当前位置:文档之家› 物理化学朱传征第一章习题(优选.)

物理化学朱传征第一章习题(优选.)

例1-1 在25℃ 时,2mol 气体的体积为153dm ,在等温下此气体:(1)反抗外压为105 P a ,膨胀到体积为50dm 3;(2)可逆膨胀到体积为50dm 3。试计算各膨胀过程的功。 解(1)等温反抗恒外压的不可逆膨胀过程

{}53e 21()1010(5015)J 3500J W p V V -=--=-??-=-

(2)等温可逆膨胀过程

{}2

1

2

1

d ln

28.314298.2ln(5015)J 5970J V V V W p V nRT V =-=-=-??=-? 【点评】题中虽未作说明,但可将气体视为理想气体。由题意判断得出:(1)为等温不可 逆过程;(2)为等温可逆过程。两种过程需采用不同的计算体积功公式。若知道p 1、p 2,可 逆功2

1

ln p W nRT p =。

例1-2 在等温100℃时,1mol 理想气体分别经历下列四个过程,从始态体积V 1=25dm 3变化到体积V 2=100dm 3:(1)向真空膨胀;(2)在外压恒定为气体终态压力下膨胀至终态;(3)先在外压恒定的气体体积50dm 3时的气体平衡压力下膨胀至中间态,然后再在外压恒定的气体体积等于100dm 3时的气体平衡压力下膨胀至终态;(4)等温可逆膨胀。试计算上述各过程的功。

解 (1) 向真空膨胀 p e =0 ,所以 10W =

(2) 在外压恒定为气体终态压力下膨胀至终态

18.314(100273.15)kPa 31.02kPa 100nRT p V ??+??

=

==????

e {}2e 21()31.02(10025)J 2327J W p V V =--=-?-=-

(3) 分二步膨胀

第一步对抗外压

p ′18.314373.15kPa 62.05kPa 50nRT V ????

=

==????

{}62.05(5025)J 1551J W p V '=-?=-?-=-

第二步对抗外压 p 〞=31.02kPa

{}"31.02(10050)J 1551J W p V ''=-?=-?-=-

所做的总功 33102J W W W '''=+=- (4) 恒温可逆膨胀

{}2

41

ln

18.314373.15ln(10025)J 4301J V W nRT V =-=-???=- 【点评】由题意可知,系统在等温下分别经历四个不同的方式(过程)到达相同的终态。其 中(1)、(2)均为一次不可逆膨胀过程;(3)分二次完成,第一次不可逆膨胀到一个中间 状态,再一次不可逆过程膨胀到终态;(4)为可逆膨胀过程。计算结果表明:各过程所做 的体积功是不同的,验证了功不是状态函数,而是过程量;在相同的始、终态之间,系统所 做的功与与经历的过程有关。

例1-3 10mol 理想气体从压力为2×106P a 、体积为1 dm 3 等容降温使压力降到2×105 P a ,再在等压膨胀到10 dm 3,求整个过程的 W 、Q 、Δ U 和ΔH 。

解由题意设计下列过程

先利用已知数据求出T 1, T 2, T 3

6311

1210101K 24K 108.314pV T nR -?????===?????

22

2 2.4K p V T nR =

=,33324K p V T nR

== 13T T =,对理想气体U 、H 仅是温度的函数

所以整个过程的00U H ?=?=、

第一步为等容降温过程,所以10,0V W ?== 第二步为等压膨胀过程,

{}53221010(101)J 1800J W p V -=-?=-???-=-

总功为 121800J W W W =+=-

1800J Q W =-=

【点评】正确分析题意,设计系统经历的过程是解本题的关键,整个过程由第一步等容过程 和第二步等压过程组成。先分别计算系统在始态、中间态、终态时的温度,然后使用正确的 公式分别计算各过程的W 、Q 、Δ U 和ΔH ,再分别加合求得整个过程的W 、Q 、Δ U 和ΔH 。

例1-4 将100℃、0.5p 压力的100 dm 3水蒸气等温可逆压缩到p ,此时仍为水蒸气,再继续在p 压力下部分液化到体积为10dm 3为止,此时气液平衡共存。试计算此过程的Q 、W ,、ΔU 和ΔH 。假定凝结水的体积可忽略不计,水蒸气可视作理想气体,已知水的汽化热为2259J?g -1。

解 在100℃时,H 2O (g )经历如下二个步骤的过程

(1)水蒸气等温可逆压缩到一个中间态

H 2O (g ),0.5p ,100dm 3 → H 2O (g ),p ,V ′→H 2O (l ,g ),p ,10dm 3 求始态时水蒸气物质的量

求中间态时水蒸气的体积

33

1.63308.314373.15dm 50dm 101.325nRT V p ????'=

==????

等温可逆压缩过程的功

{}11

ln

1.63308.314373.15ln(12)J 3512J V W nRT V '

=-=-???= 此为理想气体等温过程,所以 △U 1 = 0, △H 1 = 0

(2)为等压可逆相变过程,有部分水蒸气凝结为同温度的水

求终态时水蒸气物质的量

2g 101.32510mol 0.3266mol 8.314373.15pV n RT ???

=

==?????

则部分水蒸气液化为水的物质的量为

{}l g 1.63300.3266mol 1.3064mol n n n =-=-=

W 2=-p (V 2-V ˊ)=-{101.325×(10-50)}J = 4053J

△H 2 = n l △H g →l ={1.3064×(-2259)×18×10-3}}kJ = -53.12kJ

0.5101.325100mol 1.6330mol

8.314373.15pV n RT ????===?????

△U 2 = △H 2-p (V 2-V ˊ)= -53.12 kJ + 4.053kJ = -49.07 kJ

总过程的功的W 、△H 、△U 、Q 分别为

127565J W W W =+=

△H =△H 2 = -53.12kJ △U =△U 2 = -49.07 kJ

Q = △U -W = {-49.07-7.565} kJ = -56.64kJ

【点评】1.分析题意可知,水蒸气在等温下先经可逆压缩至一个中间态,压力是原来的一 倍,可视为理想气体等温可逆过程,系统的热力学能和焓均无变化;然后在等温、等压下压 缩水蒸气至终态,过程中伴随有可逆相变发生,有部分水蒸气凝结为水,系统的热力学能变、 焓变与凝结水的物质的量有关,凝结水的物质的量可以根据物料衡算求得。 2.另需注意的 是,由于正常相变的温度容易查得,因此可逆相变常被设计在一个标准大气压下进行。

例1-6 气体H e 从0℃、5×105P a 、10 dm 3的始态,(1)经过一绝热可逆的过程膨胀至105P a ,试计算终态的温度T 2 ,该过程的W 、Q 、Δ U 和ΔH ;(2)经过一绝热不可逆过程,在恒外压105 P a 下快速膨胀到气体压力为105 P a ,试计算 T 2、W 、Q 、Δ U 和ΔH 。 解 (1)过程可表示为

设气体He 为单原子理想气体,已知

,m 32V C R =

,,m 5

2

p C R = 所以热容比 ,m ,m

5

1.67C 3

p V C γ=

=

= 由绝热过程方程式1122p V p V γ

γ

=,得

(

)

{}15 1.67

1.67

5

1

3

3

11510102102dm 26.2dm

p V V p γ

γ

????==

= ???

