当前位置:文档之家› 几个简单的simulink仿真模型

几个简单的simulink仿真模型

几个简单的simulink仿真模型
几个简单的simulink仿真模型

一频分复用和超外差接收机仿真

目的

1熟悉Simulink模型仿真设计方法

2掌握频分复用技术在实际通信系统中的应用

3理解超外差收音机的接收原理

内容

设计一个超外差收接收机系统,其中发送方的基带信号分别为1000Hz的正弦波和500Hz的方波,两路信号分别采用1000kHz和1200kHz的载波进行幅度调制,并在同一信道中进行传输。要求采用超外差方式对这两路信号进行接收,并能够通过调整接收方的本振频率对解调信号进行选择。

原理

超外差接收技术广泛用于无线通信系统中,基本的超外差收音机的原理框图如图所示:

图1-1超外差收音机基本原理框图

从图中可以看出,超外差接收机的工作过程一共分为混频、中频放大和解调三个步骤,现分别叙述如下:

混频:由天线接收到的射频信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,并可根据调整控制电压随时调整振荡频率,使得器振荡频率始终比接收信号频率高一个中频频率,这样,接受信号与本机振荡在混频器中进行相乘运算后,其差频信号的频率成分就是中频频率。其频谱搬移过程如下图所示:

图1-2 超外差接收机混频器输入输出频谱

中频放大:从混频模块输出的信号中包含了高频和中频两个频率成分,这样一来只要采用中频带通滤波器选出进行中频信号进行放大,得到中频放大信号。

解调:将中频放大后的信号送入包络检波器,进行包络检波,并解调出原始信号。

步骤

1、设计两个信号源模块,其模块图如下所示,两个信号源模块的载波分别为1000kHz,和1200kHz,被调基带信号分别为1000Hz的正弦波和500Hz的三角波,并将其封装成两个子系统,如下图所示:

图1-2 信源子系统模型图

2、为了模拟接收机距离两发射机距离不同引起的传输衰减,分别以Gain1和Gain2模块分别对传输信号进行衰减,衰减参数分别为0.1和0.2。最后在信道中加入均值为0,方差为0.01的随机白噪声,送入接收机。

3、接收机将收到的信号直接送入混频器进行混频,混频所使用的本机振荡信号由压控振荡器产生,其中压控振荡器由输入电压进行控制,设置Slider Gain模块,使输入参数在500至1605可调,从而实现本振的频率可控。压控振荡器的本振频率设为465kHz,灵敏度设为1000Hz/V。

4、混频后得到的信号送入中频滤波器Analog Filter Design1进行带通滤波,滤波器阶数设置为1,带宽为12kHz,中心频率为465kHz,从而滤出中频信号。

5、对中频信号进行20倍的增益后,再次经过Analog Filter Design2进行中频滤波,进一步消除带外噪声。滤波器设置与前面相同

6、经过中频滤波后,利用包络检波器进行检波(检波器的上限和下限值分别设置为inf和0),检波输出信号再通过带宽为6kHz的低通滤波器输出。

7、设置系统仿真时间为0.01s,仿真步进为6.23e-8,具体参数设置如下图所示:

图1-3 模型仿真参数设置

8、调整压控振荡器的控制电压信号,观察接收波形的变化。并分别记录当输出波形为正弦波和三角波时的压控振荡器输出频率。

图1-4 系统仿真模型图结果

1画出接收机正确解调时的接收波形

2记录当分别解调出两路信号时,本振频率分别为多少3给出接收信号频率与本振频率的关系式

二 PSK 数字传输系统仿真

目的

1 进一步掌握Simulink 模型仿真设计方法

2 深入理解PSK 技术的工作原理

3 了解在PSK 下采用格雷码映射技术的优越性。

内容

试建立一个π/8相位偏移的8PSK 传输系统,观察调制输出信号通过加性高斯信道前后的星座图,并比较输入数据以普通二进制映射和格雷码映射两种情况下的误比特率。

原理

多进制相移键控的特点:多进制相移键控是利用载波的多个相位来代表多进制符号或二

进制码组,即一个相位对应一个多进制符号或者是一组二进制码组。 在相同码元宽度的情况下,M 进制的码元速率要高,如在8PSK 中,其码元速率为 38log 2 ,为2PSK 的3倍,因此,多进制相移键控具有更高的码速率。

采用不同的相位来代表多进制符号一共有两种不同的方案,分别是A 方式相移系统和B 方式相移系统,其相位矢量图图表示如下:

图2-1 两种方式下的相移系统

多进制相移键控的抗噪声性能:

对于多进制绝对移相(MPSK ),当信噪比r 足够大时,误码率可近似为 对于多进制相对移相(MDPSK ),当信噪比r 足够大时,误码率可近似为

图2-2 不同M 下的误码率曲线图

2sin (/)

r M e P e

π-=2

2sin

(/2)

r M e P e π-

=

格雷码映射:

