当前位置:文档之家› 实验9 溶液中的吸附作用和表面张力的测定

实验9 溶液中的吸附作用和表面张力的测定

实验9 溶液中的吸附作用和表面张力的测定
实验9 溶液中的吸附作用和表面张力的测定

溶液中的吸附作用和表面张力的测定

──最大气泡压力法

摘要:本实验借助Gibbs吸附公式和Langmuir等温方程式,利用最大气泡法测量不同浓度正丁醇溶液的表面张力,验证正丁醇是一种表面活性物质,并进一步计算正丁醇在水表面的饱和吸附量和正丁醇分子的横截面积。

关键词:最大气泡压力法正丁醇表面张力吸附量横截面积

Measurement of Adsorption and Surface Tension in solution ——The Maximum Bubble Pressure Method

MingXuan Zhang PB15030833

Abstract: The dependence of surface tension on concentration was determined by use of themaximum bubble pressure method. Surface absorption was related to and quantified by surface tension measurements according to Gibbs absorption equation and Langmuir equation. Also, through this experiment , we know the nature of the surface tension and the meaning of surface energy together with the relationship between absorption and surface tension.

Keywords:the Maximum Bubble Pressure Method; n-Butyl Alcohol ; Surface

Tension ; Adsorption Amount ; Cross-sectional Area

1.前言

多相体系中各相之间存在界面,习惯上将气-液和气-固界面称为表面。表面张力,是液体表面由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。通常,处于液体表面层的分子较为稀薄,其分子间距较大,液体分子之间的引力大于斥力,合力表现为平行于液体界面的引力。表面张力是物质的特性,其大小与温度和界面两相物质的性质有关。

表面张力的测定通常有多种方法,如白金板法[3]、白金环法[4]、悬滴法[5]、滴体积法[6]和最大气泡压法[7]等。教学实验中,通常采用器材易得的最大气泡压法。

本次实验我们采用最大气泡压力法测定了一系列不同浓度的正丁醇水溶液的表面张力,并根据Gibbs吸附公式和Langmuir等温方程式得到了表面张力与溶液吸附作用的关系,利用它来研究溶液中的吸附作用。通过拟合表面张力Γ-溶液浓度c曲线,再根据吸附量与溶液的表面张力及溶液浓度的关系,得到饱和吸附量,进一步计算出单个正丁醇分子的横截面积。

2.实验部分

2.1 实验原理

物体表面的分子和内部分子所处的境况不同,因而能量也不同,如图 1,表面层的分子受到向内的拉力,所以液体表面都有自动缩小的趋势。如要把一个分子由内部迁移到表面,就需要对抗拉力而作功,故表面分子的能量比内部分子大。增加体系的表面,即增加了体系的总能量。体系产生新的表面(?A)所需耗费功(W)的量,其大小应与?A 成正比,即 W=σ?A。

如果?A=1m2,则 W=σ,即在等温下形成 1m2新的表面所需的可逆功。故σ称为单位表面的表面能,其单位为N·m-1。这样就把σ看作为作用在界面上每单位长度边缘上的力,通常称为表面张力。它表示表面自动缩小的趋势的大小。表面张力是液体的重要特性之一,与所处的温度、压力、液体的组成共存的另一相的组成等有关。纯液体的表面张力通常指该液体与饱和了其自身蒸气的空气共存的情况而言。

图1 表面分子和内部分子的不同情况

图2 不同浓度时,溶质分子在溶液表面的排列情况

在纯液体情形下,表面层的组成与内部的组成相同,因此液体降低体系表面自由能的唯一途径是尽可能缩小其表面积。对于溶液,由于溶质会影响表面张力,因此可以调节溶质在表面层的浓度来降低表面自由能。

根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内a部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs推导出它们间的关系式:

Γ=T

c RT c ???

??-

??σ Γ——气液界面上的吸附量(mol ·m -2

)

σ——溶液的表面张力(N ·m -1

) T ——绝对温度(K)

c ——溶液浓度(mol ·m -3

)

当Γ>0,称为正吸附。反之,当 Γ<0,称为负吸附。前者表明加入溶质使液体表面张力下降,此类物质叫表面活性物质,后者表明加入溶质使液体表面张力升高,此类物质叫非表面活性物质。

表面活性物质具有显著的不对称结构,它是由亲水的极性部分和憎水的非极性部分构成。

对于有机化合物来说,表面活性物质的极性部分一般为-NH3+

,-OH ,-SH ,-COOH ,-SO2OH 。而非极性部分则为-RCH2。正丁醇就是这样的分子。在水溶液表面的表面活性物质分子,其极性部分朝向溶液内部,而非极性部分朝向空气。表面活性物质分子在溶液表面的排列情形随其在溶液中的浓度不同而有所差异。当浓度极小时,溶质分子平躺,在溶液表面上,如图

2-a ,浓度逐渐增加,分子排列如图 2-b ,最后当浓度增加到一定程度时,被吸附了的表面活性物质分子占据了所有表面形成了单分子的饱和吸附层如图 2-c 。

正丁醇是一种表面活性物质,其水溶液的表面张力和浓度关系见图 3,在σ-c 曲线上作不同浓度的切线,把切线的斜率代入 Gibbs 吸附公式,可以求出不同浓度时气-液界面上的吸附量Γ。

图 3 正丁醇水溶液的表面张力与浓度的关系图

在一定温度下,吸附量与溶液浓度之间的关系由 Langmuir 等温方程式表示:

Γ∞为饱和吸附量,K 为经验常数,与溶质的表面活性大小有关。化成直线方程:

若以c/Γ对c 作图可得一直线,由直线斜率即可求出Γ∞。

假设在饱和吸附情况下,正丁醇分子在气-液界面上铺满一单分子层,则可应用下式求

得正丁醇分子的横截面积 S 0。

ΓΓ=?+?∞

K C

K C

1C C K Γ

ΓΓ=+

∞∞

1S N

01=

∞Γ~

N ——阿佛加德罗常数

最大气泡压力法测量表面张力的装置示意图如图 4。当表面张力仪中的毛细管截面与欲测液面相齐时,液面沿毛细管上升。打开滴液漏斗的活塞,使水缓慢下滴而使体系内的压力增加,这时毛细管内的液面上受到一个比恒温试管中液面上稍大的压力,因此毛细管内的液面缓缓下降。当此压力差在毛细管端面上产生的作用力稍大于毛细管口溶液的表面张力时,气泡就从毛细管口逸出。这个最大的压力差可由数字式微压差测量仪上读出。

如毛细管的半径为 r ,气泡由毛细管口逸出时受到向下的总作用力为πr 2

P 最大,而

P 最大=P 系统-P 大气压=?h ρg

?h ——数字式微压差测量仪上的读数 g ——重力加速度

ρ——压力计内液体的密度

气泡在毛细管上受到表面张力引起的作用力为 2πr σ。气泡自毛细管口逸出时,上述两种力看作相等,即:

若用同一只毛细管和压力计,在同一温度下,对两种溶液而言,则得:

K '——毛细管常数

用已知表面张力σ2 的液体为标准,从上式可求出其他液体的表面张力σ1。[5]

图 4 最大气泡法测表面张力装置

1.恒温套管

2.毛细管(r 在 0.15~0.2mm)

3.数字式微压差测量仪

4.分液漏斗

5.塑料烧杯

6.连接橡皮管)

ππρr P r h g

22最大=?σρ=

r

h g 2

?σσ121

2=??h h σσ12211==???h h K h '

2.2 实验仪器与试剂

DMP-2C 数字式微压差测量仪南京大学应用物理研究所1 台

HK-2A 型超级恒温水浴南大万和科技有限公司1 台

BT50b 型调速泵常州普瑞流体技术有限公司1 个

恒温套管,0.5mL 移液管,2mL 移液管,50mL 烧杯,100mL 容量瓶,毛细管废液缸,5mL 移液管,橡胶塞。

正丁醇(分析纯),去离子水,稀硝酸

2.3 实验步骤

2.3.1毛细管常数的测定:

