当前位置:文档之家› 基于ANSYS的工作台主体骨架结构有限元分析

基于ANSYS的工作台主体骨架结构有限元分析

基于ANSYS的工作台主体骨架结构有限元分析
基于ANSYS的工作台主体骨架结构有限元分析

参考文献

[1]兰继斌1关于层次分析法优先权重及模糊多属性决策

问题研究[D]1成都:西南交通大学经济管理学院,20061

[2]Steven Nah m ias1Pr oducti on and Operati ons Analysis[M]1

北京:清华大学出版社,20031

[3]Sun Young Shin1Structural equati on model f or effective

CR M of inf or mati on infrastructure industry[J]1Expert Sys2 te m s with App licati ons,2008,36:1695-17051

[4]B irkinsha w J,Morris on A,Hulland1Structural and com2

petitive deter m inants of a gl obal integrati on strategy[J]1

M anage ment Journal,1995,16(8):637-6551

[5]D ijkstra T1Some comments on maxi m u m likelihood and

partial least squares methods[J]1Journal of Economet2 rics,1983,22:67-901

[6]Fornell C,Johns on M D,Anders on E W1The American

Cust o mer Satisfacti on I ndex:nature,pur pose,and findings [J]1Journal ofMarketing,2008,60:7-181

作 者:王宏谋

单 位:北京起重运输机械设计研究院

邮 编:100007

收稿日期:2009-11-03

基于ANS YS的工作台主体骨架结构有限元分析

汪正西 王耀军 李红勋

军事交通学院 天津 300161

摘 要:利用ANSYS软件构建了某修理车内部工作台的三维简化模型,并应用板单元建立了存储机构主体骨架结构有限元分析模型;依据结构强度的实验工况,在考虑主体骨架自重的基础上分别对工作台面和隔板的静态额定载荷和超载工况进行了分析,得到不同工况下的存储机构主体骨架结构应力分析状态和结构变形情况,确定了骨架结构的危险部位,为进一步的结构优化提供依据,也为其他同类产品的设计提供了参考。

关键词:修理车;存储机构;主体骨架结构;ANSYS;有限元分析

中图分类号:U46916+3106 文献标识码:A 文章编号:1001-0785(2010)05-0035-04

Abstract:I n this essay,a three2di m ensi onal si m p lified model is first established f or the inner workbench of a service vehicle using ANSYS s oft w are,foll owed by the establish ment of a finite ele ment analysis model for the fra me work structure of the st oring mechanis m using p late ele ments1Based on the working conditi on of the structure strength during testing,an analysis is carried out on the static rated l oads and overl oaded operating conditi on of the workbenchπs surface and partiti on board,on the basis of taking int o considerati on the self2weight of the fra me work1Then,the state and structural def or mati on are obtained for the fra me work structure of the st oring mechanis m as it is p laced under different types of operating conditi on for a stress analysis,and subsequently the danger ous parts on the fra me work are identified1This app r oach p r ovides a basis for the subsequent structural op ti m izati on,and can be referenced in the design of other p r oducts of the sa me type1 Keywords:service vehicle;st oring mechanis m;framework structure;ANSYS;finite ele ment analysis

某修理车内部存储机构由机柜、机架、工作台组成,工作台主体骨架结构是安装插箱、隔板、导轨及其他附件的基础,也是整个存储机构的承载装置,其结构设计的好坏将直接影响存储机构工作的可靠性。因此,有必要对存储机构的主体骨架结构进行应力分析。

1 结构分析

机柜、工作台、机架采用模块化设计,3模块

(如图1所示)各自独立,沿车厢左右两侧对称布置,中间为过道。厢内前部和后部分别为机柜和机架,中间为工作台,组成组合式工作台,可根据需要随意组合、拆卸。3模块的主体骨架结构均由左端框、右端框和4根二向冲孔C型横梁用螺母及盘头螺钉通过角件连接而成,且机架和机柜2个模块的外形尺寸完全相同,可根据需求调换2个模块的位置。

机柜、机架、工作台的骨架结构的宽度和高

图1 存储机构各分体结构三维图

(a)机柜 (b)工作台 (c)机架

度相同,但工作台的长度最长,即跨度最大,承载条件最苛刻,因此仅需对工作台的主体骨架结构进行有限元分析。

2 结构建模

211 模型简化

(1)将构成骨架主体结构的C型梁等效为等厚的板件。

(2)尺寸较小的圆孔或螺栓孔等主要用于安装螺栓等连接件。在划分网格时,忽略模型中C 型梁孔径为5mm的孔。

(3)端框架与C型梁之间为等强度焊接,其强度等于C型梁本身的强度。

(4)端框架与C型横梁的连接结构复杂,在建立模型时通过粘接直接连接起来,忽略角件及连接螺钉螺母等构件,既使结构简化,又能保证各板块之间具有足够的连接强度。

(5)将工作台面及隔板单独进行受力分析,得出与主体骨架结构的相互作用力,然后加到模型的相应位置。

212 主体骨架结构有限元模型的建立

根据以上简化原则,利用ANSYS软件构建模型。进行网格划分时应注意:

(1)同一有限元计算模型中,尽量避免出现刚度过分悬殊的单元,包括刚度很大的边界元、相差很大的相邻单元等;采用较密的网格划分,以较好的单元形态进行计算(尽量采用接近等边三角形或正方形单元),从而减小离散误差。

