同点:都由G蛋白耦联受体,G蛋白和效应器三部分构成 不同点:产生的第二信使不同,CAMP信号通路主要通过蛋白激酶A激活靶酶和开启基因表达;磷脂酰肌醇信号通路是胞外信号被膜受体接受后,同时产生两种胞内信使,分别启动IP3/Ca2+和DAG/PKC两个信号传递途径。 第九章细胞骨架 1.名词解释 细胞骨架:是细胞内以蛋白纤维为主要成分的网架结构包括微丝、微管和中间丝。 分子发动机:是一类利用ATP供能产生推动力,进行细胞内物质运输或运动的蛋白。 2.细胞质骨架由哪几种结构组成?各结构分别具有哪些功能? 微管主要分布在核周围,并呈放射状向胞质四周扩散;支架作用、细胞内物质运输的轨道、鞭毛和纤毛的运动、参与细 胞分裂

蛋白质组学期末复习题

蛋白质组学相关试题及答案 解释 1. Proteome(蛋白质组):由一个细胞或者组织的基因组所表达的全部相应的蛋白质,称为蛋白质组。 2. Proteomics(蛋白质组学):指应用各种技术手段来研究蛋白质组的一门新兴学科,即研究细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能. 3. Mass Spectrometer(质谱仪):质谱仪是一个用来测量单个分子质量的仪器,但实际上质谱仪提供的是分子的质量与电荷比(m/z or m/e)。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。 4. Proteome sample holographic preparation(蛋白组样品的全息制备):(1)keep protein information (2)adapted to separation and identification methods (3)different samples,different extraction. 蛋白质样品制备是蛋白质组研究的第一步,也是最关键的一步。因为这一步会影响蛋白质产量、生物学活性、结构完整性。因此要用最小的力量使细胞达到最大破坏程度同时保持蛋白质的完整性。原则是,保持蛋白质的所有信息;选择合适的分离和鉴定方法;对于不同的样品要用不同的提取方法。 5. Post translational modification(蛋白质翻译后修饰) 肽链合成的结束,并不一定意味着具有正常生理功能的蛋白质分子已经生成。已知很多蛋白质在肽链合成后还需经过一定的加工(processing)或修饰,由几条肽链构成的蛋白质和带有辅基的蛋白质,其各个亚单位必须互相聚合才能成为完整的蛋白质分子。 6. De novo sequencing(从头测序) 从头测序为蛋白质组研究提供了一种不用借助于任何蛋白质序列数据库信息,直接解读串联质谱数据的方法。其基本算法主要由4个部分组成:质谱图的构建、

基因组学与蛋白质组学

《基因组学与蛋白质组学》课程教学大纲 学时: 40 学分:2.5 理论学时: 40 实验学时:0 面向专业:生物科学、生物技 术课程代码:B7700005先开课程:生物化学、分子生物 学课程性质:必修/选修执笔人:朱新 产审定人: 第一部分:理论教学部分 一、课程的性质、目的和任务 《基因组学与蛋白质组学》是随着生物化学、分子生物学、结构生物学、晶体学和计算机技术等的迅猛发展而诞生的,是融合了生物信息学、计算机辅助设计等多学科而发展起来的新兴研究领域。是当今生命科学研究的热点与前沿领域。由于基因组学与蛋白质组学学科的边缘性,所以本课程在介绍基因组学与蛋白质组学基本基本技术和原理的同时,兼顾学科发展动向,讲授基因组与蛋白组学中的热点和最新进展,旨在使学生了解现代基因组学与蛋白质组学理论的新进展并为相关学科提供知识和技术。 二、课程的目的与教学要求 通过本课程的学习,使学生掌握基因组学与蛋白质组学的基本理论、基础知识、主要研究方法和技术以及生物信息学和现代生物技术在基因组学与蛋白质组学上的应用及典型研究实例,熟悉从事基因组学与蛋白质组学的重要方法和途

径。努力培养学生具有科学思维方式、启发学生科学思维能力和勇于探索,善于思考、分析问题的能力,激发学生的学习热情,并通过学习提高自学能力、独立思考能力以及科研实践能力,为将来从事蛋白质的研究奠定坚实的理论和实践基础。 三、教学内容与课时分配 第一篇基因组学