格雷码是一种数字排序系统,其中的所有相邻整数在它们的数字表示中只有一个数字不同。它在任意两个相邻的数之间转换时,只有一个数位发生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。另外由于最大数与最小数之间也仅一个数不同,故通常又叫格雷反射码或循环码。二进制码与格雷码的对照表如下所示:

步骤

1设置信号源为随机整数发生器,将M-ary number设置为8,采样时间为1e-3,信源输出的随机整数0~7通过二进制转换器转换为3比特二进制组后送入PSK基带调制器。

2在PSK基带调制器中,设置8PSK调制方式(M-ary number设置为8),input type设置为Bit,星座映射设置为Binary或Gray,表示采用直接映射或格雷码映射。相位偏移设置为pi/8,即采用B方式的相移系统。

3将经过8PSK调制好的输出信号送入到AWGN信道,其中设置AWGN模块的Mode为:Variance from mask,方差为0.02。

4经过信道叠加了噪声后,将信号送入到M-PSK基带解调模块,解调方式与调制方式对应。

5分别将原始信号和经过8PSK解调后的信号进行并串转换后在Error Rate Calculation中进行比较,得到系统的误码率,其中Buffer模块设置其输出的缓冲大小为1,Error Rate Calculation的Output data设置为Port,其余按照默认设置。

6分别在8PSK经过信道前和经过信道后放置星座图显示模块,查看加入噪声后的信号星座图变化情况。

图2-3 系统仿真模型图

结果

1、分别观察当信道噪声方差0.02和0.05时,系统采用普通二进制方式和格雷码方式时的信噪比,并说明其原因。

三 用于载波提取的锁相环仿真

目的

1 掌握锁相环的基本原理

2 了解锁相环在载波提取中的作用

3 了解平方环和科斯塔斯环的工作原理

内容

设计两个仿真模型,分别使用平方环和科斯塔斯环对抑制载波双边带调制的模拟信号进行相干解调。

原理

1 平方环

设调制信号为m(t)中无直流分量,则DSB 信号为

t t m t s c ωcos )()(= (3-1)

接收端将该信号经过一个平方律部件后得到

t

t m t m t t m t e c c ωω2cos )(212)(cos )()(2

22

2

+== (3-2)

在上式中

)(2t m 的均值是基带信号的功率,是一个正的常数,因此上式中含有c

ω2频率分

量的谐波,用中心频率为

c ω

2的带通滤波器将这一谐波分量选出后,再通过锁相环选定,最后对锁相环VCO 输出信号进行2分频即可恢复载波。平方环的原理框图如下图所示:

图3-1 平方环载波提取原理框图

2 科斯塔斯环

利用平方环进行解调时,需要三个乘法器,且锁相环工作在载波的二倍频上。如果载波频率较高,锁相环将需要工作在相当高的频率上,导致成本大大提高。因此,科斯塔斯环针对这一缺点进行了改进。

本是采用科斯塔斯环法提取同步载波的。科斯塔斯环又称同相正交环,其原理框图如下:

图3-2 科斯塔斯环原理框图

在科斯塔斯环环路中,误差信号V 7是由低通滤波器及两路相乘提供的。压控振荡器输出信号直接供给一路相乘器,供给另一路的则是压控振荡器输出经90o 移相后的信号。两路相乘器的输出均包含有调制信号,两者相乘以后可以消除调制信号的影响,经环路滤波器得到仅与压控振荡器输出和理想载波之间相位差有关的控制电压,从而准确地对压控振荡器进行调整,恢复出原始的载波信号。

现在从理论上对科斯塔斯环的工作过程加以说明。设输入调制信号为,则

)]2cos()[cos (21

)cos(cos )(v 3θωθθωω++=

+=t t m t t t m c c c (3-3) )]

2sin()[sin (21

)sin(cos )(v 4θωθθωω++=+=t t m t t t m c c c (3-4)

经低通滤波器后,倍频项被滤除,输出分别为:

θcos )(21

v 5t m =

θ

sin )(21

v 6t m = 将v 5和v 6在相乘器中相乘,得,

θ2sin )(81v v v 2

657t m =

=

(3-5)

(3-5)中θ是压控振荡器输出信号与输入信号载波之间的相位误差,当θ较小时, θ)(41v 2

7t m ≈

(3-6)

(3-6)中的v 7大小与相位误差θ成正比,它就相当于一个鉴相器的输出。用v 7去调整压控振荡器输出信号的相位,最后使稳定相位误差减小到很小的数值。这样压控振荡器的输出就是所需提取的载波。

()cos c m t t ω

步骤

1、平方环载波恢复仿真模型的设计

10-,仿真计算采用ode5算法,仿真时间设置为8e-3。

1)仿真步进设计为固定的s6

2)采用相乘法产生抑制载波调制信号,其中,基带信号采用频率为1KHz的正弦波信号,载波采用频率为10KHz的正弦波,通过相乘器产生已调信号后送入噪声方差为0.01的AWGN信道进行传输。