(2)单元划分要适度,对于受力较大或较关键的部位,单元网格尽量密一些;对于受力较平缓的部位,单元划分可大些。为使单元边长相差不太大,单元应由小到大逐渐过渡。

(3)节点及单元数目要适当。单元划分得越细,节点布置得越多,计算精度也越高。但计算时间、计算费用和计算内存增加,

所以综合考虑

图2 主体骨架

结构有限元模型

各方面因素确定节点和单元数

目。在满足工程精度要求的前

提下,应尽量减少单元和节点

数目。

应用板单元进行网格划

分,主体骨架结构的有限元模

型如图2所示。

3 工况和边界条件

311 工况的选取

(1)静态额定载荷工况,工作台承载60kg,隔板承载45kg;

(2)静态超载工况,工作台承载90kg,隔板承载6715kg。

312 边界约束条件的建立

地板C型轨、侧壁C型轨对工作台具有很强的约束,因此,计算时约束相应位置的所有自由度;机架和机柜对工作台的约束主要使其不能前后移动,因此在相应的约束位置限制Z轴方向的自由度;由于结构的对称性,因此在对称位置上施加对称约束。

313 载荷工况的确定

(1)工作台面传递载荷

已知工作台面自重10kg,额定承载60kg,对主体骨架结构的上端面施加均布载荷。主体骨架结构上端面有效承载面积a=010864m2。静态额定载荷压强P=3970N/m2,静态超载工况压强P=5670N/m2。

(2)隔板的传递载荷

隔板由螺钉通过主体骨架结构的冲孔固定,可求出4个支点的反作用力,加在主体骨架结构相应的位置。已知隔板自重5147kg,承载45kg均布载荷,承载面积01381123m2。静态额定载荷压强P= 1298N/m2,静态超载工况压强P=1876N/m2。隔板4个支点的反作用力如表1和表2所示。

表1 隔板额定载荷支点反作用力

节点F

x

/N F

y

/N F

z

/N 1-769180136170-341132

32544111110165-222180

1578769163136170343106

2439-543194110165221106

表2 隔板超载工况支点反作用力

节点F

x /N F

y

/N F

z

/N

1-111216197157-493130 32786141159192-322102 1578111213159192495182 2439-786116197157319150

(3)主体骨架结构的自重

主体骨架结构的自重包括端框架上端横梁20N、端框架竖梁2914N和C型横梁3712N。

不同工况下主体骨架结构有限元模型所需施加的载荷如表3。其中隔板与骨架的冲孔接合处属于面接触,载荷为线载荷。进行有限元模型分析时,将线载荷简化为点载荷。

表3 不同工况下主体骨架结构的载荷

项目名称坐标位置/m载荷性质

大 小

工况Ⅰ工况Ⅱ工作台面传递载荷y=01765面载荷P/(N?m-2)39705670

端框架竖梁自重端框架横梁自重

(01247,013875,01475)

(-01247,013875,01475)

(0,01125,01475)

(0,01765,01475)

(01247,01125,0123)

(-01247,01125,0123)

(01247,01765,0123)

(-01247,01765,0123)

点载荷F

y

/N

-1417-1417

-1417-1417

-10-10

-10-10

-913-913

-913-913

-913-913

-913-913

隔板传递载荷

(0120125,01495,01465)

(0121175,01495,01465)

(-0120125,01495,01465)

(-0121175,01495,01465)

点载荷F

x

/N

点载荷F

y

/N

点载荷F

z

/N

点载荷F

x

/N

点载荷F

y

/N

点载荷F

z

/N

点载荷F

x

/N

点载荷F

y

/N

点载荷F

z

/N

点载荷F

x

/N

点载荷F

y

/N

点载荷F

z

/N

-27210

-5510

11114

-27210

-5510

11114

-38415

-6810

-17210

-38415

-6810

-17210

-393

-8010

16110

-393

-8010

16110

-556

-9815

-24715

-556

-9815

-24715

4 计算结果分析

对2种工况进行有限元计算,得到主体骨架结构的变形图和应力云图。从分析结果可以看出:在工况Ⅰ下,最大变形量0171mm,发生在上端横梁中部,上端横梁的变形从中间向两边逐渐变小;整个骨架结构的变形从上向下逐渐变小;主体骨架结构与隔板接合处为最高应力区,最高应力117MPa,端框架的4个拐角处及C型竖梁内侧折边处为次高应力区;上下C型横梁应力均很小。4根C型竖梁在该工况下的变形、应力均较大,与隔板的接合处尤为危险。

在工况Ⅱ下,最高应力169MPa,最大变形11029mm,其分布规律与工况Ⅰ基本相同。由于载荷增大,最大应力和最大变形都有所增加。通过查询命令可知最大应力点和最大变形量仍然出现在同一位置。主体骨架结构与隔板的接合处仍然是相对较危险部位。

5 结论

采用ANSYS软件应用板单元建立了修理车存储机构主体骨架结构有限元分析模型;依据结构强度的2种实验工况,对模型进行了应力分析。结果表明:2种工况下结构的应力应变分布情况基本相同,最大应变均发生在上端横梁中部,最大应力均发生在主体骨架结构与隔板的接合处,主体骨架结构与隔板的接合处属于最高应力区,端框架的拐角处及端框架与C型横梁的接合处属于次高应力区。该有限元分析可为进一步的结构优化提供依据,也为同类产品的设计提供了参考。