{}2211

126.2

21510273.2

K 143.16K p V p V T T ??=

?=?= 绝热过程,Q =0

()(){}3,m 2122.28.314143.16273.2J 3.57kJ

V U W nC T T ?==-=???-=- (),m 215

5.95kJ 3

p H nC T T U ?=-=??=-

(2) 过程可表示为

U ?(),m 21V nC T T =-

(

)

2

1

21

e e e nRT nRT p p W p V p V V p =-?=-=--21

(-) 绝热过程,Q =0,U W ?=,可得

(),m 21V nC T T -=(

)

2

1

1

2

e

nRT nRT p p p -- 代入相关数据,则

()(

)

2

2

2.28.31453210

3

2.28.31427

3.21010102

T T ??-??-=-?

-?

可得 T 2 =186K

(){}32 2.28.314186273.2J 2.39kJ U W ?==???-=- 5

3.98kJ 3

H U ?=

?=- 【点评】1.根据题意可知:(1)为绝热可逆膨胀过程,由理想气体绝热过程方程式和已知 数据,求出终态的温度T 2, 再求得过程的Δ U 和ΔH ;(2)为绝热不可逆一次逆膨胀过程, 此过程Q =0,可利用U W ?=的关系,求得终态的温度T 2,,再求的过程的ΔU 和ΔH ; 2. 由计算结果可知:从同一始态出发,理想气体分别经过绝热可逆膨胀和绝热不可逆膨胀 过程是不可能达到相同的终态,若终态压力相同时,终态的温度和体积各不相同。

例1-7 1摩尔单原子理想气体,始态为 2p 、11.2 dm 3 ,经 pT = 常量的可逆过程压缩到终态为4 p 。已知C V ,m =1.5R ,求:(1)终态的体积和温度;(2)ΔU 和ΔH ;(3)所需做的功。 解 (1)

已知,p 2T 2=p 1T 1

{}11210011.2

118.314K 269.4K p V nR

T ???=

==

θ121θ

21

42

p T T T p ===134.7K

{}3333218.314134.7

24100

θ

dm 2.8dm 2.810m 4nRT V p -???=

===? (2) ()(){}

,m 2111.58.314134.7269.4J 1680J V U nC T T ?=-=???-=- (),m 21p H nC T T ?=-

(){}

1 2.58.314134.7269.4J =???-2879J 2.799kJ =-=- (3) ()

()

()22

2

2

22

1111

1

2d d

d

d 2d V T T T T C nRT C nRT T p

T

C

V T T T T W p V nR T nR T =-====??

?

??

{28.314(134.7269.4)}J 2240J =??-=

【点评】(1)单原子理想气体、(2)pT = 常量、(3)可逆压缩过程是解本题的核心信息。 信息(1)表明气体服从理想气体方程式,且可让我们推知其摩尔等压、等容热容;信息(2) 提示可利用始态时的数据求得终态温度T 2,它是计算过程Δ U 、ΔH 必须的数据;由T 2利用 理想气体方程式求得V 2,按信息(3)计算过程的可逆压缩功。

例1-13 已知冰、水、水蒸气的平均等压比热容分别为C p,m (H 2O,s) = 1.975J?K -

1?g -

1、C p,m (H 2O,l) = 4.185J?K -

1?g -

1、C p,m (H 2O,g) = 1.860J?K -

1?g -

1,冰在0℃、p 时的融化焓为333.5 J?K -

1,水在100℃、p 时的汽化焓为2255.2 J?K -

1。由上述数据,计算冰在-50℃、p 时的摩尔升华焓。 解 设计可逆变化过程

-50℃, H 2O (s)

θ

sub m

H ????→ -50℃, H 2

O (g)

1H ↓? 5H ?↑

0℃, H 2O (s)??→??2

H 0℃, H 2O(l)??→??3

H 100℃, H 2O(l)??→??4

H

100℃, H 2O(g) {

}2

1

-11m d 1 1.9751850J 1777.5J mol T p T H nC T ?==???=??,(s )

{}θ

-1-12s-l 18333.5J mol 6003J mol H H ?=?=??=?

-1-13,m mol mol p H nC T T ?=?????32(l)(-)={4.18518100}J =7533J

{}θ-1-14l-g 2255.218J mol 40593.6J mol H H ?=?=??=?

-1-1

5,m 1.86018(223.2373.2)mol 5022J mol p H nC T T ?=???-?-?13(g)(-)={}J = 所以冰的摩尔升华焓为

θ-1-1sub m 1234550885J mol =50.885kJ mol H H H H H H ?=?+?+?+?+?=??

【点评】 如题解所示,根据题意正确设计求冰在﹣50℃、p 时的摩尔升华焓的可逆过程, 过程均设计在标准大气压下进行,温度取水的正常冰点、沸点。应用相关公式很容易求出各 过程的焓变,冰的摩尔升华焓为各过程焓变的加和。

例1-14 将一极小的冰块投入到盛有﹣5℃、100g 水的绝热容器中,使过冷水有一部分凝结为水,同时使水的温度回升到0℃,此可近似作为绝热过程。已知冰的融化焓为333.5 J?K 1,水在0℃~﹣5℃之间的等压比热容为4.238 J?K -

1?g -

1。

(1)写出系统物态的变化,并求出过程的ΔH ;

(2)求析出的冰有多少克?

解 投入的一极小块的冰只是起到晶种的作用,其量可以忽略。由于是绝热过程,因此,凝结成冰的那部分水所放出的热量用于将全部的水从-5℃升至0℃ 。

设析出的冰为x 克,则

(333.5)(100) 4.23850x x x -+-+??= 解得, 6.354g x =

设计求系统发生的物相状态变化过程,求过程的焓变

-5℃,100g,H 2O (l)?→??H

0℃,6.354g H 2O (s) +93.646g H 2O (l) ↓?1H 2H ?↑ 0℃,100g , H 2O (l)

{}2

1

1d 100 4.2385J 2119J T p

T H mC T ?==??=?(l)

{}212333.5 6.354J=2119J 0

H H H H ?=-?-?=?+?=

【点评】 1. 题意指出该过程可近似作为绝热过程,需按照热量衡算Q (吸)=﹣Q (放)的 关系,求析出冰的质量。2. 在相同的始终态之间,设计系统发生可逆状态变化的途径。对 过冷水的相变,常选择水的正常冰点为中间状态。根据设计的可逆途径,很容易求各过程的 焓变和总焓变。

例1-21 在25℃,p 时,丙烯腈(CH 2=CHCN ,l )、石墨和氢气的燃烧焓分别为﹣1761 kJ?mol

-1

、﹣393.5 kJ?mol

-1

和﹣285.9 kJ?mol -

1,在相同条件下,从元素生成气态的氰化氢及乙炔

得ΔH 分别为129.7和226.7kJ?mol -

1。在p 时,丙烯腈的凝固点为﹣82℃,沸点为78.5℃,25℃时其蒸发焓为32.84 kJ?mol -

1,试计算25℃、p 时,从HCN (g )及C 2H 2(g )生成CH 2=CHCN (g )的标准摩尔反应焓Δr H m 。 解 CH 2=CHCN (l )的完全燃烧反应为

22222153CH =CHCN(l)O (g)3CO (g)H O(l)N (g)22

H

?+

??→++ 石墨、氢气的标准摩尔燃烧焓即为CO 2(g)、H 2O(l)的标准摩尔生成焓,所以

θθθ

f m 2f m 2f m 233(CO ,g)(H O,l)(CH =CHCN,l)2

H H H H ?=?+?-?