3)在接收方,采用乘法器Product1完成平方功能,并将输出信号通过中心频率为20kHz 的二阶带通滤波器选出载波的二次谐波,滤波器通带可设置为19~21kHz。

4)采用Product2作为锁相环的鉴相器,为模拟真实情况,并不将VCO的中心频率完全设置为载波频率的2倍,而是增加一个小的差值,如设置VCO的中心频率为20.3kHz,控制灵敏度为4000Hz/V。则当环路进入锁定时,VCO的输出就是稳定的载波二次谐波。

5)将得到的载波二次谐波通过计数器进行二分频后得到恢复载波,计数器设置为上升沿触发,最大计数值为1,输出端为计数输出,输出数据类型为双精度。计数器的初始状态设置为0或1。

6)相干解调模块可采用Manual Switch来选择理想载波或本地恢复载波来进行,低通滤波器截止频率根据基带信号频率进行设计。

图3-3 抑制载波双边带调制、平方环载波恢复及相干解调模型

2、科斯塔斯环载波恢复仿真模型的设计

10-,仿真计算采用ode5算法,仿真时间设置为8e-3。

1)仿真步进设计为固定的s6

2)采用相乘法产生抑制载波调制信号,其中,基带信号采用频率为1KHz的正弦波信号,载波采用频率为10KHz的正弦波,通过相乘器产生已调信号后送入噪声方差为0.01的AWGN 信道进行传输。

3)在接收方,将接收信号分两路与VCO输出的信号进行鉴相,并通过低通滤波器(2阶的巴特沃斯滤波器,截止频率为1KHz)

4)VCO的中心频率设置为10.15kHz,压控灵敏度为8000Hz/V。

5)零阶保持器的采样频率按照仿真模型采样频率设置

6)利用Analytic Signal模块进行希尔伯特变换,得到复数信号

7)利用Complex to Real-Imag将复数信号的实部,虚部分离出来,得到一对相互正交的正弦输出

抑制载波双边带调制的科斯塔斯环载波恢复和解调模型

结果

1、分析平方环载波提取系统的频率跟踪范围,并测试其频率跟踪特性。

2、观察科斯塔斯环载波提取电路的载波恢复结果,并与发送方载波进行比较,观察两者之间的

区别

四 扩频通信系统的建模与仿真

目的

1、加深对扩频通信系统的理解

2、了解直接序列扩频通信系统的抗噪声能力

3、熟悉扩频码在直序扩频中的作用

内容

设计一个完整的扩频通信系统模型,包含信号的产生,扩频,调制,解扩,解调以及恢复的全过程,并通过信号的频谱对系统进行分析。

原理

1、直接序列扩频通信系统

扩展频谱调制是指已调信号带宽远大于调制信号带宽的任何调制体制;在这类体制中已调信号的带宽基本上和调制信号带宽无关。

直接序列扩频发射机框图如图4-1所示,二进制数据源()a t 通过乘法器与PN 序列()c t 相乘,由于PN 序列的码元持续时间远小于数据源的码元持续时间,因此得到的信号频谱将大大扩展,接下来将扩展了频谱的数字信号通过数字调制进行发送,得到发射的扩频信号。其中,发射信号()s t 的表达式为

()()()cos2c s t a t c t f t π=

图4-1 直接序列扩频的发射机系统结构

直接序列扩频系统的信道以及接收机结构如图所示

图4-2 直接序列扩频的接收机系统框图

接收方接收到的信号由扩频信号()s t ,噪声信号()n t 以及干扰信号()J t 组成,由此可以得到接收信号()r t 的表达式:

()()()()r t s t n t J t =++

当接收机达到同步要求时,其本地扩频序列与发射机扩频序列相同。解扩也是以乘法器完成的,因此解扩输出信号()m t 为:

2()()*()

(()()())()

()()cos 2()()()()

c m t r t c t s t n t J t c t a t c t f t n t c t J t c t π==++=++

由于扩频序列 ()1c t =±,故上式第一项为()s t ,后面两项属于宽频分量,可以通过滤波

器滤除。

步骤

直接序列扩频发射机的设计:

为保证频谱的平滑,仿真参数如下图所示:

图4-3 系统仿真参数设置

1、二进制随机数发生器模块产生基带二进制信号,其采样时间设置为0.01,这样就可以得到数据率为100bps 的基带信号,由于扩频时,需要与数据率高于自己的扩频码相乘,因此通过Rate Transition 模块进行速率调整,并通过Unipolar to Bipolar Converter 模块进行双极性转换,得到双极性信号。

2、扩频码由PN 序列发生器产生,其中PN 序列的生成多项式为[1 0 0 0 0 1 1],初始状态设置为[0 0 0 0 0 1]。由于采样时间设定为1/2000,这样,就能够产生数据率为2Kbps 的扩频码

3、利用乘法器进行扩频,然后将扩频信号送入到BPSK 调制模块进行数字调制,并经过速率转换后按照1/8000的采样时间进行采样保持(Unit Delay 模块),最后通过频谱仪显示频谱