参考文献

[1]王庆五,左昉,胡仁喜,等1ANSYS1010机械设计高

级应用实例[M]1北京:机械工业出版社,20061 [2]李立顺,雷韵鸿,李红勋1基于UG的某保障车架设

装置的有限元分析[J]1专用汽车,2009(10):52-541 [3]马维平,詹隽青,李红勋1基于ANSYS的挂车牵引架

有限元分析及拓扑优化设计[J]1军事交通学院学报, 2007(4):39-421

作 者:汪正西

地 址:天津市河东区东局子一号军事交通学院装备保障系维修管理教研室

邮 编:300161

收稿日期:2009-12-30

低表面处理涂料在港口机械上的应用

涂 枫 王小春

上海隆优高性能涂料有限公司 上海 200437

摘 要:在介绍了目前国内通用的港口机械防腐涂料的基础上,针对传统防腐涂料存在的问题,阐述了未来防腐涂料的发展趋势。着重介绍了一种新型的低表面处理特种改性环氧涂料,指出了这种涂料可在100%潮湿带闪锈的表面施工,具有生态环保、无毒阻燃、超强附着力、高边棱保持率的长效防腐性所及在海洋性环境中使用的钢结构中的应用。

关键词:起重机防腐;港口机械防腐;低表面处理涂料;带锈涂装

中图分类号:TG178 文献标识码:A 文章编号:1001-0785(2010)05-0038-04

Abstract:On the basis of a brief intr oducti on t o anticorr osi on paints currently in common use in portmachinery acr oss the country,the trend of devel opment of the next2generati on anticorr osi on paint is elaborated on in this essay,by ai m ing at the s oluti on of the issues ass ociated with conventi onal anticorr osi on paints1It lays e mphasis on the intr oducti on of a ne w s pecial2pur pose modified epoxy paint designed f or the treat m ent of l ower surfaces1Featuring excellent ecol ogical friendli2 ness,no t oxicity,flame resistance and a str ong ability t o stick t o the surface,this ne w paint can be used in constructi on on any comp letely wetted surface with flash rust1These features enable its app licati on in mariti m e envir on ments1 Keywords:crane anticorr osi on;port machinery anticorr osi on;paint for l ower surface treat m ent;app licati on on rusty surface

1 前言

由于我国大部分港口机械主要应用于海洋性气候环境中,海洋性的大气空气中水分、烟尘粒子、烟雾粒子、二氧化硫等腐蚀介质对港口机械腐蚀严重,严重影响港口机械金属结构的使用寿命。为防止港口机械的腐蚀,延长其使用寿命,人们开发出了许多防止港口机械腐蚀的涂层配套

梁壳组合结构的有限元合理建模

2 梁壳组合结构的有限元建模 2.1 单元类型的选择 对于需要混合使用多种类型单元的梁壳组合结构而言,为了在不同类型的单元间实现无缝连接,保证相互间载荷传递的正确性,根据所分析问题的要求选择合适的单元类型是非常重要的。要实现这一点,最基本的就是要保证所选梁单元和壳单元具有相同的结点自由度类型及数量,进一步的,对于一些特殊类型的结构保证单元具有相同的阶次或相近的形函数形式也是非常重要的。此外,为了保证加强板的作用能被充分考虑,加强板需要用多个单元离散,与之焊接的梁也相应的需要划分多个单元,这可能导致最终的梁单元为深梁,此时就应考虑选用计及剪切变形影响的梁单元。 ANSYS提供了多种用于梁、壳建模的单元类型,以满足不同分析场合的要求。由于工程机械结构的重要性,在设计时不需要考虑其塑性的扩展和利用、其始终处于弹性阶段,因此对梁构件可选用BEAM188单元类型、壳体构件可选用SHELL43单元类型。BEAM188单元与SHELL43单元均为一次单元,每个单元结点均有6个自由度:三个平动自由度(ux,uv,uz)和三个转动自由度(θx ,θv,θz),可以保证受力的正确传递。Shell43单元考虑了剪切变形的影响,适合于中等厚度的壳体建模。Beam188单元是Timoshenko梁单元,采用如下形式的形函数: (1) 式中:ui—某方向位移场;s—ui方向的自然坐标; 梁壳组合结构的有限元合理建模 王强 贵州交通职业技术学院 550008 1 引言 在当前实际应用的工程结构中,出于结构形式、连接条件、承载要求等方面的考虑,很多工程结构都采用梁壳组合结构的形式作为各种外加载荷的支撑件,如工程机械领域的港口起重机、动臂式塔机等的桁架吊臂往往在臂头和臂根焊接钢板以局部加强。此外,为了分析的需要或简化建模与计算,也往往将一些纯板壳焊接结构作为梁壳组合结构进行分析。 对梁壳组合结构进行力学分析以保证其强度和刚度满足使用要求是设计中必不可少的一环。显然要获得此类结构的理论解析解几乎是不可能的,在工程实际中往往要借助于有限元方法。有限元分析中最重要的步骤是有限元模型的建立和约束、载荷的施加,后者需要满足特定行业设计规范的要求,有一定的程式可循,而针对此类结构的特点,快速、合理建模问题还少有谈及。因此,本文以当前应用较为广泛的通用有限元软件ANSYS为平台,探讨复杂梁壳组合结构有限元模型的快速、合理建模方法及在建模过程中应注意的问题,对同类结构的有限元建模提供一些可供借鉴的有益经验。 uiI、uiJ—ui方向的单元始、终结点位移。与Euler-Bernoulli梁相比,其计入了剪切变形对梁弯曲的影响,适合于短粗梁的有限元建模。 2.2 有限元模型的建立 ANSYS提供了两种建模方式:一是首先建立结构的几何模型,通过对几何模型进行有限元网格离散而获得有限元模型;二是首先生成结点,随后由结点直接生成单元而获得有限元模型。至于具体使用何种建模方式或综合使用此两种建模方式应依据结构的实际情况灵活决定。 工程机械等领域中的梁壳组合结构往往以梁为主要承载构件,板壳仅起局部加强作用。有限元方法中的梁单元属线单元,当使用二结点线性梁单元时,其有限元模型的几何表现为一条直线,通常在其形心轴线位置上建立有限元模型。在梁壳组合结构中,梁是主要构件,且需要与其它构件相连,因此在其有限元建模时位置不能改变,即仍应按其形心轴线建模;板壳属附属构件,在对其进行有限元建模时,由于壳体构件需要使用许多单元离散,而通过结点生成单元的方式逐一生成这些单元无疑将非常烦琐,尤其是当加强板较多时,因此对壳体应采用第一种建模方式。 综合上述分析,工程机械中复杂梁壳组合结构的有限元建模有两种方法,本文通过图1(a)中所示结构为例加以说明,图中两根梁之间焊接了一块加强板,在此假设梁为圆管(工程机械的此类结构中的梁大部分为圆管,对其它截面形式的梁建模方法基本相同)。第一种建模方法的步骤如下: (1)在梁的形心线和加强板的中平面位 图3 港口起重机桁架吊臂的有限元模型和分析结果 图1 梁壳组合结构几何模型和有限元模型示意图图2 梁壳组合结构及其有限元模型