(1)按实验装置图装好仪器,打开恒温水浴和搅拌,使其温度稳定于30℃。

(2)取一支浸泡在洗液中的毛细管依次用丙酮、蒸馏水反复清洗若干次。用蒸馏水把玻璃套管也清洗干净,加上蒸馏水,调节微压差仪器零点,插上毛细管,

用套管下端的开关调节液面恰好与毛细管端面相切,使样品在其中恒温 10 分钟。

(3)打开蠕动泵,调节抽气速率,直至气泡由毛细管口冒出,细心调节出泡速度,使之在 3-5 秒钟内出一个。注意气泡爆破前数字式微压差测量仪的读数,

并用电脑采集数据得到最大的压差值,求平均值而得?h H2O。根据手册查出

30℃时水的表面张力为σ=71.40×10-3N·m-1,以σ/?h=K求出所使用的毛细管

常数,此值控制在8cm左右为宜,否则毛细管太粗误差较大,毛细管太细,易堵塞,气泡很难逸出。

2.3.2不同浓度的正丁醇溶液表面张力的测定:

(1)用 2mL 移液管分别移取 0.40ml、0.80ml、1.20ml、1.60ml、2.00ml、2.40ml、

2.80ml正丁醇到 100ml 容量瓶中,然后稀释到刻度。重复上述实验步骤,

按照由稀至浓的顺序依次进行测量。求得一系列浓度的正丁醇溶液的?h。

(2) 本实验的关键在于溶液浓度的准确性和所用毛细管、恒温套管的清洁程度。

因此除事先用热的洗液清洗它们以外,每改变一次测量溶液必须用待测的溶液反复洗涤它们,以保证所测量的溶液表面张力与实际溶液的浓度相一致。并控制好出泡速度、平稳地重复出现压力差。而不允许气泡一连串地出。洗涤毛细管时切勿碰破其尖端,影响测量。

温度对该实验的测量影响也比较大,实验中请注意观察恒温水浴的温度,溶液加入测量管后恒温 10min 后再进行读数测量。

2.4 注意事项

1. 测定用的毛细管一定要先洗干净,否则气泡可能不能连续稳定地通过,而

使压力计的读数不稳定。 2.毛细管一定要垂直,管口要和液面刚好接触。

3.表面张力和温度有关,因此要等溶液恒温后再测量。

4.控制好出泡速度,读取压力计的压力差时,应取气泡单个逸出时的最大压力差。

2.5 数据处理方法

1.

在电脑中的 Origin 程序上作σ-c 图,用多次方拟合各个数据点,得到光滑

曲线和曲线的多项式方程σ=f(c);微商后得到切线微分方程式)(dc

d σ

=f’(c)。

2. 在光滑曲线上选取6-7个浓度点,代入微分方程式)(dc

d σ

=f’(c)中,得到6-7个不同浓度下的切线斜率k 。

3. 由Γ = T

c RT c ??? ??-

??σ计算不同浓度溶液的吸附量Γ值,计算c /Γ的值,作Γ-c 图。

4. 以c /Γ~c 作图,由直线斜率求出Γ∞(以 mol·m 2表示)并计算S 0的值,用A 2

表示S 0的大小。

3. 实验数据记录及处理

详见“附文”

4. 实验结果及讨论

4.1 实验结果

1. 毛细管常数 K=1.853×10-4 m

2. 用四次方拟合得到表面张力与浓度的函数关系式:

f(c) = σ30℃ = 0.07133 - 0.30666 x +1.77464 x 2 - 6.13148 x 3 + 8.22125 x 4

f ’(c) = d σ/dc = - 0.30666 + 3.54928 x - 18.39444 x 2 + 32.885 x 3

3. Γ∞=6.176 × 10-6 mol ·m 2

4. 正丁醇分子的横截面积S 0=26.9?2

[查阅文献得到 S 0=(24~32)?2]

[7][8][9]

4.2 结果分析

1. 由图像来看,表面张力σ随浓度c 的升高而降低,且降低的速率越来越慢,

因此得到的)(

dc d σ<0,且应单调递增;因为有Γ = T

c RT c ??? ??-??σ,所以Γ>0,说明正丁醇是一种表面活性物质。

2. 处理得到表面张力与浓度的函数关系式σ=f(c)时,进行了多项式拟合,最终

采用四次项拟合,因为拟合的相关系数较大,且求得的c/Γ~c 线性程度很好。因此采用四次多项式拟合得到表面张力与浓度的函数关系式σ=f(c)。

3. 由Γ-c 曲线图可知,正丁醇的吸附量Γ随浓度c 的升高先增大后减小。由

Langmuir 等温方程式ΓΓ=?+?∞

K C

K C

1可知,溶液的吸附量Γ随浓度c 单调递增,

且递增速度逐渐减小,最终趋于饱和Γ∞ ,实验与上述实验结果存在出入,因此可认为最后一个点的测量存在问题,有较大误差。

4. 计算饱和吸附量Γ∞ 时,我们将c/Γ~c 作线性拟合,去掉最后一个点后,线性相

关程度仍然不是很高,R 仅有0.95,说明实验存在一定的误差。

5.计算所得的正丁醇分子的横截面积S0= 2

6.9 ?2,与查阅文献得到S0=(24~32)?2

相比,在理论范围内,但测量结果偏小。

4.3讨论

在实验过程中,我的毛细管出泡不稳定,总是一下出好几个泡,然后过一会不出泡,但间隔时间是差不多的,清洗了好几次都没有变化(即使用丙酮洗过也没用)。但通过观察仪器测量值发现每次出泡时的最大压差是差不多的,只是由于一次出很多个泡,压差的最小值波动较大,且与最大值相差也较大。

考虑到最后结果与理论相符合较好,说明最大压差测量的数据是比较最准确的。之所以会产生一次出好几个泡,可能是因为毛细管内部不太均匀导致一个泡的分为好几个泡一起出,因为出多个泡,所以压力减少较多,因此最大值与最小值相差会较大。

4.4 误差分析

https://www.doczj.com/doc/5c821021.html,ngmuir公式是建立在理想表面和理想吸附层概念的基础上,反映了理想

吸附的规律。而实际实验中难以达到理想模型中的假定情况,必然存在一定

偏差。

本实验用到的Langmuir 等温方程式是一个理想方程,其假定吸附分子之间

无相互作用,且为单分子层吸附,但是这一假设在实际中是不存在的,随着

浓度上升,吸附分子间的相互作用也越来越强,不可忽略。而且表面活性剂

在水溶液中的存在形式多种多样,除了极性基团吸附于水表面,高浓度时还

可能存在溶液中的单体、球形胶束、反胶束、棒状胶束、层状胶束、微乳

液、单室泡囊、多室泡囊等结构,少量杂质都可能促使以上结构产生,这也

是Langmuir 等温方程式偏离实际溶液体系的原因。

2.我们得到表面张力σ与浓度c关系时采用的是多项式拟合的办法,但是我们

并不能确定表面张力σ与浓度c呈多次方关系,也可能是其他函数形式,且

拟合的次数受测量数据的影响较大,不同次数的函数模型拟合系数也有较大

差异,而拟合的次数的高低对后续的计算存在较大的影响,因此将引入较大

的误差。

3.随着溶液的浓度增大,粘度变大,使得气泡不能均匀溢出,存在多个气泡溢

出一同爆破的情况,对压力的测量存在较大误差。而且如果每组实验如果气

泡产生的速率不一样,会使实验不平行,造成误差。

在做实验的过程中发现,在洗净毛细管的前提下,首先要使溶液的温度稳定

后再测量可以使气泡均匀产生。溶液在升温的过程中,溶液可能会产生气泡

堵住毛细管。

随着溶液浓度的增大,溶液会进入毛细管中,并使其中产生气泡使毛细管堵住,造成读数飙升。这时,我们可以使蠕动泵快速抽气,或用洗耳球向毛细管中吹气。发现这种方法很好,可以使示数至少稳定一分钟。