第一章绪论(1学时) 第一节基因组学的研究对象与任务; 第二节基因组学发展的历程; 第三节基因组学的分子基础; 第四节基因组学的应用前景。 本章重点: 1. 基因组学的概念及主要任务; 2. 基因组学的研究对象。 本章难点: 1.基因组学的应用及发展趋势; 2.基因组学与生物的遗传改良、人类健康及生物进化。建议教学方法:课堂讲授和讨论 思考题: 查阅有关资料,了解基因组学的应用发展。 第二章人类基因组计划(1学时) 第一节人类基因组计划的诞生; 第二节人类基因组研究的竞赛; 第三节人类基因组测序存在的缺口; 第四节人类基因组中的非编码成分; 第五节人类基因组的概观; 第六节人类基因组多样性计划。 本章重点: 1. 人类基因组的研究; 2. 人类基因组多样性。 本章难点: 人类基因组序列的诠释。 建议教学方法:课堂讲授和讨论 思考题:

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.doczj.com/doc/5015820733.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

定量蛋白质组学的方法有哪些 (2).doc

定量蛋白质组学的方法有哪些? 1背景和意义 从生命活动的直接执行者——蛋白质的角度研究生命现象和规律(特别是疾病防治和病 理研究)已成为研究生命科学的主要手段。而这些研究往往离不开对细胞、组织或器官中含有蛋白质种类和表达量的研究。对处不同时期、不同条件下蛋白质表达水平变化的研究,识别功能模块和路径,监控疾病的生物标志物,这些研究都需要对蛋白质进行鉴定和定量。生物质谱技术的出现和不断成熟为蛋白质差异表达分析提供了更可靠、动态范围更广的研究手段。基于质谱技术,科学家们不断开发出新的定量蛋白质组学方法,来了解细胞、组织或生物体的整体蛋白质动力学。 2方法学介绍 目前较主流的定量蛋白质组学方法有 5 种,分别是Label-free 、 iTRAQ 、 SILAC 、 MRM(MRM HR) 、和 SWATH 。简述如下: 2.1Label-free Label-free 定量,即非标记的定量蛋白质组学,不需要对比较样本做特定标记处理,只 需要比较特定肽段 /蛋白在不同样品间的色谱质谱响应信号便可得到样品间蛋白表达量的变 化,通常用于分析大规模蛋白鉴定和定量时所产生的质谱数据。 Label-free 操作简单,可以做任意样本的总蛋白质差异定量,但对实验操作的稳定性、 重复性要求较高,准确性也较标记定量差。因此,Label-free 技术适合于大样本量的定量比较,以及对无法用标记定量实现的实验设计。 2.2 iTRAQ iTRAQ 定量是目前定量蛋白质组学应用很广泛的技术,该技术的核心原理是多肽标记 和定量,将多肽的含量转化为 114、115、116 和 117 同位素的含量 (或 113、114、115、116、117、118、119 和121 的 8 标记 ),从而简化了定量的复杂性,最终通过多肽定量值回归到蛋 白的定量值,从而最终测定出不同样本之间蛋白质的差异。 iTRAQ定量不依赖样本,可检测出较低丰度蛋白,胞浆蛋白、膜蛋白、核蛋白、胞外 蛋白等,且定量准确,可同时对8 个样本进行分析,并可同时得出鉴定和定量的结果,特别 适用于采用多种处理方式或来自多个处理时间的样本的差异蛋白分析。金开瑞质谱平台应用 iTRAQ 定量技术,可鉴定多达 6000 种蛋白(以人 HepG2 为例),重复样品间的蛋白表达量 相关性可达到0.95 以上。 2.3SILAC SILAC 定量的基本原理是分别用天然同位素(轻型 )或稳定同位素(中性或重型 )标记的必 需氨基酸取代细胞培养基中相应氨基酸,细胞经 5-6 个倍增周期后,稳定同位素标记的氨基 酸完全掺入到细胞新合成的蛋白质中替代了原有氨基酸。不同标记细胞的裂解蛋白按细胞数或蛋 白量等比例混合,经分离、纯化后进行质谱鉴定,根据一级质谱图中两个同位素型肽段的面积 比较进行相对定量,属于体内代谢标记法。 SILAC 属于体内标记技术,更接近样品真实状态,标记效率高达100% ,且标记效果稳 1