4、为了观察扩频前的信号频谱,再将二进制基带信号通过采样,然后观察频谱,其中Unit Delay 模块与第三步中的Unit Delay 模块设置一致。

图4-4 直接序列扩频发射机仿真模型

完整的直接序列扩频通信系统的设计与仿真

1、将发射机模型封装为一个子系统,如下图所示:

图4-5 扩频信号发射机子系统

2、将直序扩频信号送到高斯白噪声信道中进行传输,设置高斯噪声信道的噪声方差为10。并通过加法器叠加单频干扰(设置为300Hz的正弦波,采样时间为1/2000)。

3、产生本地解扩码序列,解扩码与扩频码一致,可参照扩频码进行设置

4、扩频信号与解扩码相乘,产生解扩信号,然后送入到BPSK中进行解调,极性变换,最后观察信号频谱。

5、解调后的信号与原始二进制基带信号进行误码率计算,其中二进制基带信号的产生与发射机相同,可参照后者进行设置。

下图为完整的直序扩频的模型,其中所有的采样保持序列的采样时间均设置为1/8000

图4-6 直序扩频系统仿真模型

结果

分析扩频通信系统的频谱特性,并测试其抗噪声性能。

Matlab中的Simulink和SimMechanics做仿真

这里我们利用Matlab中的Simulink和SimMechanics做仿真,那么先来看看相关的资料。 SimMechanics ——机械系统建模和仿真 SimMechanics 扩展Simscape? 在三维机械系统建模的能力。用户可以不进行方程编程,而是借助该多刚体仿真工具搭建模型,这个模型可以由刚体、铰链、约束以及外力组成。自动化3-D动画生成工具可做到仿真的可视化。用户也可通过从CAD系统中直接导入模型的质量、惯量、约束以及三维几何结构。Real-Time Workshop可以对SimMchanics模型进行自动化C代码生成,并在硬件在回路仿真过程中可以使用生成的代码而不是硬件原型测试嵌入式控制器。 SimMechanics可以用于开发悬架、机器手臂、外科医疗设备、起落架和大量的其它机械系统。用户也可以在SimMechanics环境下集成其它的MathWorks物理建模工具,这样做可以实现更加复杂跨领域的物理建模。 特点: ?提供了三维刚体机械系统的建模环境 ?包含了一系列分析机械运动和设计机械元件尺寸的仿真技术 ?三维刚体可视化仿真 ?SimMechanics Link utility,提供Pro/ENGINEER 和SolidWorks CAD平台的接口并且也提供了API函数和其它CAD平台的接口

?能够把模型转化为C代码(使用Real-Time Workshop) ?由于集成在Simulink环境中,因此可以建立高精度、非线性的模型以支持控制系统的开发和测试。 强大功能: 搭建机械系统模型 使用SimMechanics用户仅需要收集物理系统信息即可建立三维机械系统模型。使用刚体、坐标系、铰链和作用力元素定义和其它Simulink模型直接相连的部分。这个过程可以重用Simulink模型以及扩展了SimMechanics工具的能力。用户还可把Simulink模型和SimMechnics模型集成为一个模块,并可封装成可在其它模型中复用的子系统。 机械系统建模仿真和分析 SimMechanics包含如下子系统: ?使用Simulink查表模块和SimMechanics传感器和作动器定义的非线性的弹性单元 ?用来定义航空器件压力分布的空气动力学拖曳模块,例如副翼和方向舵 ?车辆悬架系统,例如防侧翻机械装置和控制器 ?轮胎模型

通信仿真课程设计-matlab-simulink

成都理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 201620101133 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,电话,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

MATLAB仿真技术

MATLAB仿真技术 作 业 合 集

第1章 习题 5.利用直接输入法和矩阵编辑器创建矩阵A=? ? ? ? ??642531。 解:⑴利用直接输入法输入程序 A=[1 3 5;2 4 6] 按Enter 键后,屏幕显示 A = 1 3 5 2 4 6 ⑵用矩阵编辑器创建矩阵,如图1.1所示。 图1.1 MATLAB 编辑器 7.用矩阵编辑器创建矩阵a,使a 具有如下矩阵形式。 a=??????642531?a=??????????654321?a=??????????987654321?a=???? ??????098706540321?a=????? ???????00 00 09870654 0321 解:用矩阵编辑器创建矩阵a 的过程如图1.2、1.3、1.4、1.5、1.6所示。 图1.2 图1.3 图1.4 图1.5