ansys经典例题步骤

Project1 梁的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: beam。 NOTE:要求选择不同形状的截面分别进行计算。 梁承受均布载荷:1.0e5 Pa 图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m): 矩形截面:圆截面:工字形截面: B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2, t1=0.0114,t2=0.0114,t3=0.007 1.1进入ANSYS 程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK 1.5定义截面 ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

Ansys有限元分析实例[教学]

Ansys有限元分析实例[教学] 有限元分析案例:打点喷枪模组(用于手机平板电脑等电子元件粘接),该产品主要是使用压缩空气推动模组内的顶针作高频上下往复运动,从而将高粘度的胶水从喷嘴中打出(喷嘴尺寸,0.007”)。顶针是这个产品中的核心零件,设计使用材料是:AISI 4140 最高工作频率是160HZ(一个周期中3ms开3ms关),压缩空气压力3-8bar, 直接作用在顶针活塞面上,用Ansys仿真模拟分析零件的强度是否符合要求。 1. 零件外形设计图:

2. 简化模型特征后在Ansys14.0 中完成有限元几何模型创建:

3. 选择有限元实体单元并设定,单元类型是SOILD185,由于几何建模时使用的长度单位是mm, Ansys采用单位是长度:mm 压强: 3Mpa 密度:Ton/M。根据题目中的材料特性设置该计算模型使用的材料属性:杨氏模量 2.1E5; 泊松比:0.29; 4. 几何模型进行切割分成可以进行六面体网格划分的规则几何形状后对各个实体进行六面体网格划分,网格结果: 5. 依据使用工况条件要求对有限元单元元素施加约束和作用载荷:

说明: 约束在顶针底端球面位移全约束; 分别模拟当滑块顶断面分别以8Bar,5Bar,4Bar和3Bar时分析顶针的内应力分布,根据计算结果确定该产品允许最大工作压力范围。 6. 分析结果及讨论: 当压缩空气压力是8Bar时: 当压缩空气压力是5Bar时:

当压缩空气压力是4Bar时: 结论: 通过比较在不同压力载荷下最大内应力的变化发现,顶针工作在8Bar时最大应力达到250Mpa,考虑到零件是在160HZ高频率在做往返运动,疲劳寿命要求50百万次以上,因此采用允许其最大工作压力在5Mpa,此时内应力为156Mpa,按线性累积损伤理论[3 ]进行疲劳寿命L-N疲劳计算,进一部验证产品的设计寿命和可靠性。

[整理]《ANSYS120宝典》习题.