丙烯腈的标准摩尔生成焓

θ

-1f m 23(CH =CHCN,l){3(393.5)(285.9)(1761)}kJ mol 2

H ?=?-+?---?1151.65kJ mol -=?

设计过程

12

2222HCN(g)+C H (g)CH =CHCN(l)CH =CHCN(g)H H ????

?→???→ θθθ

1f m 2f m f m 22(CH =CHCN,l)(HCN,g)(C H ,g)H H H H ?=?-?-?

{}11151.65129.7226.7kJ mol 204.75kJ mol --=--?=-?

θr m 212(CH =CHCN,g)H H H ?=?+?{}11204.7532.84kJ mol 171.91kJ mol --=-+?=-?

【点评】1. 求从HCN (g )及C 2H 2(g )生成CH 2=CHCN (g )的标准摩尔反应焓Δr H m ,

需先求出θf m

2(CH =CHCN,l)H ?。 2. θ

f m 2(CH =CHCN,l)H ?与2CH =CHCN(l)的蒸发焓之和等 θf m 2(CH =CHCN,g)H ?。3. θ

f m 2(CH =CHCN,l)H ?可根据标准态下,2CH =CHCN(l)完全燃烧反

应式求得。因为该燃烧反应的产物为CO 2(g)、H 2O(l)和N 2(g),而石墨、氢气的标准摩尔燃 烧焓即为CO 2(g)、H 2O(l)的标准摩尔生成焓

例1-22 已知CO 2(g ),CH 3COOH (l )和H 2O (g )在25℃时的标准摩尔生成焓分别为﹣393.5、﹣487.0和﹣241.8kJ?mol -

1;反应CH 4(g )+2O 2(g )= CO 2(g )+2H 2O (g )的Δr H θm (298.15K)为﹣806.3 kJ?mol -

1;水在100℃时的汽化焓为39.33 kJ?mol -

1;CH 3COOH (g )、CO 2(g )、H 2O (g )、CH 4(g )和H 2O (l )的C p,m 分别为62.8、29.14、33.58、35.71和75.31 J?K -

1?mol

-1

。试利用上述数据,计算:

(1)H 2O(l)在25℃的Δf H m (298.15K);

(2)反应CH 3COOH(l)= CH 4(g)+CO 2(g)在25℃的Δr H m (298.15K);

(3)反应CH 3COOH(g)=CH 4(g)+CO 2(g)的Δr H m 等于0时的温度,假定该反应在25℃

的Δr H m (298.15K)=16.7 kJ?mol -

1。

解(1)设计下列过程,其中T 1=298.2K ,T 2=373.2K

= -39.33 + (33.58-75.31) × 75 ×10-3

= -42.46 kJ?mol -

1

{}11241.842.46kJ mol 284.26kJ mol --=--?=-?

(2)CH 4(g)的燃烧反应

4222CH (g)+2O (g) = CO (g)+2H O(g)

θθθθ

r m f m 2f m 2f m 4(CO ,g)2(H O,g)(CH ,g)H H H H ?=?+?-?

{}θ11

f m 4(CH ,g)393.52(241.8)(806.3)kJ mol 70.8kJ mol H --?=--?---?=-? 所以25℃时,反应342CH COOH(l) = CH (g)CO (g)+的θ

f m H ?为

θθθθr m f m 4f m 2f m 3(CH ,g)(CO ,g)(CH COOH,l)H H H H ?=?+?-?

{}170.8393.5(487.02)kJ mol -=----?123.02kJ mol -=?

(3)设计下列过程,已知1

11298.2K,16.7kJ mol T H -=?=-?

↓?2H 3H ?↑

22

,342CH COOH(g)CH (g)CO (g)T T H

?????→+

设T 2时,0)(2=?T H , 则

2

1

12312d ()T p p T H H H C T C T T ?=?+?=-?=?-?

解得 T 2= -7848 K

【点评】1.已知25℃时H 2O(g)的标准生成焓,求H 2O(l)的标准生成焓,需利用题给水的蒸 发焓数据,并正确设计热力学过程。 2. 解题(2),可根据CH 4(g)完全燃烧反应及其标准摩 尔燃烧热,先求出CH 4(g)的标准摩尔生成焓;再用相关物质的标准摩尔生成焓数据,计算 所求反应的标准摩尔焓变。 3. 题(3)需求反应的Δr H m =0时的温度,是指反应在绝热条件 下进行,反应产生的热量全部用于系统自身升温所能达到的最高温度。解题需设计过程。

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 ---------------------

方便更改

物理化学朱传征第一章习题

例1-1 在25℃ 时,2mol 气体的体积为153dm ,在等温下此气体:(1)反抗外压为105 P a ,膨胀到体积为50dm 3;(2)可逆膨胀到体积为50dm 3。试计算各膨胀过程的功。 解(1)等温反抗恒外压的不可逆膨胀过程 {}53e 21()1010(5015)J 3500J W p V V -=--=-??-=- (2)等温可逆膨胀过程 {}2 1 2 1 d ln 28.314298.2ln(5015)J 5970J V V V W p V nRT V =-=-=-??=-? 【点评】题中虽未作说明,但可将气体视为理想气体。由题意判断得出:(1)为等温不可 逆过程;(2)为等温可逆过程。两种过程需采用不同的计算体积功公式。若知道p 1、p 2,可 逆功2 1 ln p W nRT p =。 例1-2 在等温100℃时,1mol 理想气体分别经历下列四个过程,从始态体积V 1=25dm 3变化到体积V 2=100dm 3:(1)向真空膨胀;(2)在外压恒定为气体终态压力下膨胀至终态;(3)先在外压恒定的气体体积50dm 3时的气体平衡压力下膨胀至中间态,然后再在外压恒定的气体体积等于100dm 3时的气体平衡压力下膨胀至终态;(4)等温可逆膨胀。试计算上述各过程的功。 解 (1) 向真空膨胀 p e =0 ,所以 10W = (2) 在外压恒定为气体终态压力下膨胀至终态 18.314(100273.15)kPa 31.02kPa 100nRT p V ??+?? = ==???? e {}2e 21()31.02(10025)J 2327J W p V V =--=-?-=- (3) 分二步膨胀 第一步对抗外压 p ′18.314373.15kPa 62.05kPa 50nRT V ???? = ==???? {}62.05(5025)J 1551J W p V '=-?=-?-=- 第二步对抗外压 p 〞=31.02kPa {}"31.02(10050)J 1551J W p V ''=-?=-?-=-