图1.6 9.已知矩阵B=????? ?? ?????????922518113211912102201304161475231501017,试:①提取矩阵B 的第一行和第二行的第2、4、5个元素组成新矩阵1B ;②提取矩阵B 的第三行和第一行的全部元素组成新矩阵2B ;③使矩阵B 的第一行和第三行的第2;4个元素为0;④标出矩阵B 的第一行中小于5的元素。 解:①如上题,用矩阵编辑器生成矩阵B ,再输入程序 B1=B([1,2],[2,4,5]) 按Enter 键后,屏幕显示 B1 = 0 0 15 5 14 16 ②输入程序 B2=B([1,3],:) 按Enter 键后,屏幕显示 B2 = 17 0 1 0 15 4 0 13 0 22 ③第一行和第三行的第2;4个元素原本就为0。 ④输入程序如下 C=B(1,:)<5; %将B 矩阵第一行中小于5 的值标记为1 D=B(1,C) %去B 矩阵第一行中标为1的元素 按Enter 键后,屏幕显示 D= 0 1 0 11.已知矩阵a 为4阶魔方阵,令a+3赋值给b ,a+b 赋值给c ,求b 和c 。 解:程序如下。 >> a=magic(4) %建立4阶魔方矩阵 a = 16 2 3 13 5 11 10 8 9 7 6 12 4 14 15 1 >> b=a+3 %将a 中各元素加3 b = 19 5 6 16 8 14 13 11 12 10 9 15 7 17 18 4

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目:信息系统课程设计仿真 院(系):信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012 年 1 月 14 日至2012 年 1 月 25 日 华中科技大学武昌分校制

信息系统仿真课程设计任务书

目录 摘要 (5) 一、Simulink仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLAB仿真设计 (12) 2.1、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2自编matlab程序: (13) 2.1.3 仿真图形 (13) 2.1.4仿真结果分析 (15) 2.2用双线性变换法设计IIR数字滤波器 (15) 2.2.1双线性变换法的基本知识 (15) 2.2.2采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3自编matlab程序 (16) 2.2.4 仿真波形 (17) 2.2.5仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20)

摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能强大、简单易学、编程效率高,目前已发展成为由MATLAB语言、MATLAB工作环境、MATLAB图形处理系统、MATLAB数学函数库和MATLAB应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM编码器对一连续信号进行编码。最后利用MATLAB进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

实验四 SIMULINK仿真模型的建立及仿真(完整资料).doc

【最新整理,下载后即可编辑】 实验四SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中

找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示: 图三:已构建完成的新模型窗 6、根据理论数学模型设置模块参数: ①设置增益模块参数,双击模型窗重的增益模块,引出如图四所示的参数设置窗,把增益栏中默认数字改为2,单击[OK]键,完成设置;

通信仿真课程设计-matlab-simulink

理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 3 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

PID控制系统的Simulink仿真分析

实验报告 课程名称:MATLAB语言与控制系统仿真 实验项目:PID控制系统的Simulink仿真分析专业班级: 学号: 姓名: 指导教师: 日期: 机械工程实验教学中心

注:1、请实验学生及指导教师实验前做实验仪器设备使用登记; 2、请各位学生大致按照以下提纲撰写实验报告,可续页; 3、请指导教师按五分制(优、良、中、及格、不及格)给出报告成绩; 4、课程结束后,请将该实验报告上交机械工程实验教学中心存档。 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一 种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递 函数的形式为 s K s Ki K s T s T K s U s E s G d p d i p ++=++==)1 1()() ()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T =为积分时间常数; p d d K K T =为微分时间常数;简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立即产 生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积 分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大 之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调 节时间。 三、实验使用仪器设备(名称、型号、技术参数等) 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在 Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的 传递函数构建出如下模型:

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

实验四-SIMULINK仿真模型建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统 仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器 2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示:

实验六 SIMULINK仿真综合实验

实验6 SIMULINK 仿真综合实验 一、实验目的 1.熟悉Simulink 的操作环境并掌握绘制系统模型的方法。 2.掌握Simulink 中子系统模块的建立与封装技术。 3.对简单系统所给出的数学模型能转化为系统仿真模型并进行仿真分析。 二、实验设备及条件 计算机一台(带有MATLAB7.0以上的软件环境)。 三、实验内容 1.建立下图1所示的Simulink 仿真模型并进行仿真,改变Gain 模块的增益,观察Scope 显示波形的变化。 图1 正弦波产生及观测模型 Sine Wave Scope 1 Gain 2.利用simulink 仿真来实现摄氏温度到华氏温度的转化:325 9 c f +=T T (c T 范围在-10℃~100℃),参考模型为图2。 图2 摄氏温度到华氏温度的转化的参考模型 3.利用Simulink 仿真下列曲线,取πω2=。

t t t t t t x ωωωωωω9sin 9 1 7sin 715sin 513sin 31sin )(++++=。 仿真参考模型如下图3,Sine Wave5模块参数设置如下图4,请仿真其结果。 图3 ()x t ω的仿真参考模型图 图4 Sine Wave5模块参数设置图 4.悬吊式起重机动力学仿真 悬吊式起重机结构简图 1. 悬吊式起重机动力学方程 式中,mt 、mp 、I 、c 、l 、F 、x 、θ 分别为起重机的小车质量、吊重、吊重惯量、等价粘性摩擦系数、钢丝绳长(不计绳重),小车驱动力、小车位移以及 ())1(sin 22 θl x dt d m x c F x m p t ---= ()) 2(cos 22 θl dt d m g m P p p =-)3(sin cos )sin (22 θ θθθ I Pl l x dt d l m p =--小车水平方向受力方程吊绳垂直方向受力方程 小车的力矩平衡方程