4.数据处理中,是选取连续的六个波峰的值作为最大压差的,那么数据的选取

受人主观因素的影响较大,可能不能完全的体现数据的代表性。

5.实验中要求每次测量时,毛细管应保持竖直,且端面应与液面相切,而在实

验中由于多次更换溶液,重新组装仪器,使得很难做到这一点。

6.微压差测量仪的本身精度有限,只能精确到整数位,这会造成较大的误差,

而且其响应时间也较长。

7.本实验由于移液体积较小,使用吸量管和容量瓶配置溶液会产生一定误差。

8.毛细管的端口不平整,对产生均匀气泡会有一定影响。

9.实验中要对各部分接口进行密封,若产生漏气现象,会产生较大误差。,虽

采用在接口处滴蒸馏水进行液封的办法来进行密封,但不能保证完全密封。

10.正丁醇对水的溶解性不是很好,在实验中发现,用容量瓶定容时,必须剧烈

摇晃容量瓶才能使正丁醇充分溶解,否则会挂在管壁上,造成浓度的误差。

而且由于正丁醇具有挥发性,在配制与静置过程中正丁醇可能会挥发,导致溶液浓度下降。

11.待测溶液的润洗不能将溶液清洗彻底,故在测定正丁醇表面张力时,溶液实

际浓度可能会不同程度地低于设定浓度,造成一定的误差。

12.将毛细管插入与溶液页面相切的位置不是很好判断,全屏肉眼观察,很有可

能造成不相切以及实验不平行,从而造成实验误差。实验中观察到,由于表面张力存在,液体在毛细管外侧总会凸起,这样从溶液上方很难观测到毛细管与液面是否处于同一水平线,同样,从下方也会看到毛细管总有一部分在液面以下,故难以判断毛细管与液面是否处于同一水平线。

13.Gibbs 吸附公式适用于稀溶液,而本实验中后面几个点浓度已经较高,可能

Gibbs 吸附公式已经出现偏差。而且本次实验使用的公式中用浓度代替活度,会造成误差,而且浓度越大,其与活度的偏离程度就越大。

4.5 实验总结

本次实验中我们采用最大气泡压力法测定了一系列不同浓度的正丁醇水溶液的表面张力,并根据Gibbs 吸附公式和Langmuir 等温方程式得到了表面张力与溶液吸附作用的关系,利用它来研究溶液中的吸附作用。得到了正丁醇溶液的饱和吸附量,并进一步计算出单个正丁醇分子的横截面积,基本完成了实验目的。

本实验的原理和操作都比较简单,但是实验测量过程中必须仔细,尽量较少误差产生因素。如最重要的就是毛细管的清洗工作,否则气泡可能不能连续稳定地通过,而使压力计的读数无法稳定。另外实验中测量每组不同浓度的溶液后也尽量清洗干净并润洗,减小误差。

调整毛细管垂直与否也非常的关键,要从多角度观察,而且毛细管下端要与液面相切,太靠下会影响增加液体压力,太靠上与液面几近分离会导致不能产生气泡,使压力差逐渐增大。

表面张力和温度有关,因此要提早将溶液恒温,等溶液恒温后再测量;测量时要注意出泡速率,不要太快。

实验数据处理也很关键,运用好的数学模型可以获得线性相关系数更高的实验结果,合理分析后也可以适当取舍不合适的数据段进行计算。

5. 心得与体会

通过这次实验,我们掌握了研究表面化学问题的一些方法。在表面化学中,表面张力是一个非常重要的物理量。在这次实验中,我们通过最大气泡压法测定了正丁醇溶液的表面张力,并且加深了对于吸附现象的理解。对于发生正吸附的表面活性物质,吸附可以使系统的表面张力降低,而吸附是大致符合Gibbs吸附方程和Langmuir 吸附等温式的。这次实验为我们以后研究表面化学问题提供了手段和方法。

6.参考文献

[1]物理化学(第五版)下册.傅献彩,沈文霞,姚天扬,侯文华.高等教育出版社.2006,1

[2]溶液中的吸附作用和表面张力的测定(讲义).中国科学技术大学化学与材料科学

学院实验中心

[3]白金板法测试液-气表面张力和液-液界面张力的仪器和方法. 施建辉,李媛媛,贾

兆君. CN201010147085.8

[4]拉环法测定液体表面张力.陈凤凤,顾文秀, 郑秋容,鲍明伟.广东化

工.2011,06,38,218, 208-209

[5]轴对称悬滴法液体表面张力实验系统. 张小龙,吕萍, 赵贯甲.物

理实验.2016,01,74-78

[6]用滴体积法测定泡沫液表面张力的实验研究.牛永玲.煤矿安全.1996,12,15

[7]Langmulr 等温式应用于溶液的等温吸附实验.杜竞杉.实验室研究与探索. 2014,

33,10,207-210

[8]大气泡法测定溶液表面张力的实验探讨.曹红燕,李建平,董超,胡玮.实验技术与管

理.2006,08,23

[9]物理化学实验指导.董迨传,郑新生.河南大学出版社.1997

[10]C RC Handbook of Chemistry and Physics 90th Edition 2010

附文

1.实验条件

实验前:气压:100.77 kpa 气温:20.8℃

实验后:气压:100.80 kpa 气温:21.3℃

恒温槽温度:30.00℃

正丁醇密度:0.8098g/mL

正丁醇分子量:74.12g/mol

水的表面张力 σH2O(30℃)=71.40×10-3N/m

2.出泡时的最大压力差记录

出泡时的最大压力差如下表所示:

附表1不同浓度的正丁醇水溶液出泡时的最大压力差表

3.毛细管常数的计算

查得30℃时水的表面张力为:

γ水(30℃) = 0.07140 N/m

由公式K =γ水/Δh 得:

K = 1.853×10-4 m

4.正丁醇溶液表面张力σ的计算

σ30℃=1.853*10-4*△h

附表2不同浓度的正丁醇水溶液的表面张力

5. σ - c 曲线

对σ30℃ - c 曲线做1-6次多项式拟合

附图1一次多项式拟合

附图2二次多项式拟合

附图3三次多项式拟合

附图4四次多项式拟合

附图5五次多项式拟合

附图6六次多项式拟合

附图7七次多项式拟合(实际为插值,不是拟合了)

附表3拟合度表

由计算方法知识,我们可以知道八个点最多可以得到七次曲线,但七次时为插值,不是拟合。由附表3可知,在多项式拟合中六次拟合的拟合度最好,但注意到六次拟合图中,最后一段曲线向上凹,求导后变化趋势规律与前面不同,且这样误差也较大的引入了图像中,故不能用六次。综合考虑拟合度及图像变化趋势,选择了拟合度第二好且变化趋势一致的四次拟合:

f (c) = σ = 0.07133 - 0.30666 x +1.77464 x 2 - 6.13148 x 3 + 8.22125 x 4

f ’(c) = d σ/dc = - 0.30666 + 3.54928 x - 18.39444 x 2 + 32.885 x 3

6. Γ- c 关系图及Γ∞的计算

在光滑曲线上选取7个浓度点,代入微分方程式)(dc

d σ

= f’(c)中,得到不同浓度下的切线斜率k = )(

dc d σ,并通过公式Γ = T

c RT c ??? ??-??σ计算不同浓度溶液的吸附量Γ值,以及c/Γ的值,以及各点导数,如表4所示:

附表4不同浓度对应的四次拟合曲线切线斜率及Γ、c/Γ计算

附图8 Γ- c曲线

由图可以看出吸附量Γ随着正丁醇的浓度c的升高先增大再减小

附图9 c/Γ- c曲线

从曲线图可以看出最后一个点误差非常大,故将其舍去重新作图,并拟合

附图9 c/Γ- c 去掉最后一点的拟合曲线

拟合得到直线方程为:y = 161912.0332 x+7095.89206

根据公式

Γ+

Γ=

Γ

K C

C

1

可得∞Γ1= 161912.0332 (mol·m 2)-1

则Γ∞ = 6.176 × 10-6 mol·m 2

7. 正丁醇分子的横截面积S 0的计算

根据公式S N

01

=

∞Γ~可得: S 0=161912.0332/(6.02×1023)= 2.69 × 10-19 m 2= 26.9 ?2

液体表面张力系数测定的实验报告

xx 大学实验报告 一【实验目的】 (1) 掌握力敏传感器的原理和方法 (2) 了解液体表面的性质,测定液体表面张力系数。 二【实验内容】 用力敏传感器测量液体表面的张力系数 三【实验原理】 液体具有尽量缩小其表面的趋势,好像液体表面是一张拉紧了的橡皮膜一样。 这种沿着表面的、收缩液面的力称之为表面张力。 测量表面张力系数的常用方法:拉脱法、毛细管升高法和液滴测重法等。此试验中采用了拉脱法。拉脱法是直接测定法,通常采用物体的弹性形变(伸长或扭转)来量度力的大小。液体表面层内的分子所处的环境跟液体内部的分子不同。液体内部的每一个分子四周都被同类的其他分子所包围,他所受到的周围分子合力为零。由于液体上方的气象层的分子很少,表层内每一个分子受到的向上的引力比向下的引力小,合力不为零。这个力垂直于液面并指向液体内部。所以分子有从液面挤入液体内部的倾向,并使得液体表面自然收缩,直到处于动态平衡。 假如在液体中浸入一块薄钢片,则钢片表面附近的液面将高于其它处的,如图1所示。 由于液面收缩而产生的沿切线方向的力Ft 称之为表面张力,角φ称之为接触角。当缓缓拉出钢片时,接触角φ逐

