当前位置:文档之家› Gauge theories on noncommutative spaces

Gauge theories on noncommutative spaces

Gauge theories on noncommutative spaces
Gauge theories on noncommutative spaces

a r

X

i

v

:h e

p

-

t

h

/00

1

1

2

6

1

v

1

2

9

N o

v

2

Gauge theories on noncommutative spaces Albert Schwarz Abstract.I review my results about noncommutative gauge theories and about the relation of these theories to M(atrix)theory following my lecture on ICMP 2000.In my lecture on ICMP 2000I gave a short review of my results on noncom-mutative gauge theories and talked in more detail about my recent paper [9].Here I’ll skip all details referring to papers [1]-[13].I’ll list only main results of these papers.In the paper [1]it was shown that gauge theories on noncommutative tori appear naturally in consideration of compacti?cations of M(atrix)theory.The same logic can be used to obtain gauge theories on noncommutative toroidal orbifolds [14],[15],[11],[12].More precisely,if G is a subgroup of the group of symmetries of any model we can restrict ourselves to ?elds that are G -invariant up to gauge equivalence.This means that the change of a ?eld A under the action of an element γ∈G can be compensated for by gauge transformation U γ.For matrix models (i.e.in the case when A is a collection of matrices and gauge transformations are unitary transformations)this means that γ(A )=U γAU ?1γ.(1)Usually ?nite size matrices don’t satisfy this equation;one should replace (Hermit-ian)matrices by (Hermitian)operators in in?nite-dimensional Hilbert space E and

consider U γas unitary operators in this space.There exists no reason to expect that U γλ=U γU λ,but taking into account that

(U ?1γλ·U γU λ)A (U ?1γλ·U γU λ)=A

(2)it is naturally to assume that

U γλ=e iπθ(γ,λ)U γU λ

(3)One can say,that the operators U γspecify a projective representation of the group G .In the case when G =Z d the associative algebra T d

θgenerated by oper-

ators U γcan be interpreted as the algebra of functions on d -dimensional noncom-mutative torus.In other words the space E can be considered as a T d θ-module.

2ALBERT SCHWARZ

We always consider?nitely generated projective modules(direct summands in free modules(T dθ)n).In noncommutative geometry this means that we consider”vector bundles”over noncommutative tori.

The torus Tθis speci?ed by means of bilinear formθ(γ,λ)on Z d;without loss of generality one can assume that this form is antisymmetric.It will be more con-venient for us to say that a noncommutative torus is determined by antisymmetric matrixθjk corresponding to the formθ(γ,λ)in some basis of Z d.In terms of this matrix noncommutative torus can be interpreted as an algebra with unitary generators U1,...,U d satisfying relations U j U k=e2πiθjk U k U j.If A=(A1,...,A d) and the group Z d acts on A by means of translations(i.e.γ(A)=A+γ),then the solution of the equation(1)can be considered as a connection on noncommu-tative torus Tθin the sense of A.Connes[16],[17].(The notion of connection is discussed in detail at the end of the paper.)If our starting point is BFSS or IKKT matrix model[18],[19],then the above construction leads to SUSY Yang-Mills the-ory on noncommutative torus[1].Replacing Z d with semidirect product of Z d and?nite group we obtain gauge theories on noncommutative toroidal orbifolds. The appearance of noncommutative geometry can be explained not only from the viewpoint of M(atrix)theory,but also from the viewpoint of string theory as was shown in a series of papers[20]-[24],culminating by Seiberg-Witten paper[25]that contains very detailed analysis of relation between string theory and gauge theory on noncommutative spaces.