物理化学相平衡例题

相平衡例题 例2 系统中有C(s), H 2O(g), CO 2(g), CO(g), H 2(g)共存,C=? 答:系统中有反应:(1)C(s)+H 2O(g)?CO(g)+H 2(g) (2)C(s)+CO 2(g) ?2CO(g) (3)CO(g)+H 2O(g) ?CO 2(g)+H 2(g) 其中S=5,独立化学平衡数R ≠3=2, ∴C=5–2=3注意:系统确定后,其组分数是确定的,物种数有一定随意性。 例1NH 4Cl(s)=NH 3(g) + HCl(g) C= S –R –R ’ S=3 R =1 K p = P (NH 3) ×P (HCl ) R ′=1 P (NH 3)=P (HCl ) C=1 若体系中已有H C l (g), 则C =?R`=0 C=2例3NH 4HS(s) 和任意量的NH 3(g) 及H 2S(g) 达平衡 时有: (A) C = 2,P = 2,f = 2;(B) C = 1,P = 2,f = 1 (C) C = 2,P = 3,f = 2;(D) C = 3,P = 2,f = 3(A)1000K 下,NH 3、H 2、N 2三气平衡F=? S =3,R =1 (2NH 3=3H 2+N 2),P =1 F = C -P +1=2 (p 、x NH3、x H2或x N2其中之二) (1)、冰水共存时F =? C =1,P =2(冰、水), F = 1-2+2=1 (T 或p )f = C –P + 2

指出含有CaCO 3(s) 、CaO(s) 、CO 2(g)的体系与CO 2(g)和N 2(g)的混合物达渗透平衡时的物种数、组分数、相数和自由度数。 例4. 答:S = 4 , R = 1, R ′= 0 CaCO 3(s) = CaO(s) + CO 2(g) C = 3 , P = 4 f = C –P + 3 = 3 –4 + 3 = 2 ※注意:相律 f = C –P + 2 (体系各处的压力均相等,公式中的2表示温度和压力)而在此题渗透平衡中P 1 ≠P 2 ,所以相律应写为: f = C –P + 3 例5 Na 2CO 3有三种含水盐:N a 2C O 3?H 2O , N a 2C O 3?7H 2O , N a 2C O 3?10H 2O (1)p θ下,与N a 2C O 3(aq)和冰共存的含水盐最多有几种?(2)30℃时,可与水蒸气共存的含水盐最多有几种? 解:系统由N a 2C O 3和H 2O 构成, C =2若S =5, 但存在三个平衡关系: R =3, N a 2C O 3+xH 2O = N a 2C O 3.xH 2O ∴C =2 1) 指定p θ, f = 2 –P + 1= 3 –P , f = 0, P = 3 ∴P 最多为3,与Na 2CO 3(aq)和冰(s)与共存的盐只有一种。 2) 指定30℃, f = 3 –P , f = 0, P = 3 ∴P 最多为3, ∴与水蒸气共存的含水盐最多有2种

物理化学经典习题(配南大傅献彩)

物理化学经典习题 一、填空题 1.硫酸与水可形成三种水合盐:H 2SO 4·H 2O 、H 2SO 4·2H 2O 、H 2SO 4 ·4H 2O 。常压下将一定量的H 2SO 4溶于水中,当达三相平衡时,能与冰、 H 2SO 4水溶液平衡共存的硫酸水合盐的分子中含水分子的数目是 。 2.Na +、H +的还原电极电势分别为 –2.71V 和 –0.83V ,但用Hg 作阴极电解 NaCl 溶液时,阴极产物是Na –Hg 齐,而不是H 2,这个现象的解释是 。 3.在稀亚砷酸溶液中通入过量的硫化氢制备硫化砷溶液。其胶团结构式为 。注明紧密层、扩散层、胶核、胶粒、胶团。 4.在两个具有0.001mAgNO 3溶液的容器之间是一个AgCl 多孔塞,在多孔塞两端放两个电极,接通直流电源后,溶液将向 极方向流动。 5. 反应 A ?→?1k B (Ⅰ) ; A ?→?2 k D (Ⅱ)。已知反应(Ⅰ)的活化能大于反应(Ⅱ)的活化能,加入适当催化剂 改变获得B 和D 的比例。 6.等温等压(298K 及p ?)条件下,某一化学反应在不做非体积功条件下进行,放热40.0 kJ·mol -1,若该反应通过可逆电池来完成,吸热 4.00 kJ·mol -1,则该化学反应的熵变为 。

7.若稀溶液表面张力γ与溶质浓度c的关系为γ0–γ =A + B ln c(γ0为纯溶剂表面张力,A、B为常数),则溶质在溶液表面的吸附量Γ与浓度c的关系为。 1O2(g) ═ H2O(l) 的8.298.2K、101.325kPa下,反应H2(g) + 2 (?r G m–?r F m)/ J·mol-1为。 二、问答题 1.为什么热和功的转化是不可逆的? 1O2(g) ═ H2O(g),2.在绝热钢筒中进行一化学反应:H2(g) + 2 在反应自发进行。问此变化中下述各量哪些为零,哪些大于零,哪些小于零?Q,W,?U,?H,?S和?F。 3.对单组分体系相变,将克拉贝龙方程演化为克-克方程的条件是什么? 4.为什么有的化学反应速率具有负温度系数,即温度升高反应速率反而下降? 5.为什么说,热化学实验数据是计算化学平衡常数的主要基础? 三、计算题 1.苯在正常沸点353K下的?vap H m?= 30.77 kJ·mol-1,今将353K及p?下的1molC6H6(l)向真空等温蒸发为同温同压下的苯蒸气(设为理想气体)。

物理化学习题第四章化学平衡

物理化学习题第四章 化学平衡 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第四章 化学平衡 一.基本要求 1.掌握化学反应定温式的各种形式,并会用来判断反应的方向和限度。 2.了解标准平衡常数的定义,掌握标准平衡常数的各种表示形式和计算方法。 3.掌握标准平衡常数K 与r m G ?在数值上的联系,熟练用热力学方法计算r m G ?,从而获得标准平衡常数的数值。 4.了解标准摩尔生成Gibbs 自由能f m G ?的定义和它的应用。 5.掌握温度对化学平衡的影响,记住van ’t Hoff 公式及其应用。 6.了解压力和惰性气体对化学平衡的影响。 二.把握学习要点的建议 把本章放在多组分系统之后的目的,就是要利用多组分系统中介绍的化学势的概念和各种表示方式,来导出化学反应定温式,从而用来判断化学反应的方向与限度。 本章又用到了反应进度的概念,不过其值处在0 1 mol -的区间之内。因为在利用化学势的表示式来计算反应的Gibbs 自由能的变化值时,是将化学势看作为一个定值,也就是在有限的反应系统中,化学进度为d ξ,如果在一个很大的系统中, 1 mol ξ=。 严格讲,标准平衡常数应该用绝对活度来定义,由于本教材没有介绍绝对活度的概念,所以利用标准态化学势来对标准平衡常数下定义,其含义是一样的。从标准平衡常数的定义式可知,标准平衡常数与标准化学势一样,都仅是温度的函数,因为压力已指定为标准压力。对于液相反应系统,标准平衡常数有其相应的形式。对于复相化学反应,因为纯的凝聚态物质本身就作为标准态,它的化学势就是标准态化学势,已经归入r m G ?中,所以在计算标准平衡常数时,只与气体物质的压力有关。 学习化学平衡的主要目的是如何判断反应的方向和限度,知道如何计算平衡常数,了解温度、压力和惰性气体对平衡的影响,能找到一个经济合理的反应条件,为科研和工业生产服务。而不要过多地去考虑各种浓度表示式和各种平衡常数表示式之间的换算,否则会把自己搞糊涂了,反而没抓住主要内容。 由于标准平衡常数与r m G ?在数值上有联系,r m ln p G RT K ?=-,所以有了r m G ?的值,就可以计算p K 的值。定义了标准摩尔生成Gibbs 自由能f m G ?,