渐的减小而趋于零,因此Ft方向垂直向下。在钢片脱离液体前诸力平衡的条件为 F = mg + F t (1)其中F是将薄钢片拉出液面的时所施加的外力,mg为薄钢片和它所沾附的液体的总重量。表面张力Ft与接触面的周长2(l+d)成正比,故有Ft = 2σ(l+d),式中比例系数σ称之为表面张力系数,数值上等于作用在液体表面单位长度上的力。将Ft代入式(1)中得 (2) 当用环形丝代替薄钢片做此实验时,设环的内外直径为D1、D2,当它从液面拉脱瞬间传感器受到的拉力差 f = F–m g =π(D1+D2)σ,此时 (3)只要测出力f和环的内外直径,将它们代入式(3),即可算出液体的表面张力系数σ。式中各量的单位统一为国际单位。 四【实验仪器】 (1)FD—NST—B 液体表面张力系数测定仪。 (2)砝码六个,每个质量 五【实验步骤】 (1)开机预热。 (2)清洗玻璃器皿和吊环。 (3)在玻璃器皿内放入被测液体并安放在升降台上。 (4)将砝码盘挂在力敏传感器上,对力敏传感器定标。 (5)挂上吊环,测定液体表面张力系数。当环下沿全部浸入液体内时,转动升降台的螺帽,使液面往下降。 记下吊环拉断液面瞬间时的电压表的读数U1,拉断后瞬间电压表的读数U2。则f=(U1-U2)/B 六【实验注意事项】 (1)轻轻挂上吊环,必须调节好水平。 (2)在旋转升降台时,尽量是液体的波动要小。

液体表面张力

液体表面张力系数的测定实验报告模板 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】液体表面层内分子相互作用的结果使得液体表面自然收缩,犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L 的线段,线段两侧液面便有张力作用,其方向与L 垂直,大小与线段L 成正比。即有:=γL 比例系数γ称为液体表面张力,其单位为N/m. 将一表面洁净的长为L 、宽为d 的圆形金属环(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属环将要脱离液面,即拉起的水膜刚好要破裂时,则有:F=mg+,式中F 为把金属环拉出液面时所用的力;mg 为金属环和带起的水膜的总质量;f 为张力。此时,与接触面的周围边界π(),则 有γ= ,式中D1,D2分别为圆环的内外直径。 实验表明,γ与液体种类、纯度、温度和液面上方的气体成分有关,液体温度越高,γ值越小,液体含杂质越多,γ值越小,只要上述条件保持一定,则γ是一个常量,所以测量γ时要记下当时的温度和所用液体的种类及纯度。 【实验步骤】1.安装好仪器,挂好弹簧,调节底板的三个水平调节螺丝,使焦利称立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体,使小指针被夹在两个配重圆柱之间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉,然后调节微调螺丝使指针与镜子框边的刻线重合,当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值。 2.测量弹簧的劲度系数k.依次增加 1.0g 砝码,即将质量为1.0g,2.0g,3.0g,…,9.0g,10.0g 的砝码加在下盘内。调整小游标的高度,每次都 F f F f F f F f D D 2 1 +) mg -F 21D D +∏(

乙醇表面张力系数的测定实验报告

竭诚为您提供优质文档/双击可除乙醇表面张力系数的测定实验报告 篇一:溶液表面张力测定实验报告 学号:20XX14120222 基础物理化学实验报告 实验名称:溶液表面张力的测定应用化学二班班级03 组号实验人姓名:xx同组人姓名:xxxx 指导老师:杨余芳老师实验日期:20XX-11-12 湘南学院化学与生命科学系 一、实验目的 1、测定不同浓度正丁醇(乙醇)水溶液的表面张力; 2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系; 3、由表面张力—浓度曲线(σ—c曲线)求界面上吸附量和正丁醇分子的横截面积s; 4、掌握最大气泡法测定表面张力的原理和技术。 二、实验原理 测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。本实验采用最大泡压法,实验装

置如图一所示。 图一中A为充满水的抽气瓶;b为直径为0.2~0.3mm的毛细管;c为样品管;D为u型压力计,内装水以测压差;e 为放空管;F为恒温槽。 图一最大泡压法测液体表面张力仪器装置图 将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压), 毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由u型压力计上读出。 若毛细管的半径为r,气泡从毛细管出来时受到向下的 压力为: pmax?p大气?p系统??h?g 式中,△h为u型压力计所示最大液柱高度差,g为重 力加速度,ρ为压力计所贮液体的密度。 气泡在毛细管口所受到的由表面张力引起的作用力为2 πr?γ,气泡刚脱离管口时,上述二力相等: ?rr2pmax??r2?h?g?2?r 2 r??r2?h?g?2?r??rp???h?g

用拉脱法测定液体表面张力系数物理实验报告

用拉脱法测定液体表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被周 围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密 度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解326FB 型液体的表面张力系数测定仪的基本结构,掌握用标准砝码对测量仪进行 定标的方法,计算该传感器的灵敏度。 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 如果将一洁净的圆筒形吊环浸入液体中,然后缓慢地提起吊环,圆筒形吊环将带起一 层液膜。使液面收缩的表面张力f 沿液面的切线方向,角?称为湿润角(或接触角)。当继续提起圆筒形吊环时,?角逐渐变小而接近为零,这时所拉出的液膜的里、外两个表面的张力f 均垂直向下,设拉起液膜破 裂时的拉力为F ,则有 f g m m F 2)(0++= (1) 式中,m 为粘附在吊环上的液体的质量,0m 为吊环质量,因表面张力的大小与接触面周边界长度成正比,则有 απ?+=)(2外内D D f (2) 比例系数α称为表面张力系数,单位是m N /。α在数值上等于单位长度上的表面张力。式中l 为圆筒形吊环内、外圆环的周长之和。 ) ()(0外内D D g m m F ++-= πα (3) 由于金属膜很薄,被拉起的液膜也很薄,m 很小可以忽略,于是公式简化为:

实验四溶液的吸附作用和液体表面张力的测定

实验四溶液的吸附作用和液体表面张力的测定 一、实验目的 1.用最大泡压法测定不同浓度的表面活性物质(正丁醇)溶液在一定温度下的表面张力; 2.应用Gibbs和Langmuir吸附方程式进行精确作图和图解微分,计算不同浓度正丁醇溶液的表面吸附量和正丁醇分子截面积,以加深对溶液吸附理论的理解; 3.掌握作图法的要点,提高作图水平。 二、基本原理 T一定,溶液表面吸附量Γ γ测定,毛细管半径r,其抛压出时受到向下压力∏r2P,最大时离开管口:P max =P 外 -P 系 。测 Pmax 气泡在管口受到的表面张力:2∏r*γ γ=rPmax 用同C溶液γ 1/γ 2 =P max1 /P max2 所以:γ1=(γ 2/P max2 )P max1 =KP max1 求常数K。 对于单分子吸附,其吸附量Γ与浓度c之间的关系可用等温吸附方程表示,即: 式中Гm为饱和吸附量,a为吸附平衡常数。将此式两边取倒数可整理成线性方程: 在饱和吸附时,每个被吸附分子在表面上所占的面积,即分子的截面积S为: 三、仪器与试剂 表面张力仪1套;恒温槽1台;1ml移液管1个;烧杯(250ml) 1个;100ml容量瓶1个;50ml容量瓶5个; 正丁醇(二级.);去离子水. 四、实验步骤 样品编号123456789容量瓶体积/cm31005050505050505050 V醇/cm3 3.仪器系数的测定。先用少量丙酮清洗毛细管3,再用蒸馏水仔细清洗样品管2和毛细管3,然后加入适量蒸馏水。在减压管1中装满水,压力计5中注入适量的水,在活塞8打开的情况下,调节活塞6使毛细管端面与液面相切。关闭活塞8,打开活塞7使体系减压,当毛细管口逸出气泡时,调节活塞7使液滴缓慢滴下,读出数字式微压差测量仪最大数值。 再更换样品重复测定两次,取平均值。已知25o C水的表面张力=,计算仪器系数K。 4.乙醇溶液表面张力的测定。取3%的乙醇溶液(一号样品)洗净样品管和毛细管,然后加入适量溶液,待恒温后,按上述操作步骤测定Δh。