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

锁相环Simulink仿真模型

锁相环学习总结 通过这段的学习,我对锁相环的一些基本概念、结构构成、工作原理、主要参数以及simulink 搭建仿真模型有了较清晰的把握与理解,同时,在仿真中也出现了一些实际问题,下面我将对这段学习中对锁相环的认识和理解、设计思路以及中间所遇到的问题作一下总结: 1. 概述 锁相环(PLL )是实现两个信号相位同步的自动控制系统,组成锁相环的基本部件有检相器(PD )、环路滤波器(LF )、压控振荡器(VCO ),其结构图如下所示: 2. 锁相环的基本概念和重要参数指标 锁相是相位锁定的简称,表示两个信号之间相位同步。若两正弦信号如下所示: 相位同步是指两个信号频率相等,相差为一固定值。 ) (sin )sin()()(sin )sin()('t U t U t u t U t U t u o o o o o i i i i i θθωθθω=+==+=

当i ω=o ω,两个信号之间的相位差 为一固定值, 不 随时间变化而变化,称两信号相位同步。 当i ω≠o ω,两个信号的相位差 ,不论i θ 是否等于o θ,只要时间有变化,那么相位差就会随时间变化而 变化,称此时两信号不同步。若这两个信号分别为锁相环的输入和输出,则此时环路出于失锁状态。 当环路工作时,且输入与输出信号频差在捕获带范围之内,通过环路的反馈控制,输出信号的瞬时角频率)(t v ω便由o ω向i ω方向变化,总会有一个时刻使得i ω=o ω,相位差等于0或一个非常小的常数,那么此时称为相位锁定,环路处于锁定状态。若达到锁定状态后,输入信号频率变化,通过环路控制,输出信号也继续变化 并向输入信号频率靠近,相位差保持在一个固定的常数之内,则称环路此时为跟踪状态。锁定状态可以认为是静态的相位同步,而跟踪状态则为动态的相位同步。 环路从失锁进入到锁定状态称为捕获状态。 其他几个环路工作时的重要概念: 快捕带:能使环路快捕入锁的最大频差称为环路的快捕带,记为 L ω?,两倍的快捕带为快捕范围。 捕获带:能使环路进入锁定的最大固有频差,用P ω?表示,两倍的捕获带为捕获范围。 同步带:环路在所定条件下,可缓慢增加固有频差,直到环路失锁,把能够维持环路锁定的最大固有频差成为同步带,用H ω?, o i t t θθθθ-=-)()('o i o i t t t θθωωθθ-+-=-)()()('

单闭环直流调速系统simulink仿真课程设计

目录 一、摘要.......................................................... - 3 - 二、课程设计任务 .................................................................................................... - 3 - 三、课程设计内容 .................................................................................................... - 3 - 1、PID控制原理及PID参数整定概述.................................................................... - 3 - 2、基于稳定边界法(临界比例法)的PID控制器参数整定算法 ............................ - 5 - 3、利用Simulink建立仿真模型............................................................................ - 8 - 4、参数整定过程 .................................................................................................- 12 - 5、调试分析过程及仿真结果描述.........................................................................- 16 - 四、总结 ...................................................................................................................- 17 - 五、参考文献 ...........................................................................................................- 17 -

实验7 Simulink仿真技术

实验七Simulink仿真技术 1 实验目的: 了解对动态系统进行建模、仿真与分析工具-------Simulink 掌握Simulink仿真的方法和步骤 2 实验相关的知识重点: Simulink是MATLAB下的一个软件包。使用Simulink进行仿真一般分为两步: 1、在仿真模型编辑窗口中搭建好自己的仿真模型,设置好具体模型参数和仿 真参数; 2、开始仿真,Simulink将根据用户搭建的模型,模拟系统在用户设定条件下 的具体行为。 一个典型的Simulink模型由信源、系统及信宿等3部分组成可,它们的关系如下图所示: 信源提供系统的输入信号,如常量、正弦波、方波等;系统是对仿真对象的数学抽象,比如是连续线性系统,还是连续非线性系统?对输入信号进行求和,还是对输入信号进行一次调制:信宿是收信号的的部分,用户可以把它送到“示波器”中显示出来,或者保存到相应的mat文件中去。 一、模型文件操作 Simulink所建立的模型文件的后缀名为*.mdl。模型文件实际是一个结构化了的ASCII文件,它描述了模型的关键字和参数。同MATLAB的M文件一样它可以进行新建、打开、保存、打印等操作。 二、模块的操作 1. 模块的选定: 2.模块大小的调整: 3.模块方向的调整: 4.模块位置的调整: 5.模块的删除: 6.模块参数的设置 三、信号线的操作 1.信号线的连接: 2.信号线的折曲: 3.折点的移动: 4.信号线的删除: 5.信号线的标签: 6.信号线标签的传递: 四、模型的注释