蛋白质组学期末答案

2013——2014第一学期蛋白质组学试题 一名词解释(6分题,共30分) 1. 基因组:生物细胞中的全部基因。 蛋白质组:生物细胞中由全套基因编码控制的蛋白质 2. 基因组学:是研究生物基因组和如何利用基因的一门学问。提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。 蛋白质组学:研究蛋白质组中蛋白质表达与功能变化的科学。可视为分子生物学的大规模筛选技术,目的在于归类细胞中的蛋白质的整体分布,鉴定并分析感兴趣的个别蛋白,最终阐明它们的关系与功能。 3. 质谱:被分析样品经离子化,成为分子离子及其碎片,后利用离子在电场或磁场中的运动性质,把离子按其质量与所带电荷比(m/z)的大小依次排列并记录下来成为质量波谱,称为质谱。 质谱分析:是通过对样品分子的离子质量和强度进行测定来分析样品成分和结构的一种分析方法。 4. MALDI与ESI MALDI:即基质辅助激光解吸电离,在波长为775-1250nm的真空紫外光辐射下光致电离和解吸作用使生物分子电离为分子离子和含有结构信息的碎片。 ESI:即电喷雾电离,采用强静电场(3-5kV),以喷雾形式使液体样品形成高度荷电的雾状小液滴,小液滴经过反复的溶剂挥发-液

滴分裂后,产生多种质子化离子。 两者均属于软电离技术。 5. SDS-PAGE:聚丙烯酰胺凝胶电泳(PAGE),在聚丙烯酰胺凝胶系统中加入十二烷基硫酸钠(SDS)构成SDS-PAGE系统用于分离蛋白质,蛋白电泳迁移率取决于其分子量,而与形状及所带电荷无关。 2-D:即双向凝胶电泳,根据蛋白质的等电点和分子质量的差异使之在二相平面上分开 是目前使用最广泛的蛋白质组学分离技术。 二简答题(6分题,共30分) 1 简述CHIP技术的原理 被剪切,与所研究蛋白相关的DNA片断被选择性免疫沉淀;相关DNA 片断被纯化,顺序被测定。 2 简述ICAT技术的原理 ICATS是一种蛋白质组学定量研究常见方法,ICAT试剂结构,包括3个部分,SH反应集团, biotin标签,同位素 其原理是来源不同处理的蛋白质分别用重型ICAT试剂和轻型ICAT试剂标记,标记后等量混合,胰蛋白酶酶切,亲和纯化得到ICAT标记的多肽,质谱分析,依据MS质谱峰图强度进行定量,MS/MS鉴定肽段。