液体表面张力实验报告

液体表面张力系数的测定 [实验目的] 1、了解液体表面张力性质以及表面张力系数的含义和影响因素. 2、理解拉脱法测量液体表面张力系数的基本原理,了解测量方法。 3、了解用液体界面张力仪定标测量微小力的思想和方法。 4、了解液体界面张力仪的调节使用方法和校准方法。 5、熟悉实验的具体内容. 6、拟定出合理的实验数据记录表格. [实验原理] 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。作用于液面单位长度上的表面张力称为液体的表面张力系数,用来度量表面张力的大小。表面张力系数不仅与液体的种类有关,而且还与温度、纯度、表面上方的气体成分等有关.物质液体状态的许多性质都与液体的表面张力相关,如毛细现象、浸润现象等。因此,测量液体表面张力系数对于科学研究和实际应用都具有重要意义。测定液体表面张力系数的常用方法有:拉脱法,液滴测重法和毛细管升高法等。拉脱法是一种直接测定法,通过物体的弹性形变(拉伸或扭转)来度量力的大小,如扭力天平法、焦力称法等。 实验中采用拉脱法测量水与空气界面的表面张力系数。通过实验可以重点学习如下内容:(1)实验方法:测量液体表面张力系数的拉脱法。(2)测量方法:用液体界面张力仪定标测量微小力的方法。(3)数据处理方法:质量标准曲线的绘制方法.(4)仪器调整使用方法:液体界面张力仪的调整使用方法。 [实验内容] 1、整液体界面张力仪水平和零点,达到待测状态. 2、准液体界面张力仪。 (1)金属环上放一块小纸片,仪器调零。包括两个方面的调节:第一,调节刻度盘蜗轮,使零刻度线与游标零线重合,即读数为零;第二,调节调零微调蜗轮,使吊杆臂上的指针与平面反射镜的红线重合。 (2)在小纸片上放质量0.0005kg的砝码,测量金属环单位长度的受力F,即调节刻度盘蜗轮使指针与红线重合时刻度盘的读数. (3)计算理论值F0=mg/π(d1+d2)。 (4)比较测量值F与理论值F0,如果二者相等,说明校准准确;若不相等,调节两个吊杆臂,保证两臂的长度等值缩短或伸长,使刻度盘上的读数F与理论值F0相等.重复测量几次,直至二者一致为止. 3、测量绘制质量标准曲线。 (1)仪器校准后,放置不同质量m的砝码,记录刻度盘的读数f。 (2)以m为横坐标f为纵坐标绘制质量标准曲线。

液体表面张力实验报告

液体表面张力实验报告 实验原理: 实验一、一元硬币上能承载几滴水? 水是由水分子组成,它们之间不是独来独往的,而是互相吸引,甚至三三两两地结合。处在中间的水分子受到来自四面八方的其他水分子的包围,受力均匀。可是处在水面的水分子情况不同,它的一面与空气接触,没有来自其他水分子的吸引力,使得它受力不均匀,水的表面好像一块张紧的弹性薄膜。 由于液体的表面有这种奇特的存在,就使得液体的表面总是处在被绷紧的状态,并尽量收缩到最小。由于在体积相同的条件下,球的面积最小,所以在表面张力的作用下,肥皂泡、小露珠、水银滴等也

就都收缩成球形了。一元硬币上能承载的水滴也相应增加了。 实验二、订书针、一分硬币能浮在水面上吗? 小木块入水后,撤掉压力还能上浮是因浮力作用,而订书针、硬币入水后,由于表面张力被破坏下沉,原来浮在水面是因水的表面张力。 其实科学就在我们的身边,就在我们的生活中,你也可以和爸爸妈妈一起动手做一做,亲自去感受去体验,做个科学小达人吧! 处于表面的液体分子(球状模型,液体分子排列紧密),以分子B为中心的球面中的一部分在液体当中,另一部分在液面之外,由于对称性可知,CC'和DD'之间部分的受到的合力等于零;对B有效的作用力是由球面内DD'以下的部分受到的向下合力。由于处在边界内的每—个分子都受到指向液体内部的合力,所以这些分子都有向液体内部下降的趋势,同时分子与分子之间还有侧面的吸引力,即有尽量收缩表面的趋势。

以最简单的气液相界面为例,液相内分子周围所受的力是对称的,彼此相互抵消,但表面层分子由于受力不均衡,其结果受到垂直指向液体内部的拉力,所以液体表面都有自动缩小的趋势。如果要扩大表面就要把内层分子移到表面上来,这至少需要克服表面分子的拉力而做功。实际上液体分子内部所受的力是分子间作用力当然也包括氢键。因此,简单地说表面张力是范德华力和氢键微观作用在宏观上的表现。

表面张力系数测量实验报告

实验名称:表面张力系数的测定 实验目的:着重学习焦利氏秤独特的设计原理,并用它测量液体的表面张力系数。 实验原理: 当液体和固体接触时,若固体和液体分子间的吸引力大于液体分子间的吸引力,液体就会沿固体表面扩展,这种现象叫润湿。若固体和液体分子间的吸引力小于液体分子间的吸引力,液体就不会在固体表面扩展,叫不润湿。润湿与否取决于液体、固体的性质,润湿性质与液体中杂质的含量、温度以及固体表面的清洁度密切相关。液体表层内分子力的宏观表现,使液面具有收缩的趋势。想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。 把金属丝AB 弯成如图5.2.1-1(a)所示的形状,并将其悬挂在灵敏的测力计上,然后把它浸到液体中。当缓缓提起测力计时,金属丝就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一最大值F (超过此值,膜即破裂)。则F 应当是金属丝重力mg 与薄膜拉引金属丝的表面张力之和。由于液膜有两个表面,若每个表面的力为F’,则由 '2F mg F += 得 2 'mg F F -= (1) 显然,表面张力F’是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿着液体表面,且垂直于该分界线。表面张力F’的大小与分界线的长度成正比。即 l F σ=' (2) 式中σ称为表面张力系数,单位是N/m 。表面张力系数与液体的性质有关,密度小而易挥发的液体σ小,反之σ较大;表面张力系数还与杂质和温度有关,液体中掺入某些杂质可以增加σ,而掺入另一些杂质可能会减小σ;温度升高,表面张力系数σ将降低。

表面张力实验报告

表面张力实验报告 励耘化学 黄承宏 2 量具名称 量程 分辨力 误差限 测量 游标卡尺(mm) 150.00 0.05 0.05 D1,D2 1 2 3 平均值 内径 D1(mm) 33.15 33.15 33.05 33.12 外径 D2(mm) 34.80 34.75 34.85 34.80 D1+D2(mm) 67.95 67.90 66.90 67.92 编号 1 2 3 4 5 6 7 质量/g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 砝码重力/N 0.0049 0.0098 0.0147 0.0196 0.0245 0.0294 0.0343 示数/mV 2.0 3.1 5.2 6.8 8.3 10.2 11.9 灵敏度B 为0.3426N/V 1 2 3 4 5 6 平均值 U1/mV 7.8 8.6 8.7 9.1 9.2 9.4 8.8 U2/mV 1.7 3.1 3.2 3.1 3.5 3.0 2.9 U1-U2 6.1 5.5 5.5 6.0 5.7 6.4 5.9 由公式水的表面张力α=Bπ(D1+D2)= 0.3426?3.14159?0.6792 N/m=8.07×10-3 N/m 误差 71.96?8.070 71.96 ×100%=88.79% 肥皂水表面张力系数测试 y = 0.3426x + 7E-05R2 = 0.9973 00.002 0.0040.0060.0080.010.012 0.0140 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 示数/V 重力/N