建立Simulink模型应该养成添加模型注释的良好习惯。方法是:在模型编辑窗任意位置双击鼠标左键,将弹出一个编辑窗,可以在其中写入注释内容。 在模块库浏览器中的Simulink结点下包含了搭建一个Simulink模型所需的基本模块,这些是首先应该掌握的。下面主要对其中的Sources模块库、Sinks 模块库、Continuous模块库、Discrete模块库、Math Operations模块进行介绍。 一、Sources模块库 主要用于给Simulink仿真模型提供输入信号 1. Sine Wave模块 2.From Workspace模块 3.From File模块 二、Sinks模块库 主要功能是接收信号,并且将接收到的信号显示出来 1. 示波器的工具栏 2. 坐标轴的范围调整 三、Continuous模块库 主要用于对连续系统的建模。 四、Discrete模块库 主要用于离散系统建模。这类系统在时域上一般用差分方程来描述,或者在频域上利用Z变换得到传递函数进行描述. 五Math Operations模块库 主要用于对输入信号进行数学操作,包括逻辑运算和关系运算. 六其他模块库中的内容 基本模块库中还包括很多其他模块,另外,Simulink还可以由Blocksets来扩展它的功能.例如,利用DSP Blockset仿真数字信号处理的问题,利用Communication Blockset, CDMA Reference Blockset可以仿真通信领域的问题. 3 实验题目: 1.打开Simulink的模块库浏览器,仔细观察Simulink的基本模块, 它们是如何分类组织起来的?这样,在实际使用中才能快速、正确地查到自己所需要的模块。 2.用信号发生器产生频率1GHz,最高幅度为2的正弦波,用示波器 显示出来;用信号发生器产生幅度为2 ,频率10MHz, 占空比1/2的方波信号,用示波器显示。 3.为什么要封装子系统,如何封装?举例说明。

基于MATLAB的数字基带传输系统的仿真-课程设计报告书

通信工程专业《通信仿真综合实践》研究报告 基于MATLAB的数字基带传输系统的仿真设计 学生:*** 学生学号:20***** 指导教师:** 所在学院:信息技术学院 专业班级:通信工程 中国 2016 年 5月

信息技术学院 课程设计任务书 信息技术院通信工程专业 20** 级,学号 201***** **** 一、课程设计课题: 基于MATLAB的数字基带传输系统的仿真设计 二、课程设计工作日自 2016 年 5 月 12 日至 2016 年 5 月 24 日 三、课程设计进行地点:图书馆 四、程设计任务要求: 1.课题来源: 指导教师指定题目 2.目的意义:. 1)综合应用《掌握和精通MATLAB》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念 2)培养学生系统设计与系统开发的思想 3)培养学生独立动手完成课程设计项目的能力 3.基本要求: 1) 数字基带信号直接送往信道: 2)传输信道中的噪声可以看作加性高斯白噪声 3)可用滤波法提取定是信号 4)对传输系统要有清楚的理论分析 5)把整个系统中的各个子系统自行构造,并对其性能进行测试 6)最终给出信号的仿真结果(信号输出图形) 课程设计评审表

基于MATLAB 的数字基带传输系统的仿真 概述 :本课程设计主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB 软件仿真设计数字基带传输系统。首先介绍了本课题的理论依据及相关的基础知识,包括数字基带信号的概念,数字基带传输系统的组成及各子系统的作用,及数字基带信号的传输过程。最后按照仿真过程基本步骤用MATLAB 的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 第一部分 原理介绍 一、数字基带传输系统 1)数字基带传输系统的介绍 未经调制的数字信号所占的频谱是从零频或很低频率开始,称为数字基带信号。在某些具有低通特性的有线信道中,特别是在传输距离不太远的情况下,基带信号可以不经载波调制而直接传输。这种不经载波调制直接传输数字基带信号的系统,称为数字基带传输系统。 数字基带系统的基本结构可以由图1 的模型表示.其中包括发送滤波器、传输信道、接收滤波器、抽样判决等效为传输函数为H (w) 基带形成网络,对于无码间干扰的基带传输系统来说, H (w) 应满足奈奎斯特第一准则, 在实验中一般取H (w) 为升余弦滚降特性.在最佳系统下, 取C(w) = 1,GT (w) 和GR(w) 均为升余弦平方根特性.传输信道中的噪声可看作加性高斯白噪声, 用产生高斯随机信号的噪声源表示. 位定时提取电路,在定时精度要求不高的场合, 可以用滤波法提取定时信号,滤波法提取位定时的原理可用图2表示。 图1 基带传输系统模型 设发送滤波器的传输特性 , 则 ω ωπ d e H t g jwt R ? ∞ ∞ -= )(21 )()(ωT G