第1章 习题 1.ANSYS软件程序包括几大功能模块?分别有什么作用? 2.如何启动和退出ANSYS程序? 3.ANSYS程序有哪几种文件类型? 4.ANSYS结构有限元分析的基本过程是什么? 5.两杆平面桁架尺寸及角度如习题图1.1所示,杆件材料的弹性模量为2.1×1011Pa,泊松 比为0.3,截面面积为10cm2,所受集中力载荷F=1000N。试采用二维杆单元LINK1计算集中力位置节点的位移和约束节点的约束反力。 习题图1.1 两杆平面桁架 第2章 习题 1.建立有限元模型有几种方法? 2.ANSYS程序提供了哪几种坐标系供用户选择? 3.ANSYS程序中如何平移和旋转工作平面? 4.试分别采用自底向上的建模方法和自顶向下的建模方法建立如习题图2.1所示的平面图 形,其中没有尺寸标注的图形读者可自行假定,并试着采用布尔运算的拉伸操作将平面图形沿法向拉伸为立体图形。

习题图2.1 平面图形 5.试分别利用布尔运算建立如习题图2.2所示的立体图形,其中没有尺寸标注的图形读者 可自行假定。 习题图2.2 立体图形 6.试对习题图2.3所示的图形进行映射网格划分,并任意控制其网格尺寸,图形尺寸读者 可自行假定。 习题图2.3 映射网格划分

第3章 习题 1.试阐述ANSYS载荷类型及其加载方式。 2.试阐述ANSYS主要求解器类型及其适用范围。 3.如何进行多载荷步的创建,并进行求解? 4.试建立如习题图3.1所示的矩形梁,并按照图形所示施加约束和载荷,矩形梁尺寸及载 荷位置大小读者可自行假定。 习题图3.1 矩形梁约束与载荷 5.试建立如习题图3.2所示的平面图形,并按照图形所示施加约束和载荷,平面图形的尺 寸及载荷大小读者可自行假定。 习题图3.2 平面图形约束与载荷 第4章 习题

ansys考试重点整理

ANSYS复习试卷 一、填空题 1.启动ANSYS有命令方式和菜单方式两种方式。 2.典型的ANSYS分析步骤有创建有限元模型(预处理阶段)、施加载荷并求解(求解阶段)、查看结果(后处理阶段)等。 3.APDL语言的参数有变量参数和数组参数,前者有数值型和字符型,后者有数值型、字符型和表。 4.ANSYS中常用的实体建模方式有自下而上建模和自上而下建模两种。 5.ANSYS中的总体坐标系有总体迪卡尔坐标系 [csys,0]、总体柱坐标系(Z)[csys,1]、总体球坐标系[csys,2]和总体柱坐标系(Y)[csys,3]。 6.ANSYS中网格划分的方法有自由网格划分、映射网格划分、扫掠网格划分、过渡网格划分等。 7.ANSYS中载荷既可以加在实体模型上,也可以加在有限元模型上。 8.ANSYS中常用的加载方式有直接加载、表格加载和函数加载。 9.在ANSYS中常用的结果显示方式有图像显示、列表显示、动画显示等。 10.在ANSYS中结果后处理主要在通用后处理器 (POST1) 和时间历程后处理器 (POST26) 里完成。 11.谐响应分析中主要的三种求解方法是完全法、缩减法、模

态叠加法 。 12.模态分析主要用于计算结构的 固有频率 和 振型(模态) 。 13. ANSYS 热分析可分为 稳态传热 、 瞬态传热 和 耦合分析 三类。 14. 用于热辐射中净热量传递的斯蒂芬-波尔兹曼方程的表达式是4411212()q A F T T εσ=-。 15. 热传递的方式有 热传导 、 热对流 、 热辐射 三种。 16. 利用ANSYS 软件进行耦合分析的方法有 直接耦合 、 间接耦合 两种。 二、 简答题 1. 有限元方法计算的思路是什么包含哪几个过程 答:(1)有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 (2)物体离散化;单元特性分析;单元组装;求解节点自由度。 2. ANSYS 都有哪几个处理器各自用途是什么 答:(1)有6个,分别是:前处理器;求解器;通用后处理器;时间历程后处理器;拓扑优化器;优化器。 (2)前处理器:创建有限元或实体模型; 求解器:施加荷载并求解; 通用后处理器:查看模型在某一时刻的结果; 时间历程后处理器:查看模型在不同时间段或子步历程上的结果; 拓扑优化器:寻求物体对材料的最佳利用; 优化器:进行传统的优化设计;

ANSYS 有限元分析 平面薄板

《有限元基础教程》作业二:平面薄板的有限元分析 班级:机自101202班 姓名:韩晓峰 学号:201012030210 一.问题描述: P P h 1mm R1mm 10m m 10mm 条件:上图所示为一个承受拉伸的正方形板,长度和宽度均为10mm ,厚度为h 为1mm ,中心圆的半径R 为1mm 。已知材料属性为弹性模量E=1MPa ,泊松比为0.3,拉伸的均布载荷q = 1N/mm 2。根据平板结构的对称性,只需分析其中的二分之一即可,简化模型如上右图所示。 二.求解过程: 1 进入ANSYS 程序 →ANSYS 10.0→ANSYS Product Launcher →File management →input job name: ZY2→Run 2设置计算类型 ANSYS Main Menu: Preferences →select Structural → OK 3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK → Options… →select K3: Plane Strs w/thk →OK →Close 4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 1e6, PRXY:0.3 → OK 5定义实常数以及确定平面问题的厚度 ANSYS Main Menu: Preprocessor →Real Constants …→Add/Edit/Delete →Add →Type 1→OK →Real Constant Set No.1,THK:1→OK →Close 6生成几何模型 a 生成平面方板 ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Rectangle →By 2 Corners →WP X:0,WP Y:0,Width:5,Height:5→OK b 生成圆孔平面 ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Circle →Solid Circle →WPX=0,WPY=0,RADIUS=1→OK b 生成带孔板 ANSYS Main Menu: Preprocessor →Modeling →Operate →Booleans → Subtract →Areas →点击area1→OK →点击area2→OK 7 网格划分 ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool →(Size Controls) Global: Set →SIZE: 0.5 →OK →iMesh →Pick All → Close 8 模型施加约束