用拉脱法测定液体的表面张力系数实验

实验二、用拉脱法测定液体的表面张力系数 液体表层厚度约m 10 10 -内的分子所处的条件与液体内部不同,液体内部每一分子被 周围其它分子所包围,分子所受的作用力合力为零。由于液体表面上方接触的气体分子,其密度远小于液体分子密度,因此液面每一分子受到向外的引力比向内的引力要小得多,也就是说所受的合力不为零,力的方向是垂直与液面并指向液体内部,该力使液体表面收缩,直至达到动态平衡。因此,在宏观上,液体具有尽量缩小其表面积的趋势,液体表面好象一张拉紧了的橡皮膜。这种沿着液体表面的、收缩表面的力称为表面张力。表面张力能说明液体的许多现象,例如润湿现象、毛细管现象及泡沫的形成等。在工业生产和科学研究中常常要涉及到液体特有的性质和现象。比如化工生产中液体的传输过程、药物制备过程及生物工程研究领域中关于动、植物体内液体的运动与平衡等问题。因此,了解液体表面性质和现象,掌握测定液体表面张力系数的方法是具有重要实际意义的。测定液体表面张力系数的方法通常有:拉脱法、毛细管升高法和液滴测重法等。本实验仅介绍拉脱法。拉脱法是一种直接测定法。 【实验目的】 1.了解737FB 新型焦利氏秤实验仪的基本结构,掌握用标准砝码对测量仪进行定标的方法; 2.观察拉脱法测液体表面张力的物理过程和物理现象,并用物理学基本概念和定律进行分析和研究,加深对物理规律的认识。 3.掌握用拉脱法测定纯水的表面张力系数及用逐差法处理数据。 【实验原理】 1.测量公式推导: 当逐渐拉提冂形铝片框时,?角逐渐变小而接近为零,这时所拉出的液膜前后两个表面的表面张力f 均垂直向下。设拉起液膜将破裂时的拉力为F ,则有 f 2 g )m m (F 0+?+= (1) 式中:m 为粘附在框上的液膜质量,0m 为线框质量。因表面张力的大小与接触面周界长度成正比,则有: )d L (2f 2+?α= (2) 比例系数α称表面张力系数,单位为m /N 。 由(1),(2)式得: ) d L (2g )m m (F 0+?+-= α (3) 由于冂形铝片框很薄,被拉起的水膜很薄,m 较小,可以将其忽略,且一般有d L >>,那么L d L ≈+,于是(3)式可以简化为 : L 2g m F 0?-= α (4)

有关表面张力的几个小实验

有关表面张力的几个小实验 作者:admin 转贴自:本站原创点击数:123 更新时间:2006-6-17 资讯录入:admin (1)水面浮针或浮硬币:由于它们经常和手接触,所以针和硬币表面有一层油脂,使水对它们不浸润。如果再用油脂涂一下更易成功。漂浮硬币时可以不用纸去托,轻轻地向水面上平放即可。 课本上的“缝衣针浮在水面上”的小实验,比较难做,可以让学生先做浮硬币的实验(用5分硬币比较容易成功). 做浮针实验时可以用一小块餐巾纸托住钢针放入水面,餐巾纸吸水后下沉,钢针就能浮于水面。 (2)肥皂水膜的表面收缩到最小:用金属丝制成图③所示的框架,浸入肥皂水中,提出后可看到图中的活动细金属丝AB 被肥皂水膜的表面张力拉着而向上运动,需加一定拉力,AB才能静止平衡。 (3)水超过杯口不溢:向饮水用的玻璃杯中小心地注满水,使水面恰好与杯口相平,注意杯口原来应当是干燥的。然后把大头针或小钉逐个地放入水杯中,要从水面的中间投放,尽量减轻水面的扰动。可以看到水面逐渐凸起高于杯口但不溢出,以此说明水的表面张力的作用。 (4)表面活性剂能改变水的表面张力:在水盆中央漂浮几根火柴棍,排成图④所示的形状。然后向它们中间A处的水面上滴一些肥皂水或洗衣粉溶液或洗净剂等这类表面活性剂,就会看到火柴棍迅速向四周散开。这说明表面活性剂使A处水面的张力变小了,外面四周的水面收缩而使火柴棍移动。 (5)失重的油滴 水银滴在失重状态下,由于表面张力的作用呈球形,这个现象可以用悬浮状态下的油滴来模拟说明。往小酒杯内倒入约半杯酒精(或高度白酒),再加少量水并搅匀。滴管吸入半管食用油,伸入酒精溶液中,将油一次挤出。如果油滴成偏球形且沉于杯底,可向杯中加少量水使溶液密度变大,并用火柴梗轻轻搅动偏球形油滴的四周(不要使油滴分裂成许多小滴),与此同时可以看到偏球形油滴上浮,最后呈球形悬浮在溶液中。这说明在消除重力对油滴的影响后,仅在表面张力的作用下,油滴呈球形,如图5所示。

表面张力的测定实验报告分析

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:溶液表面张力的测定 (1)实验目的 1、掌握最大气泡法测定表面张力的原理和技术 2、通过对不同浓度正丁醇溶液表面张力的测定,加深对表面张力、表面自由能和表面吸附量关系的理解 3、学习使用Matlab 处理实验数据 (2) 实验原理 1、 表面自由能:从热力学观点看,液体表面缩小是一个自发过程,这是使体系总的自由能减小的过程。如欲使液体产生新的表面A ?,则需要对其做功。功的大小应与A ?成正比:-W=σA ? 2、 溶液的表面吸附:根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比 溶液内部大,反之,溶质使溶液的表面张力升高时,它在表面层中的浓度比在内部的浓度低。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。显然,在指定温度和压力下,吸附与溶液的表面张力及溶液的浓度有关。Gibbs 用热力学的方法推导出它们间的关系式 T c RT c )(??- =Γσ (1)当00,溶质能减少溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附,此类物质叫表面活性物质。(2)当0>??? ????T c σ时,Γ<0,溶质能增加溶剂的表面张力,溶 液表面层的浓度小于内部的浓度,称为负吸附,此类物质叫非表面活性物质。由 T c RT c )(??- =Γσ 可知:通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 3、 饱和吸附与溶质分子的横截面积:吸附量Γ浓度c 之间的关系,有Langmuir 等温方程 式表示:c K c K ·1·+Γ=Γ ∞

水表面张力系数的测定实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 5 实验台号 实验时间 2008 年 12 月 03 日,第15周,星期 三 第 5-6 节 实验名称 水表面张力系数的测定 教师评语 实验目的与要求: (1) 理解表面张力现象。 (2) 用拉脱法测定室温下水的表面张力系数。 主要仪器设备: FD-NST-I 型液体表面张力系数测定仪、砝码、镊子及其他相关玻璃器皿。 实验原理和内容: 分子间的引力和斥力同时存在,它们以及它们合力的大小随着分子间的距离的变化关系如图所示 对液体表面张力的理解和解释: 在液体和气体接触的表面有一个薄膜,叫做表面层,其宏观上就好像是一张绷紧了的橡皮膜,存在沿着表面并使表面趋于收缩的应力,这种力称为表面张力。 计算张力时可以做如下的假设:想象在表面层上有一条长度为L 的分界线,则界限两端的表面张力方向垂直于界限,大小正比于L ,即f=αL(α为液体表面张力系数)。 实验中, 首先吊环是浸润在水中的, 能够受到表面张力的拉力作用。 测定仪的吊环缓慢离开水面,将拉起一层水膜,并受到向下的拉力f 拉。由于忽略水膜的重力和浮力, 成 绩 教师签字