微生物蛋白质组学的定量分析

微生物蛋白质组学的定量分析 王敬强 殷剑宁 刘斯奇3 (中国科学院遗传与发育生物学研究所基因组信息学中心,北京101300) 摘要 越来越多的微生物基因组序列数据为系统地研究基因的调节和功能创造了有利条件.由于蛋白质是具有生物功能的分子,蛋白质组学在微生物基因组的功能研究中异军突起、蓬勃发展.微生物蛋白质组学的基本原则是,用比较研究来阐明和理解不同微生物之间或不同生长条件下基因的表达水平.显而易见,定量分析技术是比较蛋白质组学中急需发展的核心技术.对蛋白质组学定量分析技术在微生物蛋白质组研究中的进展进行了综述. 关键词 微生物,蛋白质组学,定量分析 学科分类号 Q51 在基因组研究热潮的推动下,蛋白质组学正在从一个符号变成一门蓬勃发展的严肃学科.但是,它所面临的技术瓶颈区域却日益尖锐地摆在研究者面前[1].因此实现蛋白质组学的技术革命是学科是否健康发展的基本前提. 大规模基因组序列测定的目的在于精确地了解某一生物体的基因结构以及基因数量.蛋白质组的分析则着重于阐明某一生物体的某一组织或某一细胞,甚至是某一细胞器在某一时间点上基因表达的水平.因而,在基因组已经确定的前提下,蛋白质组分析所关心的问题是基因表达量的“有与无”或“多与少”[2].蛋白质组表达差异分析的主要问题是如何合理地比较蛋白质组之间的差别,即如何分析不同细胞或不同时刻之间各种蛋白质表达的相对丰度.因此建立一套稳定的参照系统和一套普通适合的测定度量是非常关键的.由此可见,定量测定是蛋白质组分析的一个核心技术问题. 分子生物学和基因组学的发展均以简单生物系统作为突破口,蛋白质组研究也概莫能外.微生物体作为一种理想的生物材料,已被广泛地应用于这些研究中[3].对研究蛋白质组的分析技术而言,微生物具有以下突出的特点:a1微生物的基因组比较小,基因和细胞器结构相对简单,并且蛋白质修饰水平较为低下,因此微生物细胞蛋白质组所含的蛋白质数量比其他高级生物系统要少得多.b1微生物的培养条件可以严格地控制,因此可以在设计的实验条件下,观察微生物蛋白质组表达水平的变化;c1在微生物研究领域中,细胞学、分子生物学和基因组学已经积累了丰富的数据,这些构成了蛋白质组研究的坚实基础;d1微生物的实验周期短,取材简单、便宜.这些都是开发分析技术的理想条件. 蛋白质组定量的概念是试图准确地测定蛋白质组间相对含量的差别,而不在于测定其绝对浓度.根据蛋白质组分析的手段,定量方法可大致分为电泳定量法和色谱定量法;根据处理蛋白质方法不同,又可分为体外标记法(labeling i n vit ro)和体内标记法(labeling i n vivo). 1 体外标记的电泳定量法 这种定量法一般采用不同的蛋白质显色剂,将电泳分离的蛋白质染成可被肉眼或机器识别的斑点,然后运用图像分析软件定量比较斑点的吸光度差别. 111 直接染色比较法 虽然双向电泳(two2dimensional electrophoresis, 2DE)并非一种理想的定量分析系统,但是它可以直观地反映蛋白质表达的差异.考马斯亮蓝染色法和银染法是两个普遍使用的染色方法.考马斯亮蓝染色的敏感性较差(约100ng),银染的敏感性虽然较高(1~10ng),但它的浓度动力学范围较窄.因此这两种方法不适合于相对严格的定量分析比较.目前公认的理想方法是荧光染色,最常用的是Molecular Probe公司生产的SyPro Ruby.这种试剂在敏感性(100fmol)和动力学方面(103)都基本可以满足蛋白质组定量分析的要求[4].传统的以双向电泳(2DE)为基础的差异蛋白组分析分为  3通讯联系人.  Tel:010*********,E2mail:siqiliu@https://www.doczj.com/doc/5015820733.html,  收稿日期:2002212210,接受日期:2003201228