ANSYS框架结构分析

有限元分析大作业报告 一、结构形式及参数 1、结构基本参数 某框架结构如下图所示,为两榀、三跨七层框架。结构由梁板柱组成,梁板柱之间刚结。材料为C35混凝土,弹性模量为3.15e10N/m2,泊松比取0.25,质量密度为2500kg/m3,梁截面为300mm×700 mm,柱截面为500mm×500mm,楼板厚度为120mm。梁和柱采用beam44 单元,板采用shell 63单元。单位采用国际单位制。 二、静力分析及结果 1、荷载详情 荷载包括自重荷载,采用命令acel,0,0,9.8施加;以及垂直板面向下的均布恒荷载0.35 kN/m2和活荷载0.15 kN/m,两者合并后采用命令*do,mm,204,245,1 sfe,mm,2,pres,,500,500,500,500 *end do施加。 2、结构变形:最大变形发生在91号节点,数值为1.573mm,方向竖直向下(-Z方向)。

3、位移云图 4、等效应力云图:最大等效应力发生在78号节点,数值为175064Pa。

5、支座反力(保留两位小数,单位如表中所示) 节点编码FX(kN) FY(kN) FZ(kN) MX(kN﹒m) MY(kN﹒m) MZ(kN﹒m) 1 -3.87 5.33 514.15 -5.19 -3.74 0.00 2 -6.36 0.09 774.5 3 -0.12 -6.13 0.00 3 -6.36 -0.09 774.53 0.12 -6.13 0.00 4 -3.87 -5.33 514.1 5 5.19 -3.74 0.00 5 0.00 8.2 6 693.8 7 -8.00 0.00 0.00 6 0.00 0.06 107.28 -0.08 0.00 0.00 7 0.00 -0.06 107.28 0.08 0.00 0.00 8 0.00 -8.26 693.87 8.00 0.00 0.00 9 3.87 5.33 514.15 -5.19 3.74 0.00 10 6.36 0.09 774.53 -0.12 6.13 0.00 11 6.36 -0.09 774.53 0.12 6.13 0.00 12 3.87 -5.33 514.15 5.19 3.74 0.00 三、模态分析结果 1、各阶振型频率及类型 振型阶次自振频率(Hz)振动形式 1 1.838 2 弯曲振型 2 1.8627 弯曲振型 3 2.2773 扭转振型 4 5.6636 弯曲振型 5 5.7097 弯曲振型

ansys有限元分析作业经典案例教程文件

有 限 元 分 析 作 业 作业名称 输气管道有限元建模分析 姓 名 陈腾飞 学 号 3070611062 班 级 07机制(2)班 宁波理工学院

题目描述: 输气管道的有限元建模与分析 计算分析模型如图1所示 承受内压:1.0e8 Pa R1=0.3 R2=0.5 管道材料参数:弹性模量E=200Gpa;泊松比v=0.26。 图1受均匀内压的输气管道计算分析模型(截面图) 题目分析: 由于管道沿长度方向的尺寸远远大于管道的直径,在计算过程中忽略管道的断面效应,认为在其方向上无应变产生。然后根据结构的对称性,只要分析其中1/4即可。此外,需注意分析过程中的单位统一。 操作步骤 1.定义工作文件名和工作标题 1.定义工作文件名。执行Utility Menu-File→Chang Jobname-3070611062,单击OK按钮。 2.定义工作标题。执行Utility Menu-File→Change Tile-chentengfei3070611062,单击OK按钮。 3.更改目录。执行Utility Menu-File→change the working directory –D/chen 2.定义单元类型和材料属性 1.设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK

2.选择单元类型。执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 8node 82 →apply Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2所示,选择OK接受单元类型并关闭对话框。 图2 3.设置材料属性。执行Main Menu→Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic,在EX框中输入2e11,在PRXY框中输入0.26,如图3所示,选择OK并关闭对话框。 图3 3.创建几何模型 1. 选择ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3) →OK

用ANSYS进行桥梁结构分析

用ANSYS进行桥梁结构分析 谢宝来华龙海 引言:我院现在进行桥梁结构分析主要用桥梁博士和BSACS,这两种软件均以平面杆系为计算内核,多用来解决平面问题。近来偶然接触到ANSYS,发现其结构分析功能强大,现将一些研究心得写出来,并用一个很好的学习例子(空间钢管拱斜拉桥)作为引玉之砖,和同事们共同研究讨论,共同提高我院的桥梁结构分析水平而努力。 【摘要】本文从有限元的一些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使用方法和利用APDL语言快速进行桥梁的结构分析,最后通过工程实例来更近一步的介绍ANSYS进行结构分析的一般方法,同时进行归纳总结了各种单元类型的适用范围和桥梁结构分析最合适的单元类型。 【关键词】ANSYS有限元APDL结构桥梁工程单元类型 一、基本概念 有限元分析(FEA)是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元模型是真实系统理想化的数学抽象。 真实系统有限元模型 自由度(DOFs)用于描述一个物理场的响应特性。