吊环一共受到三个力,即重力W 、液面的拉力f 拉、传感器的弹力F F f W =+拉 试验中重力是常量,而与表面张力相关的拉力却随着水膜的拉伸而增大。水膜被拉断前瞬间的f 拉,就是表面张力f 。 圆环拉起水膜与空气接触有两个表面层,若吊环的内、外直径分别为D 1、D 2,则界限长度 L=πD 1+πD 2。根据界线思想定义的张力计算式得f=αL,则有 12F απ=(D +D ) 水膜被拉断前传感器受力F 1 112F απ=(D +D )+W 在水膜拉断后传感器受力F 2 2F =W 由上面两式得水的表面张力系数的计算公式为 ) (212 1D D F F +-= πα 步骤与操作方法: (1)力敏传感器的定标 i. 开机预热10分钟。 ii. 将仪器调零后,改变砝码重量,再记录对应的电压值。得到U-G 关系, 完成传感器的 定标。 (2)水的表面张力及吊环内外径的测量 i. 测量吊环的内径D 1和外径D 2(各测量4次取平均)。 ii. 严格处理干净吊环。先用NaOH 溶液洗净,再用清水冲洗干净。 iii. 在升降台上安放好装有清水的干净玻璃皿,并挂上吊环,调节吊环水平(此步重要, 细 微的水平位置偏差将导致结果出现误差)。 iv. 升高平台,当吊环下沿部分均浸入水中后,下降平台。观察环浸入液体中及从液体中 拉起时的物理过程和现象,记录吊环即将拉断液面前瞬间的电压表读数V 1和拉断后的电压表读数V 2(该步骤重复8次)。

液体表面张力系数测定实验报告

液体表面张力系数的测量 【实验目的】 1、 掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感 器的灵敏度 2、 了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使 用方法,并用它测量纯水表面张力系数。 3、 观察拉脱法测量液体表面张力系数的物理过程和物理现象,并 用物理学概念和定律进行分析研究,加深对物理规律的认识 4、 掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定 液体的表面张力系数。 5、 利用现有的仪器,综合应用物理知识,自行设计新的实验内容。 【实验原理】 一、拉脱法测量液体的表面张力系数 把金属片弯成如图 1(a )所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b )所示,然后把它浸到待测液体中。当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F (当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。由于液膜有两个表面,若每个表面的力为f L a = (L 为圆形液膜的周长),则有 2F mg L s =+ (2) 所以 2F mg L s -= (3)

圆形液膜的周长L 与金属圆环的平均周长,L 相当,若圆环的内、外直径分别为1,2D D 。则圆形液膜的周长 L ≈L ’=p (D 1+D 2)/2 (4) 将(4)式代入(3)式得() 12F mg D D s p -=- (5) 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。即U K F D =D (6) 式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为 V/N ;ΔU 为传感器输出电压的大小。 二、毛细管升高法测液体的表面张力系数 1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。而当接触角大于 90°时,液体在管内就会下降。这种现象被称为毛细现象。 本实验研究玻璃毛细管插入水中的情形。如图 2 所示,f 为 表面张力,其方向沿着凹球面的切线方向,大小为 2 f r p s =,其中

最大气泡法测表面张力实验报告

最大气泡法测定溶液的表面张力 【实验目的】 1、掌握最大泡压法测定表面张力的原理,了解影响表面张力测定的因素。 2、了解弯曲液面下产生附加压力的本质,熟悉拉普拉斯方程,吉布斯吸附等温式,了解兰格缪尔单分子层吸附公式的应用。 3、测定不同浓度正丁醇溶液的表面张力,计算饱和吸附量, 由表面张力的实验数据求正丁醇分子的截面积及吸附层的厚度。 【实验原理】 1、表面张力的产生 纯液体和其蒸气组成的体系体相分子:自由移动不消耗功。表面分子:液体有自动收缩表面而呈球形的趋势。要使液体表面积增大就必须要反抗分子的内向力而作功以增加分子位能。所以分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。 W=A σ-?g 如果ΔA 为1m 2,则-W ′=σ是在恒温恒压下形成1m 2新表面所需的可逆功,所以σ称 为比表面吉布斯自由能,其单位为J·m -2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m -1。液体单位表面的表面能和它的表面张力在数值上是相等的。 2、弯曲液面下的附加压力 (1)在任何两相界面处都存在表面张力。表面张力的方向是与界面相切,垂直作用于某一边界,方向指向使表面积缩小的一侧。 (2)液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。 (3)液体的表面张力与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决定于溶质的本性和加入量的多少。 (4)由于表面张力的存在,产生很多特殊界面现象。 3、毛细现象 (1)由于表面张力的作用,弯曲表面下的液体或气体与在平面下情况不同,前者受到附加的压力。

表面张力实验报告(附数据及处理)

实验报告 实验题目:用焦利氏称测量液体表面张力系数 实验目的:学习焦利氏秤独特的设计原理,并用它测量液体的表面张力系数。 实验内容: 一、用作图法求弹簧的劲度系数 根据已测数据,横轴单位为g ,纵轴单位为cm ,描点,经过拟合后得一条 直线 cot (/)0.1cot (/)0.1*9.8 1.169N/m 0.83818 mg m k g g g cm g kg m x x k θθ= =?=?=?∴==Q 由图得: 二、逐差法求弹簧的劲度系数 m/g 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 x/cm 2.17 2.53 2.98 3.40 3.82 4.24 4.65 5.05 5.50 5.93 /m g ? 2.5 2.5 2.5 2.5 2.5 /x cm ? 2.07 2.12 2.07 2.10 2.11

由上表数据得: 550.6822222 ()() 3.500, 2.094cm,()=0.0103cm () 1.140.005251cm ()0.005773cm ()()()0.005251+0.0057730.005()0.00163 j j j j A x B A B m B m m m k x x x m g x x u x t u x C u x u x u x g u m C σ++-?==-??=?=??===?===?=?+=?===∑∑()()() ()()222222222 22 67g 2.5 1.1939g/cm=1.1700N/m 2.094()()()0.005251+0.0057730.0016672.094 2.50.00001433 0.0037860.004520g/cm=0.004430N/m k=(1.1700.004)N/m A B B m g k cm x U k u x u x u m k x m U k k U k ?===????+=+ ?????=+===∴± 三、自来水的表面张力系数 1)用金属圈测定 金属圈直径: 41 2.900 2.900 2.950 2.850 2.9000.0290044 i i d cm cm cm cm d cm m =+++====∑ 周长: 3.14159*0.029000.09111l d m π=== 膜破时金属圈上升的距离: 5 15 (2.44 1.50)(2.44 1.50)(2.52 1.50)(2.54 1.50)(2.52 1.50)5 0.00992i i x x x cm cm cm cm cm cm cm cm cm cm m =?=-+-+-+-+-==∑(-) 表面张力: '22 F mg k x F l d δδπ-?===?????→水膜质量可忽略

液体表面张力系数测定物理实验

液体表面张力系数的测定 【实验目的】 1.学会用拉脱法测定液体的表面张力系数。 2.了解焦利氏秤的构造和使用方法。 3.通过实验加深对液体表面现象的认识。 【仪器与器材】 焦利氏秤1把,U 形金属丝1条,砝码1盒,镊子1把,玻璃皿1个,温度计1支,酒精灯1个,蒸馏水100ml ,游标尺1把。 【原理与说明】 一、 实验原理 由于液体分子与分子间的相互作用,使液体表面层形成一张紧的膜,其上作用着张力,叫做表面张力。如图3-1所示,设想在液体MN 上划出一条线s s ',s s '把MN 分成A 、B 两部分。由于A 、B 两部分之间的分子相互作用,在s s '两侧就形成表面张力f ,f 的方向与液体表面相切且垂直于s s ',f 的大小与s s '的长度l 成正比,用公式表示为 )13(-=l f α 式中,α为表面张力系数,即作用在s s '的每单位长度上的力。 表面张力系数是研究液体表面性质所要用到的物理量,不同种类的液体,α值不同;同一种液体的α值随温度上升而减小;液体不纯净,α值也会改变。因此,在测定α值时必须注明在什么温度下进行,液体必须保持纯净。 测量表面张力系数α的方法很多,本实验用拉脱法测定。 将U 形金属丝浸入液体中,然后慢慢拉起,这时在金属丝内带起了一层薄膜,如图3-2所示。要想使金属丝由液面拉脱,必须用一定的力 F ,这个力的大小应等于金属丝所受液面的表面张力 f F 2= (注意有两个表面) l F α2= 图 3-1 图3-2