物化第一章练习题

气体的PVT 关系 自测题 1. T=400K ,V=2m 3的容器中装有2mol 理想气体A 和8mol 理想气体B ,则p B =( ) 2. 恒温100℃,在一个带活塞的气缸中装有 3.5mol 的H 2O (g ),在平衡条件下,缓慢的压缩到( )kPa 时,才可能有水滴H 2O (l )出现。 3. 在300K ,100kPa 下,某理想气体的密度为80.8275×10-3kg·m -3,则该气体的摩尔质量() 4. 理想气体的微观特征是( ),理想气体恒温下,=??T m p V )(( ) 5. 一定量的范德华气体,在恒容条件下,=??V T p )(( ) 6. 在临界状态下,任何真实气体在宏观上特征为( ) 7. 在一定温度条件下,压力增加,理想气体的pV m 值将 (增加、减小或不变) 8. 在一个密闭容器中放有足够多的某纯液态物质,在相当大的温度范围内能存在气液两相平衡,当T 升高时,液体的p*增大,则饱和液体的)(l V m ( );饱和蒸气的)(g V m ( );m V ?=)(g V m -)(l V m ( ) (填增大或减小) 9. 已知H 2的临界温度为-239.9℃,临界压力为1.297×103kPa ,有一H 2钢瓶,在-50℃时,瓶中H 2的压力为12.16×103kPa ,则H 2一定是( )态 A 、气 B 、液 C 、气-液平衡 D 、无法判断 10.在温度恒定为100℃、体积为2cm 3的容器中含有0.035mol 的水蒸气,若向该容器中再加入0.025mol 的液态水,则容器中水的状态是( ) A 、气 B 、液 C 、气-液平衡 D 、无法判断 11. 实际气体能液化,则对温度的要求是( ) A. T ≤ T c B. T ≥ T c C. 只有T=T c D. 以上都不对 12. 由A (g )和B(g)形成理想混合系统,总压B A p p p +=,体积**B A V V V +=, B A n n n +=,则正确的为( ) A 、RT n V p B B B =* B 、nRT pV A =* C 、RT n V p B B = D 、RT n V p A A A =* 13. 某真实气体的Z<1,则该气体( ),V m,真( ) V m,理 A 、易被压缩 < B 、难被压缩 > C 、易液化 < D 、难液化 > 14. 对临界点的描述,错误的是( ) A 、液相和气相的摩尔体积相同 B 、 C 、液相和气相的密度相同 D 、临界摩尔体积最容易测定 00c c 2m 2m =???? ????=???? ????T T V p V p

物理化学相平衡练习题

相平衡题 一、判断题: 1.在一个给定的系统中,物种数可以因分析问题的角度的不同而不同,但独立组分数是一个确定的数。 2.单组分系统的物种数一定等于1。 3.自由度就是可以独立变化的变量。 4.相图中的点都是代表系统状态的点。 5.恒定压力下,根据相律得出某一系统的f = l,则该系统的温度就有一个唯一确定的值。6.单组分系统的相图中两相平衡线都可以用克拉贝龙方程定量描述。 7.根据二元液系的p~x图可以准确地判断该系统的液相是否是理想液体混合物。 8.在相图中总可以利用杠杆规则计算两相平衡时两相的相对的量。 9.杠杆规则只适用于T~x图的两相平衡区。 10.对于二元互溶液系,通过精馏方法总可以得到两个纯组分。 11.二元液系中,若A组分对拉乌尔定律产生正偏差,那么B组分必定对拉乌尔定律产生负偏差。 12.恒沸物的组成不变。 13.若A、B两液体完全不互溶,那么当有B存在时,A的蒸气压与系统中A的摩尔分数成正比。 14.在简单低共熔物的相图中,三相线上的任何一个系统点的液相组成都相同。 15.三组分系统最多同时存在5个相。 二、单选题: 1.H2O、K+、Na+、Cl- 、I- 体系的组分数是:C (A) K = 3 ;(B) K = 5 ;(C) K = 4 ;(D) K = 2 。 2.克劳修斯-克拉伯龙方程导出中,忽略了液态体积。此方程使用时,对体系所处的温度要求:C (A) 大于临界温度;(B) 在三相点与沸点之间; (C) 在三相点与临界温度之间;(D) 小于沸点温度。 3.单组分固-液两相平衡的p~T曲线如图所示,则:C (A) V m(l) = V m(s) ;(B)V m(l)>V m(s) ; (C) V m(l)<V m(s) ;(D)无法确定。 4.蒸汽冷凝为液体时所放出的潜热,可用来:C (A) 可使体系对环境做有用功;(B) 可使环境对体系做有用功; (C) 不能做有用功;(D) 不能判定。 5.压力升高时,单组分体系的熔点将如何变化:D (A) 升高;(B) 降低;(C) 不变;(D) 不一定。 6.硫酸与水可组成三种化合物:H2SO4·H2O(s)、H2SO4·2H2O(s)、H2SO4·4H2O(s),在p 下,能与硫酸水溶液共存的化合物最多有几种:B (A) 1 种;(B) 2 种;(C) 3 种;(D) 0 种。

物理化学习题及答案

物理化学习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物理化学期末复习 一、单项选择题 1. 涉及焓的下列说法中正确的是() (A) 单质的焓值均等于零 (B) 在等温过程中焓变为零 (C) 在绝热可逆过程中焓变为零 (D) 化学反应中系统的焓变不一定大于内能变化 2. 下列三种胶体分散系统中,热力不稳定的系统是:() A.大分子溶胶 B.胶体电解质 C.溶胶 3. 热力学第一定律ΔU=Q+W 只适用于() (A) 单纯状态变化 (B) 相变化 (C) 化学变化 (D) 封闭物系的任何变化 4. 第一类永动机不能制造成功的原因是() (A) 能量不能创造也不能消灭 (B) 实际过程中功的损失无法避免 (C) 能量传递的形式只有热和功 (D) 热不能全部转换成功 5. 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有() (A) W =0,Q <0,U <0 (B). W>0,Q <0,U >0 (C) W <0,Q <0,U >0

(D). W <0,Q =0,U >0 6. 对于化学平衡, 以下说法中不正确的是() (A) 化学平衡态就是化学反应的限度 (B) 化学平衡时系统的热力学性质不随时间变化 (C) 化学平衡时各物质的化学势相等 (D) 任何化学反应都有化学平衡态 7. 封闭系统内的状态变化:() A 如果系统的?S >0,则该变化过程自发 sys B 变化过程只要对环境放热,则该变化过程自发 ,变化过程是否自发无法判断 C 仅从系统的?S sys 8. 固态的NH HS放入一抽空的容器中,并达到化学平衡,其组分数、独立组分 4 数、相数及自由度分别是() A. 1,1,1,2 B. 1,1,3,0 C. 3,1,2,1 D. 3,2,2,2 9. 在定压下,NaCl晶体,蔗糖晶体,与它们的饱和混合水溶液平衡共存时,独立组分数C和条件自由度f':() A C=3,f'=1 B C=3,f'=2 C C=4,f'=2 D C=4,f'=3 10. 正常沸点时,液体蒸发为气体的过程中() (A) ΔS=0 (B) ΔG=0