节点和单元 荷载 1、每个单元的特性是通过一些线性方程式来描述的。 2、作为一个整体,单元形成了整体结构的数学模型。 3、信息是通过单元之间的公共节点传递的。 4、节点自由度是随连接该节点单元类型变化的。 单元形函数 1、FEA仅仅求解节点处的DOF值。 2、单元形函数是一种数学函数,规定了从节点DOF值到单元内所有点处DOF值的计算方法。 3、因此,单元形函数提供出一种描述单元内部结果的“形状”。 4、单元形函数描述的是给定单元的一种假定的特性。 5、单元形函数与真实工作特性吻合好坏程度直接影响求解精度。 6、DOF值可以精确或不太精确地等于在节点处的真实解,但单元内的平均值与实际情况吻合得很好。 7、这些平均意义上的典型解是从单元DOFs推导出来的(如,结构应力,热梯度)。 8、如果单元形函数不能精确描述单元内部的DOFs,就不能很好地得到导出数据,因为这些导出数

ansys有限元分析工程实例大作业

ansys有限元分析工程实例大作业

————————————————————————————————作者:————————————————————————————————日期:

辽宁工程技术大学 有限元软件工程实例分析 题目基于ANSYS钢桁架桥的静力分析专业班级建工研16-1班(结构工程)学号 471620445 姓名 日期 2017年4月15日

基于ANSYS钢桁架桥的静力分析 摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了有限元建模;对桁架桥进行了静力分析,作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面。 关键词:ANSYS;钢桁架桥;静力分析;结构分析。 引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其应用计算机和求解软件快速进行力学分析了解其受力特性具有重要的意义。 1、工程简介 某一下承式简支钢桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1,材料属性见表2。桥长32米,桥高5.5米,桥身由8段桁架组成,每个节段4米。该桥梁可以通行卡车,若只考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2,和P3,其中P1=P3=5000N,P2=10000N,见图2,钢桥的形式见图1,其结构简图见图3。

ANSYS工程分析 基础与观念Chapter04

第4章 ANSYS结构分析的基本观念Basic Concepts for ANSYS Structural Analysis 这一章要介绍关于ANSYS结构分析的基本观念,熟悉这些基本观念有助于让你很快地区分你的工程问题的类别,然后依此选择适当的ANSYS分析工具。在第1节中我们会对分析领域(analysis fields)做一个介绍,如结构分析、热传分析等。第2节则对分析类别(analysis types)作一介绍,如静力分析、模态分析、或是瞬时分析等。第3节解释何谓线性分析,何谓非线性分析。第4节要对结构材料模式(material models)作一个讨论并作有系统的分类。第5节讨论结构材料破坏准则。第6、7节分别举两个实例,一个是结构动力分析,一个是非线性分析来总合前面的讨论。这两个例子再加上第3章介绍过的静力分析例子,这三个例子可以说是用来做为正式介绍ANSYS命令(第5、6、7章)之前的准备工作。最后(第8节)我们以两个简单的练习题做本章的结束。

第4.1节学科领域与元素类型 Disciplines and Element Types 4.1.1 学科领域(Disciplines) 我们之前提过,ANSYS提供了五大学科领域的分析能力:结傋分析、热传分析、流场分析、电场分析、磁场分析(电场分析及磁场分析可统称为电磁场分析),此外ANSYS也提供了偶合场分析(coupled-field analysis)的能力。为了能分析横跨多学科领域的偶合场,ANSYS提供了一些偶合场元素(coupled-field elements),但是这些元素还是无法涵盖所有偶合的可能性(举例来说,ANSYS 并没有流场与结构的偶合场元素)。但是在ANSYS的操作环境下,再加上利用APDL [Ref. 20],理论上可以进行各种偶合场分析(但是计算时间及收敛性常是问题所在)。下一小节将举几个例子来解说偶合场分析的含义,更详细的偶合场分析步骤你必须参阅Ref. 15。 4.1.2 偶合场分析 以下我们举三个例子来说明何谓偶合场分析。 第一个例子是热应力的计算,这是最常会遇到的问题之一。当你进行热应力分析时,通常分成两个阶段:先做热传分析解出温度分布后,再以温度分布作为结构负载来进行结构分析,而解出应力值。在第一个阶段,热边界条件(thermal boundary conditions)是热传分析的负载,我们希望知道在此热边界条件之下,温度是怎么分布的。因为不均匀的温度分布会造成结构的翘曲变形,所以第二个阶段是希望知道在这些温度分布下结构的变形及应力。这是一个很典型的偶合场分析问题,因为结构怎么变形是依温度怎么分布而定,而温度如何分布则与结构如何变形(变形量很大时,几何形状会改变)有关,这种相依的关系就称为偶合(coupling)。严格来说,前述的分析程序(先做热传分析再做结构分析)观念上不是很正确的,较正确的做法应该是热传与结构分析必须同时进行,也就是说温

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

ansys有限元分析大作业

ansys有限元分析大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:) .6+ 90E (2 N/m 10 泊松比:0.33 质量密度:) 3 2.70E+ N/m (2 抗剪模量:) 60E .2+ N/m (2 10 屈服强度:) .2+ (2 75E 8 N/m 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算