Gauge theories on noncommutative tori were studied by A.Connes and M. Rie?el,especially in two-dimensional case[26]-[28].I obtained new results about these theories focusing my attention on problems related to physics.Already in [1]it was conjectured that Morita equivalence of algebras is related to duality in physics.One says that an algebra A is Morita equivalent to the algebra?A if the category of A-modules is equivalent to the category of?A-modules.In other words, we should be able to transfer A-modules into?A-modules and?A-modules into A-modules;this correspondence should be natural(for every A-linear map?:E→E′of A-modules should be de?ned an?A-linear map??:?E→?E′of corresponding?A-modules;one requires that the correspondence?→??transforms composition of maps into composition of maps).However,to prove that gauge theories over A are related to gauge theories on?A we should be able to transfer also connections on A-modules to connections on?A-modules.I introduced a new notion of gauge Morita equivalence(in original paper[2]I used the term”complete Morita equivalence”) and proved that gauge Morita equivalence of algebras implies physical equivalence of corresponding gauge theories.It is proved in[2]that noncommutative tori T dθand

T d?θare gauge Morita equivalent if and only if there exists a matrix

A B C D

(4)

belonging to SO(d,d,Z)and obeying

?θ=(Aθ+B)(Cθ+D)?1

(5)

Here A,B,C,D are d×d matrices and SO(d,d,Z)stands for the group of2d×2d matrices with integer entries that are orthogonal with respect to quadratie form x1x d+1+...+x d x2d having signature(d,d).(The fact that the relation(5)implies Morita equivalence was proved in earlier paper[4]written together with M.Rie?el.)

GAUGE THEORIES ON NONCOMMUTATIVE SPACES3

Equivalence of gauge theories on noncommutative tori Tθand T?

θwas studied in

detail in[2],[6],[7],[8].It is closely related to T-duality in string theory;this relation was thoroughly analyzed in[5].This analysis led,in particular,to the discovery of possibility to trade noncommutativity parameter for background?eld in the expressions for BPS energies.(Almost simultaneously this fact was found in [25]at the level of action functionals;it was called background independence.)

The papers[6],[7],[8],[13]are devoted to the study of BPS?elds and BPS states in SUSY gauge theories on noncommutative tori.Analysis of BPS spectra by means of supersymmetry algebra was performed in[7].Another way to study BPS states is based on geometric quantization of moduli spaces of classical con?gurations having some supersymmetry(BPS?elds).One can identify1

2BPS states.

Instantons on noncommutative R4were analyzed in[3]by means of gener-alization of ADHM construction.The most striking feature of noncommutative instantons is the absence of small instanton singularity in moduli space of noncom-mutative instantons.Instantons on noncommutative tori were studied in[10];in particular,we constructed a noncommutative analog of Nahm transform.Instan-tons can be characterized as1

4BPS

?elds and1

4ALBERT SCHWARZ

assume that every linear combination of matrix elements ofθhaving integer coe?-cients is irrational.)This remark can be used also in many other cases;it con?rms the idea that noncommutative tori with irrationalθare simpler that commutative tori.

Gauge theories on noncommutative toroidal orbifolds were studied in[11],[12]. Fairly complete analysis of modules,of constant curvature connections and corre-sponding moduli spaces,of Morita equivalence is given for T dθ/Z2;however,the methods developed in[11],[12]work also for other toroidal orbifolds.

All results we mentioned are based on the notion of connection on A-module. There exist di?erent de?nitions of this notion,but all of them are based on the same idea:a connection should satisfy Leibniz rule.If an n-dimensional Lie algebra L acts on associative algebra A by means of in?nitesimal automorphisms(derivations) we can de?ne a connection on(left)A-module E as a collection of n linear operators ?i:E→E,i=1,...,n obeying the Leibniz rule:

?i(ae)=a·?i e+δi a·e,

where a∈A,e∈E,andδ1,...,δn are derivations corresponding to elements of a basis of Lie algebra L.(Notice,that operators?i don’t commute with multi-plication by a∈A,i.e.they are C-linear,but not A-linear.However,if?i,?′i (i=1,...,n)are two connections the di?erence?′i??i is A-linear;in other words

?′

i ??i is an endomorphism of E.)

When we consider noncommutative tori we should de?ne connections using

d-dimensional commutative Lie algebra acting on T dθby means of translations.