《物理化学》课后习题第一章答案

习题解答 第一章 1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二 倍体积,(3)恒压下冷却至25℃。试计算整个过程的Q 、W 、U ?及H ?。 解:将三个过程中Q 、U ?及W 的变化值列表如下: 过程 Q U ? W (1) )(11,初末T T C m V - )(11,初末T T C m V - 0 (2) (3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p - 则对整个过程: K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p =)初末33(T T nR - =[1×8.314×(-75)]J =-623.55J U ?=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0 W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J 因为体系的温度没有改变,所以H ?=0 2. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态: (1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。 分别求两途径的Q 、W 、U ?及H ?。若只知始态和终态,能否求出两途径的U ?及 H ?? 解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln 1 2 +V V nRT

南京大学《物理化学》每章典型例题

第一章 热力学第一定律与热化学 例题1 1mol 理想气体于27℃ 、101325Pa 状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃ ,则压力升到。求整个过程的W 、Q 、△U 及△H 。已知该气体的C V ,m 恒定为? ?K -1 。 解题思路:需先利用理想气体状态方程计算有关状态: (T 1=27℃, p 1=101325Pa ,V 1)→(T 2=27℃, p 2=p 外=,V 2=) →(T 3=97℃, p 3=,V 3= V 2) 例题2水在 -5℃ 的结冰过程为不可逆过程,计算时要利用0℃ 结冰的可逆相变过程,即 H 2O (l ,1 mol ,-5℃ ,θ p ) s ,1 mol ,-5℃,θ p ) ↓△H 2 ↑△H 4 H 2O (l ,1 mol , 0℃,θp )(s ,1 mol ,0℃,θ p ) ∴ △H 1=△H 2+△H 3+△H 4 例题3 在 时,使 5.27 克的甲醇(摩尔质量为32克) 在弹式量热计中恒容燃烧,放出 的热量。忽略压力对焓的影响。 (1) 计算甲醇的标准燃烧焓 θ m c H ?。 (2) 已知时 H 2O(l) 和CO 2(g)的标准摩尔生成焓分别为- kJ·mol -1 、- kJ·mol -1 , 计算CH 3OH(l)的θ m f H ?。 (3) 如果甲醇的标准蒸发焓为 ·mol -1 ,计算CH 3OH(g) 的θ m f H ?。 解:(1) 甲醇燃烧反应:CH 3OH(l) + 2 3 O 2(g) → CO 2(g) + 2H 2O(l) Q V =θ m c U ?=- kJ/32)mol =- kJ·mol -1 Q p =θ m c H ?=θ m c U ?+ ∑RT v )g (B = (--×××10-3 )kJ·.mol -1

物理化学第四章化学平衡练习题及答案

第四章 化学平衡练习题 一、判断与问答题: 1.反应的吉布斯函数变就是反应产物与反应物之间的吉布斯函数的差值。 2.在恒定的温度和压力条件下,某化学反应的?r G m 就是在一定量的系统中进行1mol 的 化学反应时产物与反应物之间的吉布斯函数的差值。 3.因为m r G ?= -RT ln K ,所以m r G ?是平衡状态时的吉布斯函数变化。 4.m r G ?是反应进度的函数。 5.在等温等压条件下,?r G m > 0的反应一定不能进行。 6.?r G m 的大小表示了反应系统处于该反应进度ζ时反应的趋势。 7.任何一个化学反应都可以用m r G ?来判断其反应进行的方向。 8.在等温、等压、W’ = 0的条件下,系统总是向着吉布斯函数减小的方向进行。若某化 学反应在给定条件下?r G m < 0,则反应物将完全变成产物,反应将进行到底。 9.在等温、等压不作非体积功的条件下,反应的? r G m < 0时,若值越小,自发进行反应 的趋势也越强,反应进行得越快。 10.某化学反应的? r G m 若大于零,则K 一定小于1。 11.理想气体反应 A + B = 2C ,当p A = p B = p C 时,m r G ?的大小就决定了反应进行方向。 12.标准平衡常数的数值不仅与方程式的写法有关,而且还与标准态的选择有关。 13.在给定温度和压力下发生的PCl 5的分解反应,只须测定平衡时混合气体的密度就可 以求知平衡常数了。 14.因 K = f (T ),所以对于理想气体的化学反应;当温度一定时,其平衡组成也一定。 15.若已知某气相生成反应的平衡组成,则能求得产物的m r G ?。 16.温度T 时,若K = l ,说明这个反应在此温度,压力为100kPa 的条件下已达到平衡。 17.一个已达平衡的化学反应,只有当标准平衡常数改变时,平衡才会移动。 18.因K = ∏(a B ν),所有化学反应的平衡状态随化学反应计量系数而改变。 19.有供电能力(W f ≠ 0)的可逆电池反应体系的状态,在“G ~ξ”曲线上可存在的位置? 20.“纯是相对的,绝对纯的物质是没有”,试从反应的亲合能A 上分析这句话的道理? 21.化学反应亲合势愈大,则自发反应趋势越强,反应进行得愈快,对否? 22.标准平衡常数与标准反应自由能的关系:K RT G ln m r -=?,那么,为什么反应的 平衡态与标准态是不相同的? 23.欲使反应产物的平衡浓度最大,反应物的投料比一般为多大? 24.对于计量系数?ν = 0的理想气体化学反应,哪些因素变化不改变平衡点? 25.平衡常数 K = 1的反应,在标准态下反应,反应朝什么方向进行? 26.在空气中金属不被氧化的条件是什么? 27.反应PCl 5(g) = PCl 3(g) + Cl 2(g) 在212℃、p 容器中达到平衡,PCl 5 离解度为0.5, 反应的m r H ?= 88 kJ·mol -1,以下情况下,PCl 5的离解度如何变化: (A) 通过减小容器体积来增加压力; (B) 容器体积不变,通入N 2气来增加总压力; (B) 升高温度; (D) 加入催化剂。 28.对于复分解反应,如有沉淀、气体或水生成,则容易进行到底,试以化学平衡理论 分析其道理? 29.2HgO(s) = 2Hg(g) + O 2(g),在反应温度下及p = 101.325kPa 时,K = 4×10-3,试问 HgO(s) 的分解压力多大?当达到分解温度时,与HgO(s) 平衡的p Hg 有多大?若在标 准状态下反应,体系的总压力是多少? 30.反应CO(g) + H 2O(g) = CO 2(g) + H 2(g),在600℃、100kPa 下达到平衡(各物质的逸度 系数均为1),当压力增大到500kPa 时,各物质的逸度系数分别为:γ (CO 2) = 1.09, γ (H 2) = 1.10,γ (CO) = 1.23,γ (H 2O) = 0.77,问这时平衡点向何方移动? 31.反应CaCO 3(s) = CaO(s) + CO 2(g) 在常温常压下的分解压力并不等于零,那么古代大 理石建筑物何以能够保留至今而不倒?

第一章 题解答 物理化学

第一章习题解答 1.1 物质的体膨胀系数αV与等温压缩率κT的定义如下: 试导出理想气体的、与压力、温度的关系 解:对于理想气体:PV=nRT , V= nRT/P 求偏导: 1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问储存的气体能用多少小时? 解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600?300/8.314?300.13 (mol)=14618.6mol m=14618.6?62.5/1000(kg)=913.66 kg t=972.138/90(hr)=10.15hr 1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?