l F 2= α (3-2) 本实验用焦利氏秤测出F ,然后代入式(3-2)计算出α值。 二、 仪器构造 焦利氏秤实际上就是一个比较精确的弹簧秤,用焦利氏秤测力是根据虎克定律 x k F ?= (3-3) 式中,k 为弹簧的倔强系数,等于弹簧伸长单位长度的拉力, x ?为弹簧伸长量,如果已知k 值,再测定弹簧在外力作用下的伸长量x ?,就可以算出作用力F 的大小。 焦利氏秤的构造如图3-3所示,A 为垂直圆筒形支架,圆筒里有一可借助于旋钮D 升降的B 杆,升降高度可以由B 上的刻度和A 上的游标C 读出。弹簧E 悬在B 上的横梁N 上,E 的下端有一指 标镜M ,M 在固定于支架A 上的垂直玻璃管G 内。M 和G 上都刻有标线,H 为平台调节旋钮。 【实验步骤】 一、 k 值的测定 1.按图3-3挂好弹簧、指标镜和砝码盘,再调节三角底座上的螺丝,使指标镜处于玻璃管中,能上下自由振动且不与玻璃管相碰; 2.调节旋钮D ,使指标镜M 上的标线处于“三线重合”位置(先使G 标线在镜中的像与G 标线本身重合,再调节M 标线使之与前者重合),读出标尺上的读数 0x 。如弹簧振动不停,可将镊子靠在玻璃管上端,轻轻阻挡弹簧,即可停止振动; 3.在砝码盘上加0.5g 的砝码,旋转D ,当M 的标线重新处于“三线重合” 位置时,读出读数X; 4.重复步骤2、3共3次,将所得数据记入表3-1中。 二、 F 的测定 1. 先用洗涤液,再用蒸馏水洗净玻璃皿,把装有蒸馏水的玻璃皿放在平台上。用镊子夹 住金属丝在洒精灯上烧干,再挂在指标镜M 的挂钩上; 2. 调节旋钮D ,使M 的标线处于“三线重合”位置,读出标尺上的读数0x ; 3. 调节旋钮H ,让金属丝的水平部分和液面接触(水平部分如果和液面不平行,可用镊 子调整金属丝几次); 4.观察M 的标线是否在“三线重合”位置,如果不在,继续调节旋钮H ,直至标线处于“三线重合”位置; 图3-3

水表面张力的测定

物理实验报告 实验名称:液体表面张力系数的测定学院:水利科学与工程学院 专业班级:水工1801 学号:201802979 学生姓名:周柱伟

实验成绩 实验预习题成绩: 1.什么是液体的表面? 接触的表面存在一个薄层 2.液体表面的分子具有什么特点(表面张力产生的原因)? 液体层里的分子比液体内部稀疏,分子间的距离比液体内部大一些,分子间的相互作用表现为引力。就象你要把弹簧拉开些,弹簧反而表现具有收缩的趋势3.液体表面张力系数是怎么定义的? 表面张力系数σ是在温度T和压力p不变的情况下吉布斯自由能G对面积S的偏导数 4.液体表面张力系数与哪些因素有关? 表面张力系数与液体性质,温度,液体所含杂质,相邻物质的化学性质有关5.简述拉脱法测量液体表面张力系数的原理(用矩形金属薄片或金 属环时,表面张力系数的具体表达式)。 测量一个已知周长的金属圆环或者金属片从待测液体表面脱离时所需的拉力,从而求得该液体表面张力系数的方法称为拉脱法。 6.焦利氏秤和普通的弹簧秤有所不同?

焦利氏秤实际上是一个特殊结构的弹簧秤,是用来测量铅直方向微小力的仪器之一。 一般的弹簧秤,弹簧的上端固定不动,在弹簧下端挂重物时,弹簧则伸长,物体重量可由指针所指示的标尺直接标出。而焦利氏秤上的弹簧是挂在可以上下移动的有刻度的管子上的,管外面套有外管,外管上有游标,旋转旋钮即可使管上下移动。 7.“三线对齐”是那三线?为什么要这样做? 指标镜上的刻线,玻璃管上的刻线和玻璃管上刻线在镜中的像 水的表面张力近似为液膜破裂瞬间的拉力,保持“三线对齐”是为了能够使水膜破裂瞬间近似“三线对齐”,从而得到水膜破裂时精确的拉力。使能准确测出该拉力大小减少实验误差 8.焦利氏秤测定液体的表面张力有什么优点? 测定表面张力F’,用普通的弹簧是很难迅速测出液膜即将破裂时的 F 的,应用焦利氏秤则克服了这一困难,可以方便地测量表面张力F’,并且焦利氏秤的劲度系数较小,有游标卡尺式的读数尺,故测量精度高。 9.千分尺是否存在系统误差如何判断?如何调零? 千分尺使用前,使移动测砧与固定测砧接触,观察微分筒上的棱边是否与固 定套筒上的零刻线重合,如果不重合即存在系统误差。当套筒上零刻线位于微分筒0~5方向上时即为正值,计算时需要减去其绝对值,相反方向即为负值,需要加上其绝对值。 10.比较逐差法与图解法处理实验数据的不同点。 在对某些函数关系并不明确的物理量进行测量时,常用作图法.数据点是离散的,

液体表面张力系数的测定报告

南昌大学物理实验报告 课程名称:大学物理实验 实验名称:液体表面张力系数的测定 学院:管理学院专业班级: 学生姓名:学号: 实验地点:基础实验大楼608 座位号: 实验时间:第三周星期天下午四点开始

液体表面张力系数的测定实验报告 【实验目的】 1.了解水的表面性质,用拉脱法测定室温下水的表面张力系数。 2.学会使用焦利氏秤测量微小力的原理和方法。 【实验仪器】 焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】 液体表面层内分子相互作用的结果使得液体表面自然收缩.犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L的线段,线段两侧液面便有张力f相互作用,其方向与L垂直,大小与线段长度L成正比。即有: =α F? L f α称为液体表面张力系数,单位:N/m。 将一表面洁净的长为L、宽为d的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有F=mg+f。其中,F为拉出时所用的力,mg为金属片和带起的水膜的总质量,f为表面张力。实验中利用金属圆环,则: f=F-mg 【实验步骤】 1.安装好仪器,挂好弹簧.调节底板的三个水平调节螺丝,使焦利秤立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体.使小指针被夹在两个配重圆柱中间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的

基准线大致对准指针,锁紧固定小游标的锁紧螺钉.然后调节微调螺丝使指针与镜子框边的刻线重合.当镜子边框上刻线、指针和指针的像重合时(即称为“三线对齐”),读出游标0线对应刻度的数值L 0. 2.测母弹簧的倔强系数K :依次增加1.0g 砝码.即将质量为1.0g ,2.0g .3.0g ,…,9.0g 的砝码加在下盘内。调整小游标的高度.每次都重新使三线对齐,分别记下游标0线所指示的读数L1.L2,…,L9;再逐次减少1.0g 砝码.调整小游标的高度.每次都重新使三线对齐,分别记下游标。线所指示的读数L9’,L8’,….L0’,取二者平均值,用逐差法求出弹簧的倔强系数。即 2 L -i i i '= L L )-(5154 i i i L L L +=∑=? 3.测(F 一mg)值。将洁净的金属圆环挂在弹簧下端的小钩子上,调整小游标的高度使三线对齐.记下此时游标0线指示读数S 0。把装有蒸馏水的烧杯置于焦利平台上,调节平台位置,使金属片浸入水中,转动平台旋钮使平台缓缓下降,下降的过程中金属圆环底部会拉成水膜,在水膜还没有破裂时需调节三线对齐,然后再使平台下降一点,重复刚才的调节,直到平台稍微下降,金属圆环刚好脱出液面为止,记下此时游标0线所指示的读数S ,算出△S=S —S 0的值,即为在表面张力作用下弹簧的伸长量,重复测量5次,求出平均值,此时有F-mg=f=K △S 代入可得: ) (21d d s k +?= πγ

相关主题
文本预览
相关文档 最新文档