If we would like to de?ne connections in terms of covariant di?erential instead of covariant derivative we should assume that the algebra A is a Z2-graded associative algebra equipped with a parity reversing derivation Q:A→A.The standard assumption is that Q2=0(then A is called a graded di?erential algebra).However it is shown in[9]that one can relax this assumption requiring only that Q2a=[ω,a]. (Hereωis a?xed element of A obeying Qω=0.)If A is an associative algebra equipped with an operator Q of this kind(a Q-algebra is the terminology of[9]) we can de?ne a connection on(left)A-module E as an linear operator?:E→E obeying the Leibniz rule:

D(ae)=(?1)dega aDe+Qa·e.

The standard theory of connections(including the notion of Chern character)can be generalized to the case of modules over a Q-algebra.If P is a module over Q-algebra A and?P is a connection on P we can de?ne a structure of Q-algebra on?A=End A P by the formula?Q?=[?P,?].(Here End A P stands for an algebra of endomorphisms of A-module P,i.e.for an algebra of A-linear maps of P into itself.)Under certain conditions on P the algebra?A is Morita equivalent to A, i.e.we can transfer A-modules into?A-modules and vice versa.(If A has a unit we should require that A considered as left A-module is a direct summand of P N for some N and P is projective)Using the connection?P we can transfer connections on A-modules to connections on corresponding on?A-modules.This operation per-mits us to extend the equivalence between categories of A-modules and?A-modules to an equivalence of corresponding gauge theories.This gives a very general dual-ity theorem;SO(d,d,Z)duality of gauge theories on noncommutative tori can be derived from this general theorem[9].

GAUGE THEORIES ON NONCOMMUTATIVE SPACES5

References.

1. A.Connes,M.Douglas,and A.Schwarz,Noncommutative Geometry and Matrix Theory:Compacti?cation on Tori,JHEP02(1998),3-38

2. A.Schwarz,Morita Equivalence and Duality,Nucl.Phys.B534(1998), 720-738.

3.N.Nekrasov and A.Schwarz,Instantons on Noncommutative R4and(2,0) Superconformal Six-dimensional Theory,Comm.Math.Phys.198(1998),689-703.

4.M.Rie?el and A.Schwarz,Morita Equivalence of Multidimensional Non-commutative Tori,Intl.J.of Math10(2)(1999),289-299

5.B.Pioline and A.Schwarz,Morita Equivalence and T-Duality,JHEP9(21) (1999),1-16

6.A.Konechny and A.Schwarz,1/4-BPS States on Noncommutative Tori, JHEP.30(1999),1-14

7. A.Konechny and A.Schwarz,Supersymmetry Algebra and BPS States of super Yang-Mills Theories on Noncommutative Tori,Phys.Lett.B453(1999), 23-29

8. A.Konechny and A.Schwarz,BPS States on Noncommutative Tori and Duality,Nucl.Phys.B550(1999),561-584.

9.A.Schwarz,Noncommutative Supergeometry and Duality,Lett.Math.Phys. 50(4)(1999),309-321

10.A.Astashkevich,N.Nekrasov and A.Schwarz,On Noncommutative Nahm Transform,Comm.Math.Phys.211(1)(2000),167-182.

11.A.Konechny and A.Schwarz,Moduli Spaces of Maximally Supersymmet-ric Solutions on Noncommutative Tori and Noncommutative Orbifolds,JHEP09 (2000),1-23.

12. A.Konechny and A.Schwarz,Compacti?cation of M(atrix)Theory on Noncommutative Toroidal Orbifolds,Nucl.Phys.B591(3)(2000),667-684.

13.A.Astashkevich and A.Schwarz,Projective Modules Over Noncommutative Tori:Classi?cation of Modules with Constant Curvature Connection,Journal of Operator Theory(in press).

14.M.Douglas,D-branes and Discrete Torsion,hep-th/9807235.

15.P.M.Ho,Y.Y.Wu and Y.S.Wu,Towards Noncommutative Geometric Approach to Matrix Compacti?cation,Phys.Rev.D58(1998),26006.