分子生物学课后习题答案

第一章绪论 DNA 重组技术和基因工程技术。 DNA 重组技术又称基因工程技术,目的是将不同DNA 片段(基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 DNA 重组技术是核酸化学、蛋白质化学、酶工程及微生物学、遗传学、细胞学长期深入研究的结晶,而限制性内切酶DNA连接酶及其他工具酶的发现与应用则是这一技术得以建立的关键。DNA重组技术有着广泛的应用前景。首先,DNA重组技术可以用于大量生产某些在正常细胞代谢中产量很低的多肽,如激素、抗生素、酶类及抗体,提高产量,降低成本。其次,DNA 重组技术可以用于定向改造某些生物的基因结构,使他们所具有的特殊经济价值或功能成百上千倍的提高。 请简述现代分子生物学的研究内容。 1、DNA 重组技术(基因工程) 2、基因表达调控(核酸生物学) 3、生物大分子结构功能(结构分子生物学) 4、基因组、功能基因组与生物信息学研究 第二章遗传的物质基础及基因与基因组结构 核小体、DNA 的半保留复制、转座子。核小体是染色质的基本结构单位。是由H2A、 H2B、H3、H4各两分子生成八聚体和由大约200bp 的DNA 构成的。核小体的形成是染色体中DNA 压缩的第一步。 DNA 在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA 分子与原来DNA 分子的碱基顺序完全一样。因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA 的半保留复制。 转座子是存在染色体DNA上的可自主复制和移位的基本单位。转座子分为两大类:插入序列和复合型转座子。 DNA 的一、二、三级结构特征。 DNA 的一级结构是指4 种脱氧核苷酸的连接及其排列顺序,表示了该DNA 分子的化学构成。DNA 的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。分为左手螺旋和右手螺旋。 DNA 的高级结构是指DNA 双螺旋进一步扭曲盘绕所形成的特定空间结构。超螺旋结构是DNA 高级结构的主要形式,可分为正超螺旋与负超螺旋两大类。 DNA 复制通常采取哪些方式? 1、线性DNA双链的复制:复制经过起始、延伸、终止和分离三个阶段。复制是从5'端向3' 端移动,前导链的合成是连续的,后随链通过冈崎片段连接成完整链。 2、环状DNA 双链的复制 (1)θ型:是一种双向复制方式。复制的起始点涉及DNA 的结旋和松开,形成两个方向相反的复制叉,复制从定点开始双向等速进行。 (2)滚环型:是单向复制的一种特殊方式,发生在噬菌体DNA 和细菌质粒上,首先对正链原点进行专一性的切割,形成的5'端被单链结合蛋白所覆盖,3'端在DNA聚合酶的作用下不断延伸。

细胞生物学细胞核思考题

一、最佳选择题(每题2分) 1.关于核被膜下列哪项叙述是错误的。 A.由两层单位膜组成 B.有核孔 C.有核孔复合体 D.外膜附着核蛋白体 E.是封闭的膜结构 2.核膜的特殊作用是。 A.控制核-质之间的物质交换 B.与粗面内质网相通 C.把遗传物质DNA集中于细胞内特定区城 D.附着核糖体 E.控制RNA分子在核-质之间进出 3.下列配对哪项不正确。 A.线粒体-嵴B.纤毛-动力蛋白C.微丝-肌动蛋白D.细胞核一肌球蛋白E.液泡一液泡膜 4.下列哪项配对是错误的。 A.核膜-脂质双层B.核仁-mRNA C.核-DNA复制D.溶酶体-水解酶E.细胞骨架-微管 5.下列细胞器未发现于原核细胞。 A.质膜B.核糖体C核膜D.细胞壁E.液泡 6.下列哪一名词最具包容性。 A.核苷酸B.核苷C.含氮碱基D.嘌呤E.嘧啶 7,下列哪一种含氮碱基在DNA分子中是没有的。 A.胸腺嘧啶B.胞嘧啶C.鸟嘌呤D.尿嘧啶E.腺嘌呤 8.真核细胞的遗传物质DNA分布在。 A.细胞核B.细胞质C.细胞核和内质网D.细胞核和高尔基体 E.细胞核和线粒体 9.rRNA的主要合成部位是。 A.高尔基体B.核糖体C.粗面内质网D.核仁E.滑面内质网10.关于细胞核下列哪种叙述是错误的。 A.原核细胞与真核细胞主要区别是有无完整的核 B.核的主要功能是贮存遗传信息C.核的形态有时和细胞的形态相适应 D.每个真核细胞只能有一个核E.核仁存在于核内 11.电镜下见到的间期细胞核内侧高电子密度的物质是。 A.RNA B.组蛋白C.异染色质D.常染色质E.核仁 12.核质比反映了细胞核与细胞体积之间的关系,当核质比变大时,说明。 A.细胞质随细胞核的增加而增加B.细胞核不变而细胞质增加 C.细胞质不变而核增大D.细胞核与细胞质均不变E.细胞质不变而核减小13.rRNA是由。 A.线粒体DNA转录而来B.核仁组织者中的DNA转录而来 C.核小体DNA转录而来D.DNA复制出来E.以上都不是 14.细胞核内最重要的物质是。

相关主题
文本预览
相关文档 最新文档