效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid)。查资料可以知道3D实体常用结构实体单元有下表。 单元名称说明 Solid45 三维结构实体单元,单元由8个节点定义,具有塑性、蠕变、应力刚化、 大变形、大应变功能,其高阶单元是 solid95

ANSYS有限元分析实例

有限元分析 一个厚度为20mm的带孔矩形板受平面内张力,如下图所示。左边固定,右边受载荷p=20N/mm作用,求其变形情况 P 一个典型的ANSYS分析过程可分为以下6个步骤: ①定义参数 ②创建几何模型 ③划分网格 ④加载数据 ⑤求解 ⑥结果分析 1定义参数 1.1指定工程名和分析标题 (1)启动ANSYS软件,选择File→Change Jobname命令,弹出如图所示的[Change Jobname]对话框。 (2)在[Enter new jobname]文本框中输入“plane”,同时把[New log and error files]中的复选框选为Yes,单击确定 (3)选择File→Change Title菜单命令,弹出如图所示的[Change Title]对话框。 (4)在[Enter new title]文本框中输入“2D Plane Stress Bracket”,单击确定。 1.2定义单位

在ANSYS软件操作主界面的输入窗口中输入“/UNIT,SI” 1.3定义单元类型 (1)选择Main Menu→Preprocessor→Element Type→Add/Edit/Delete命令,弹出如图所示[Element Types]对话框。 (2)单击[Element Types]对话框中的[Add]按钮,在弹出的如下所示[Library of Element Types]对话框。 (3)选择左边文本框中的[Solid]选项,右边文本框中的[8node 82]选项,单击确定,。 (4)返回[Element Types]对话框,如下所示 (5)单击[Options]按钮,弹出如下所示[PLANE82 element type options]对话框。

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

ANSYS 非线性_结构分析

目录 非线性结构分析的定义 (1) 非线性行为的原因 (1) 非线性分析的重要信息 (3) 非线性分析中使用的命令 (8) 非线性分析步骤综述 (8) 第一步:建模 (9) 第二步:加载且得到解 (9) 第三步:考察结果 (16) 非线性分析例题(GUI方法) (20) 第一步:设置分析标题 (21) 第二步:定义单元类型 (21) 第三步:定义材料性质 (22) 第四步:定义双线性各向同性强化数据表 (22) 第五步:产生矩形 (22) 1

第六步:设置单元尺寸 (23) 第七步:划分网格 (23) 第八步:定义分析类型和选项 (23) 第九步:定义初始速度 (24) 第十步:施加约束 (24) 第十一步:设置载荷步选项 (24) 第十二步:求解 (25) 第十三步:确定柱体的应变 (25) 第十四步:画等值线 (26) 第十五步:用Post26定义变量 (26) 第十六步:计算随时间变化的速度 (26) 非线性分析例题(命令流方法) (27) 非线性结构分析 非线性结构的定义 在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金 2

属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在 汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显示了非线性结构的基本特征--变化的结构刚性. 图1─1 非线性结构行为的普通例子 3

非线性行为的原因 引起结构非线性的原因很多,它可以被分成三种主要类型: 状态变化(包括接触) 许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也许和载荷直接有关(如在电缆情况中),也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。 接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。 几何非线性 如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减少,导致杆端显示出在较高载荷下不断增长的刚性。 4

基于有限元软件ABAQUS的组合结构分析

基于有限元软件ABAQUS的组合结构分析 摘要:本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板组合梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 关键词:组合梁、有限元 Abstract: this paper through the large finite ABAQUS software engineering simulation of the corrugated steel beams webs, a finite element model and with the test data as compared to test the validity of the finite element analysis. Key words: the composite beams, finite element 0引言 有限元数值分析方法起源于20世纪50年代飞机结构分析,并由其理论依据的普遍性己被推广到其它很多领域。在结构分析领域,几乎所有的弹塑性结构静、动力学问题都可以用它求得满意的数值结果。桥梁结构作为众多结构中的一种,利用有限元数值方法分析其力学特性同样可以得到很好的数值分析结果。 波纹钢腹板预应力组合箱梁桥是20世纪80年代起源于法国的一种新型组合桥梁,此类新型结构与传统的混凝土箱梁相比有以下优点:(1) 自重降低,抗震性能好。腹板采用较轻的波形钢板,其桥梁自重与一般的预应力混凝土箱梁桥相比大为减轻,地震激励作用效果显著降低,抗震性能获得一定的提高。(2) 改善结构性能,提高预应力效率。波形钢腹板的纵向刚度较小,几乎不抵抗轴向力,因而在导入预应力时不受抵抗,从而有效地提高预应力效率。(3)充分发挥各种材料特性。在波形钢腹板预应力箱梁桥中,混凝土用来抗弯,而波形钢腹板用来抗剪,几乎所有的弯矩与剪力分别由上、下混凝土翼缘板和波形钢腹板承担,而且其腹板内的应力分布近似为均布图形,有利于材料发挥作用。[1-5] 本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板试验梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 1 有限元建模 1.1单元选择 有限元工程模拟软件的实体单元库包含二维和三维的一阶插值单元和二阶插值单元,积分方式有完全积分和减缩积分。三维实体单元有四面体和六面体。四面体单元有4节点12自由度和10节点30自由度的四面体单元,六面体单元

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

相关主题
文本预览
相关文档 最新文档