16.A.Connes,C*-algebres et Geometrie Di?erentielle,C.R.Acad.Sci.Paris 290(1980),599-604.

17.A.Connes,Noncommutative Geometry,Academic Press,661pp.

18.T.Banks,W.Fischler,Shenker,and I.Susskind,M-theory as a Matrix Model:a Conjecture,Phys.Rev.D55(1997),5112.

19.N.Ishibashi,H.Kawai,I.Kitazawa,and Tsuchiya,A Large-N educed Model as Superstring,Nucl.Phys.B492(1997),467-491.

20.M.Douglas and C.Hull,D-branes and Noncommutative Torus,JHEP02 (1998),008

21.Y.-K.E.Cheung and M.Krogh,Noncommutative Geometry from0-Branes in a Background B Field,Nucl.Phys.B528(1998),185.

22.C.-S.Chu and P.-M.Ho,Noncommutative Open String and D-Brane,Nucl. Phys.B550(1999),151;Constrained Quantization of Open String in Background

B Field and Noncommutative D-Brane,Nucl.Phys.B568(2000),447.

23.V.Schomerus,D-Branes and Deformation Quantization,JHEP06(1999), 030.

6ALBERT SCHWARZ

24.F.Ardalan,H.Arfaei and M.Sheikh-Jabbari,Mixed Branes and M(atrix) Theory on Noncommutative Torus,PASCOS98;Noncommutative Geometry from String and Branes,JHEP02(1999),016;Dirac Quantization of Open Strings and Noncommutativity in Branes,Nucl.Phys.B576(2000),578-596.

25.N.Seiberg and E.Witten,String Theory and Noncommutative Geometry, JHEP09(1999),032.

26.A.Connes and M.Rie?el,Yang-Mills for Noncommutative Two-Tori,Con-temporary Math.66(1987),237-266.

27.M.Rie?el,Projective Modules over Higher-dimensional Noncommutative Tori,Can.J.Math.,Vol.XL,No.2(1998),257-338.

28.M.Rie?el,Critical Points of Yang-Mills for Noncommutative Two-Tori,J. Di?.Geom.,31(1990),535.

Department of Mathematics,University of California at Davis,Davis,CA95616 E-mail address:schwarz@https://www.doczj.com/doc/562432084.html,

化工行业标准规范

化工行业标准目录 序号化工行业标准名称标准代号单价 1 带压密封技术规范HG/T20201-2007 60.00 2 工程建设安装工程起重施工规范HG20201-200012.00 3脱脂工程施工及验收规范HG20202-2000 6.00 4化工机器安装工程施工及验收规范HG20203-200018.00 5化工金属管道工程施工及验收规范HG20225-199540.00 6工业设备、管道防腐蚀工程施工及验收规范HGJ229-199140.00 7《化工机器安装工程施工及验收规范》 (离心式压缩机) HGJ205-199230.00 8《化工机器安装工程施工及验收规范》 (中小型活塞式压缩机) HGJ206-199230.00 9铝及铝合金焊接技术规程HGJ222-199228.00 10《铜及铜合金焊接钎焊技术规程》HGJ223-199228.00 11《化学工业大、中型装置试车工作规范》HGJ231-199130.00 12《化学工业大、中型装置生产准备工作规范》HGJ232-199230.00 13《化工建设项目进口设备、材料检验大纲》HG20234-199335.00 14《化工建设项目施工设计标准》HG20235-199330.00 15《化工设备安装工程质量检验评定标准》HG20236-199340.00 16《化学工业工程建设交工技术文件规定》HG20237-199460.00 17钢筋混凝土独立式管架通用图HG21539-1992260.00 18钢筋混凝土纵粱式管架通用图HG21540-1992250.00 19焊接H型钢标准节点通用图HG21541-1992260.00 20单轨悬挂吊车梁通用图HG21542-199280.00 21圆形塔平台通用图HG21543-1992150.00 22预埋件通用图HG21544-2006100.00 23 地脚螺栓通用图HG21545-2006 50.00 24钢筋混凝土桁架式管架通用图HG21552-1993320.00 25钢铺板通用图HG21553-199370.00 26《钢制管法兰、垫片紧固件》HG20592-20635-1997150.00 27《钢制人孔和手孔》HG21514-21535-2005148.00 28《钢筋混凝土带式输送机栈桥通用图》HG/T21611.1-1996160.00