实验四 PID控制系统的Simulink

自动控制理论 上 机 实 验 报 告 学院:机电工程学院 班级:13级电信一班 姓名: 学号:

实验四 PID 控制系统的Simulink 仿真分析 一、实验目的和任务 1.掌握PID 控制规律及控制器实现。 2.掌握用Simulink 建立PID 控制器及构建系统模型与仿真方法。 二、实验原理和方法 在模拟控制系统中,控制器中最常用的控制规律是PID 控制。PID 控制器是一种线性控制器,它根据给定值与实际输出值构成控制偏差。PID 控制规律写成传递函数的形式为a s K s Ki K s T s T K s U s E s G d p d i p ++=++==)11()()()( 式中,P K 为比例系数;i K 为积分系数;d K 为微分系数;i p i K K T = 为积分时间常数;p d d K K T =为微分时间常数; 简单来说,PID 控制各校正环节的作用如下: (1)比例环节:成比例地反映控制系统的偏差信号,偏差一旦产生,控制器立 即产生控制作用,以减少偏差。 (2)积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决 于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 (3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 三、实验使用仪器设备 计算机、MATLAB 软件 四、实验内容(步骤) 1、在MATLAB 命令窗口中输入“simulink ”进入仿真界面。 2、构建PID 控制器:(1)新建Simulink 模型窗口(选择“File/New/Model ”),在Simulink Library Browser 中将需要的模块拖动到新建的窗口中,根据PID 控制器的传递函数构建出如下模型:

第九章 Simulink高级仿真技术

105 第九章 Simulink 高级仿真技术 第八章对动态系统的建模、仿真与分析方法做了详细的介绍,这些方法足够用户对简单的动态系统进行仿真研究,但对于复杂的系统来说还略显不足。况且要想灵活高效的使用Simulink ,还必须了解Simulink 的工作原理。本章主要介绍Simulink 的高级仿真技术,包括Scope 模块的高级使用技术、Simulink 的工作原理、过零事件、系统代数环的概念与解决方案、高级积分器的使用方法等。 9.1 Scope 模块的高级使用技术 从前面章节所举出的仿真示例中可以看出,在对系统进行仿真分析时,通常使用Scope 示波器模块来观察动态系统的仿真结果或系统中指定的信号。用户可以很方便地对Scope 模块进行各种控制以便对指定信号进行观测,以便对系统进行有效的分析。Scope 模块也可以设置成悬浮Scope 模块,因而本节主要对Scope 模块和悬浮Scope 模块做详细的介绍。 9.1.1 Scope 模块的使用 Scope 模块是一个用途很广的显示模块,我们前面章节给出的Simulink 仿真系统中多半都使用了这种模块,它是以图形的方式直接显示指定的信号。当无需对输出结果进行定量分析,可以从Scope 模块输出的曲线中直接获知系统的运动规律。Scope 模块给用户提供了很多控制方法,可以使用户对Scope 模块的输出曲线进行各种控制调整,以便用户观测和分析输出结果。 Scope 模块的工具栏按钮命令如图9.1所示。下面分别介绍各项功能。 一、打印输出(Print ) 将系统仿真结果的输出信号打印出来。 二、视图自动缩放(Autoscale ) 点击此按钮可以自动调整显示范围以匹配系统仿真输出信号的动态范围。 三、X 轴缩放、Y 轴缩放以及视图整体缩放 可以分别对X 坐标轴、Y 坐标轴或同时对X 、Y 坐标轴的信号显示进行缩放,以满足用户对信号做局部观察的需要。使用时,单击缩放按钮后选择需要观察的信号范围即可。若需要缩小视图,单击鼠标右键,选择弹出菜单的Zoom out 即可。 四、保存和恢复坐标轴设置 图9.1 Scope 模块的工具栏按钮命令

Matlab与通信仿真课程设计报告

《MATLAB与通信仿真》课程设计指导老师: 张水英、汪泓 班级:07通信(1)班 学号:E07680104 姓名:林哲妮

目录 目的和要求 (1) 实验环境 (1) 具体内容及要求 (1) 实验内容 题目一 (4) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目二 (8) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目三 (17) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目四 (33) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 心得与体会 (52)

目的和要求 通过课程设计,巩固本学期相关课程MATLAB与通信仿真所学知识的理解,增强动手能力和通信系统仿真的技能。在强调基本原理的同时,更突出设计过程的锻炼。强化学生的实践创新能力和独立进行科研工作的能力。 要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。并结合通信原理的知识,对通信仿真系统进行性能分析。 实验环境 PC机、Matlab/Simulink 具体内容及要求 基于MATLAB编程语言和SIMULINK通信模块库,研究如下问题: (1)研究BFSK在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系; (2)研究BFSK在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系; 分析突发干扰的持续时间对误码率性能的影响。 (3)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(无突发干扰) 的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。 (4)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(有突发干扰) 的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。

相关主题
文本预览
相关文档 最新文档