解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PM w/RT =101.325?16/8.314?273.15(kg/m3) =0.714 kg/m3 1.4 一抽成真空的球形容器,质量为25.0000g。充以4℃水之后,总质量为125.0000g。若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。试估算该气体的摩尔质量。水的密度按1 g.cm-3计算。(答案来源:https://www.doczj.com/doc/5118794004.html,) 解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M w M w= mRT/ PV=(25.0163-25.0000)?8.314?300.15/(13330?100?10-6) M w =30.51(g/mol) 1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。解:因加热前后气体的摩尔数不变: 加热前:n=2 P1V/RT1 加热后:n=P1V/RT1+ PV/RT2

物理化学第五章相平衡练习题及答案

第五章相平衡练习题 一、判断题: 1.在一个给定的系统中,物种数可以因分析问题的角度的不同而不同,但独立组分数是一个确定的数。 2.单组分系统的物种数一定等于1。 3.自由度就是可以独立变化的变量。 4.相图中的点都是代表系统状态的点。 5.恒定压力下,根据相律得出某一系统的f = l,则该系统的温度就有一个唯一确定的值。 6.单组分系统的相图中两相平衡线都可以用克拉贝龙方程定量描述。 7.根据二元液系的p~x图可以准确地判断该系统的液相是否是理想液体混合物。8.在相图中总可以利用杠杆规则计算两相平畅时两相的相对的量。 9.杠杆规则只适用于T~x图的两相平衡区。。 10.对于二元互溶液系,通过精馏方法总可以得到两个纯组分。 11.二元液系中,若A组分对拉乌尔定律产生正偏差,那么B组分必定对拉乌尔定律产生负偏差。 12.恒沸物的组成不变。 13.若A、B两液体完全不互溶,那么当有B存在时,A的蒸气压与系统中A的摩尔分数成正比。 14.在简单低共熔物的相图中,三相线上的任何一个系统点的液相组成都相同。 15.三组分系统最多同时存在5个相。 二、单选题: 1.H2O、K+、Na+、Cl- 、I- 体系的组分数是: (A) K = 3 ;(B) K = 5 ;(C) K = 4 ;(D) K = 2 。 2.克劳修斯-克拉伯龙方程导出中,忽略了液态体积。此方程使用时,对体系所处的温度要求: (A) 大于临界温度;(B) 在三相点与沸点之间;

(C) 在三相点与临界温度之间;(D) 小于沸点温度。 3.单组分固-液两相平衡的p~T曲线如图所示,则: (A) V m(l) = V m(s) ;(B) V m(l)>V m(s) ; (C) V m(l)<V m(s) ;(D) 无法确定。 4.蒸汽冷凝为液体时所放出的潜热,可用来: (A) 可使体系对环境做有用功;(B) 可使环境对体系做有用功; (C) 不能做有用功;(D) 不能判定。 5.压力升高时,单组分体系的熔点将如何变化: (A) 升高;(B) 降低;(C) 不变;(D) 不一定。 6.硫酸与水可组成三种化合物:H2SO4·H2O(s)、H2SO4·2H2O(s)、H2SO4·4H2O(s),在p 下,能与硫酸水溶液共存的化合物最多有几种: (A) 1 种;(B) 2 种;(C) 3 种;(D) 0 种。7.在101325Pa的压力下,I2在液态水与CCl4中的溶解已达到平衡(无固体I2存在),此体 系的自由度为: (A) 1 ;(B) 2 ;(C) 3 ;(D) 0 。 8.NaCl水溶液和纯水,经半透膜达到渗透平衡,该体系的自由度数是: (A) f = 1 ;(B) f = 2 ;(C) f = 3 ;(D) f = 4 。 9.对于下列平衡系统:①高温下水被分解;②同①,同时通入一些H2(g) 和O2(g);③H2和O2同时溶于水中,其组元数K和自由度数f的值完全正确的是: (A) ①K = 1,f = 1 ②K = 2,f = 2 ③K = 3,f = 3 ; (B) ①K = 2,f = 2 ②K = 3,f = 3 ③K = 1,f = 1 ; (C) ①K = 3,f = 3 ②K = 1,f = 1 ③K = 2,f = 2 ; (D) ①K = 1,f = 2 ②K = 2,f = 3 ③K = 3,f = 3 。 10.在下列体系中自由度f = 2的体系是:

物理化学经典例题

一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑ni = N,∑niεi = U, 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ). ! A、假定粒子是可别的 B. 应用了斯特林近似公式C.忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5.对于玻尔兹曼分布定律ni =(N/q)·gi·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,ni 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6.对于分布在某一能级εi上的粒子数ni,下列说法中正确是:( ) A. n i与能级的简并度无关 B.εi 值越小,ni 值就越大 C. n i称为一种分布 D.任何分布的ni 都可以用波尔兹曼分布公式求出B 7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度gi = 2gj,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp(εj/2kT) B. 2exp(- εj/2kT) C. ( -εj/kT) D. 2exp( 2εj/kT) C 8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) 《 A. S、G、F、Cv B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是:( C ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv越高,表示分子处于激发态的百分数越小 D. Θv越高,表示分子处于基态的百分数越小 11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动D 12.三维平动子的平动能为εt = 7h2 /(4mV2/3 ),能级的简并度为:( ) A. 1 B. 3 C. 6 D. 2 C 的转动惯量J = ×10 -47 kg·m2 ,则O2 的转动特征温度是:( ) A. 10 K B. 5 K C. K D. 8 K C ; 14. 对于单原子分子理想气体,当温度升高时,小于分子平均能量的能级上分布的粒子数:( ) A. 不变 B. 增多 C. 减少 D. 不能确定C 15.在相同条件下,对于He 与Ne 单原子分子,近似认为它们的电子配分函数 相同且等于1,则He 与Ne 单原子分子的摩尔熵是:( ) A. Sm(He) > Sm (Ne) B. Sm (He) = Sm (Ne) C. Sm (He) < S m(Ne) D. 以上答案均不成立C 二、判断题 1.玻耳兹曼熵定理一般不适用于单个粒子。(√) 2.玻耳兹曼分布是最概然分布,但不是平衡分布。(×) 3.并不是所有配分函数都无量纲。(×) 4.在分子运动的各配分函数中平均配分函数与压力有关。(√) - 5.粒子的配分函数q 是粒子的简并度和玻耳兹曼因子的乘积取和。(×) 6.对热力学性质(U、V、N)确定的体系,体系中粒子在各能级上的分布数一定。(×) 7.理想气体的混合物属于独立粒子体系。(√)

物理化学《化学平衡》习题及答案

物理化学《化学平衡》习题及答案 选择题 1.下面的叙述中违背平衡移动原理的是 (A) 升高温度平衡向吸热方向移动 (B) 增加压力平衡向体积缩小的方向移动 (C) 加入惰性气体平衡向总压力减少的方向移动 (D) 降低压力平衡向增加分子数的方向移动 答案:C 。加入惰性气体平衡向总压力增大的方向移动 2.要使一个化学反应系统在发生反应后焓值不变, 必须满足的条件是 (A) 温度和内能都不变 (B) 内能和体积都不变 (C) 孤立系统 (D) 内能, 压力与体积的乘积都不变 答案:D 。因ΔH =ΔU +Δ(pV ) 3.在等温等压下,当反应的?r G m ? = 5kJ ·mol -1 时,该反应能否进行? (A) 能正向自发进行 (B) 能逆向自发进行 (C) 不能判断 (D) 不能进行 答案:C 。应该用?r G m 判断而不是?r G m ? 。 4.已知反应 2NH 3 = N 2 + 3H 2,在等温条件下,标准平衡常数为0.25,那么,在此条件下,氨的合成反应1/2 N 2 + 3/2 H 2 = NH 3 的标准平衡常数为: (A) 4 (B) 0.5 (C) 2 (D) 1 答案:C 。 5.反应 2C(s) + O 2(g) ←→ 2CO(g),其?r G m ? /(J ·mol -1 ) = -232600 - 167.7T /K ,若温度升高,则: (A) ?r G m ? 变负,反应更完全 (B) K p ? 变大,反应更完全 (C) K p ? 变小,反应更不完全 (D )无法判断 答案:C 6.对于气相反应,当体系总压力p 变化时 (A) 对K f ? 无影响 (B) 对K r 无影响 (C) 对K p ? 无影响 (D) 对K f ? 、K r 、K p ? 均无影响 答案:A 。理想气体的K p ? 不受压力的影响而真实气体的K p ? 将随压力而变。 7.理想气体反应CO(g)+2H 2(g) = CH 3OH(g)的?r G m ?与温度T 的关系为: ?r G m ? = -21660+52.92T ,若要使反应的平衡常数K p ? >1,则应控制的反应温度: (A) 必须低于409.3℃ (B) 必须高于409.3K (C) 必须低于409.3K (D) 必须等于409.3K 答案:C 8.某化学反应在298K 时的标准吉布斯自由能变化为负值,则该温度时反应的K p ?将是: (A)K p ?= 0 (B) K p ? < 0 (C) K p Θ > 1 (D) 0 < K p ? < 1 答案:C 。根据ln r m p G RT K ?=-$ $ 。 9.25℃ 时水的饱和蒸气压为3.168kPa, 此时液态水的标准生成吉布斯自由能?f G m ?为- 237.19kJ ·mol -1 ,则水蒸气的标准生成吉布斯自由能为: (A) -245.76kJ ·mol -1 (B) -229.34kJ ·mol -1 (C) -245.04kJ ·mol -1 (D) - 228.60kJ ·mol -1 答案:D 。可以设计使25℃的液态水变为3.168kPa 的水蒸气,此为恒温恒压可逆相变

物理化学-相平衡习题汇总

第5章 相平衡 复习、讨论 基本内容: ? 相:体系内部物理性质和化学性质完全均匀的一部分。气相、液相、固相 ? 相数:体系内相的数目Φ≥1 ? 相图:描述多相体系状态随浓度、温度、压力等变量的改变而发生变化的图 形 ? 均相体系:只有一相的体系Φ=1 ? 多相体系:含多相的体系Φ>1 ? 凝聚体系:没有(或不考虑)气相的体系 ? 物系点:相图中表示体系总组成的点 ? 相点:表示某一个相的组成的点 ? 液相线:相图中表示液相组成与蒸气压关系的曲线 ? 气相线:相图中表示气相组成与蒸气压关系的曲线 ? 步冷曲线:冷却过程温度随时间的变化曲线T-t ? 独立组分数:C = S - R - R',S 为物种数,R 为体系中各物种之间独立的化学 平衡关系式个数,R’为浓度和电中性限制条件的数目。对于浓度限制条件,必须是某个相中的几种物质的浓度之间存在某种关系时才能作为限制条件。C=1单组分体系,C=2二组分体系。若没有化学变化:C=S ;含单质的体系且R ’=0:C=N ;含单质的体系且S>N :R = S – N 。 ? 自由度:确定平衡体系状态所需要的独立强度变量的数目f ≥0 ? 最低(高)恒沸点:对拉乌尔定律正(负)偏差很大的双液系的T —x 图上 的最低(高)点。恒沸点时气相组成与液相相同,具有纯物质的性质,一定压力下恒沸混合物的组成为定值(f*=C-Φ+1=1-2+1=0)。 ? 最低(高)恒沸混合物:最低(高)恒沸点对应的混合物。恒沸物是混合物 而不是化合物 ? 会溶温度(临界溶解温度):部分互溶双液系相图上的最低点或最高点 ? 转熔温度:不稳定化合物分解对应的温度 ? 共轭层:部分互溶双液系相图上的帽形区内溶液为两层 ? 相律:平衡体系中相数、独立组分数与变量数之间的关系f = C - Φ + n ? 杠杆规则:液相的物质的量乘以物系点到液相点的距离,等于气相的物质的 量乘以物系点到气相点的距离。B n B B n n l ×(X B -x B )=n g ×(y B -X B ) 单组分体系相图(p-T):水、CO 2、C 二组分体系相图(T-x):

南京大学《物理化学》(上学期)每章典型例题.doc

第一章 热力学第一定律与热化学 例题1 1mol 理想气体于27℃ 、101325Pa 状态下受某恒定外压恒温压缩到平衡,再由该状态恒容升温到97 ℃ ,则压力升到1013.25kPa 。求整个过程的W 、Q 、△U 及△H 。已知该气体的C V ,m 恒定为20.92J ?mol -1 ?K -1。 解题思路:需先利用理想气体状态方程计算有关状态: (1mol, T 1=27℃, p 1=101325Pa ,V 1)→(1mol, T 2=27℃, p 2=p 外=?,V 2=?) →(1mol, T 3=97℃, p 3=1013.25kPa ,V 3= V 2) 例题2 计算水在 θp ,-5℃ 的结冰过程的△H 、△S 、△G 。已知θ)(,,2l O H m p C ,θ )(,,2s O H m p C 及 水在 θ p ,0℃的凝固焓θm con H ?。 解题思路:水在 θp ,-5℃ 的结冰过程为不可逆过程,计算时要利用θp ,0℃结冰的可逆相变过程,即 H 2O (l ,1 mol ,-5℃ ,θp 2O (s ,1 mol ,-5℃,θp ) ↓△H 2,△S 2, △G 2 ↑△H 4,△S 4, △G 4 H 2O (l ,1 mol , 0℃,θ p H 2O (s ,1 mol ,0℃,θ p ) △H 1=△H 2+△H 3+△H 4=θ)(,,2l O H m p C (273K-268K )+θ m con H ?+θ )(,,2s O H m p C (268k-273K) △S 1=△S 2+△S 3+△S 4=θ)(,,2l O H m p C ln(273/268)+ θm con H ?/273+θ )(,,2s O H m p C ln(268/273) △G 1=△H 1-T 1△S 1 例题3 在 298.15K 时,使 5.27 克的甲醇(摩尔质量为32克) 在弹式量热计中恒容燃烧,放出 119.50kJ 的热量。忽略压力对焓的影响。 (1) 计算甲醇的标准燃烧焓 θ m c H ?。 (2) 已知298.15K 时 H 2O(l) 和CO 2(g)的标准摩尔生成焓分别为-285.83 kJ·mol -1 、- 393.51 kJ·mol - 1,计算CH 3OH(l)的θ m f H ?。 (3) 如果甲醇的标准蒸发焓为 35.27kJ·mol - 1,计算CH 3OH(g) 的θ m f H ?。

相关主题
文本预览
相关文档 最新文档