美标 板材厚度对照

Sheet Metal Thickness Gauges Steel data from Caloritech, for heavier gauges also from Engineer's Edge. Aluminum data from Festiva Tech. Gauge (ga)Standard Steel Thickness (inches) Galvanized Steel Thickness (inches) Aluminum Thickness (inches) 3 0.2391 0.2294 4 0.2242 0.2043 5 0.2092 0.1819 6 0.1943 0.1620 7 0.1793 0.1443 8 0.1644 0.1285 9 0.1495 0.1532 0.1144 10 0.1345 0.1382 0.1019 11 0.1196 0.1233 0.0907 12 0.1046 0.1084 0.0808 13 0.0897 0.0934 0.0720 14 0.0747 0.0785 0.0641 15 0.0673 0.0710 0.0571 16 0.0598 0.0635 0.0508 17 0.0538 0.0575 0.0453 18 0.0478 0.0516 0.0403 19 0.0418 0.0456 0.0359 20 0.0359 0.0396 0.0320 21 0.0329 0.0366 0.0285 22 0.0299 0.0336 0.0253 23 0.0269 0.0306 0.0226 24 0.0239 0.0276 0.0201 25 0.0209 0.0247 0.0179 26 0.0179 0.0217 0.0159 27 0.0164 0.0202 0.0142 28 0.0149 0.0187 0.0126 29 0.0135 0.0172 0.0113

TSG 21-2015固定压力容器安全技术监察规程 3

TSG特种设备安全技术规范TSG 21—2015 固定式压力容器安全技术 监察规程 Supervision Regulation on Safety Technology for Stationary Pressure Vessel 中华人民共和国国家质量监督检验检疫总局颁布 2015年月日

TSG R1—2015 特种设备安全技术规范 —2—修订说明 1.以《固定式压力容器安全技术监察规程》、《非金属压力容器安全技术监察规程》、《简单压力容器安全技术监察规程》、《超高压容器安全技术监察规程》(及其2013年修订稿)、《压力容器定期检验规则》、《压力容器使用规则》、《压力容器监督检验规则》等七个规范为基础,内容上不作过大的技术改动,进行上述规程内容的合并以及逻辑关系上理顺,统一并且进一步明确基本安全要求,形成关于固定式压力容器的综合规范(大规范); 2.整理国家质检总局近年来针对压力容器安全监察的有关文件,汇总《固定式压力容器安全技术监察规程》宣贯、实施中存在的具体问题,收集网上咨询意见,增补相应内容,重点解决当前存在的突出问题; 3.开展相关的调研工作,重点解决铸钢、铸铁压力容器材料技术要求(安全系数、化学成分、力学性能和适用范围),增加非焊接结构容器高强钢材料技术要求;完善超高压容器技术要求,完善非金属压力容器,如石墨、玻璃钢的基本安全要求,简化塑料压力容器监管方式;完善安全附件的基本要求,包括安全附件的种类、范围界定、型式试验要求及产品性能要求;推广压力容器设计风险评估报告;统一固定式压力容器分类的方法; 4.按照固定式压力容器各环节分章进行描述,每个环节的边界尽可能清晰,明确相应的主体责任(如耐压试验介质、压力、温度,无损检测方法、比例,热处理等技术要求明确由设计提出并且放到相应设计章节); 5.理顺法规与标准的关系,建立满足法规安全基本要求的协调标准概念; 6.进一步明确基本安全要求的内容,尽量不采用引用标准的方式描述,而是直接阐述其内容;对介质特性、产品结构、试验方法的限定要求,引用相应标准。

各种单位换算及公式

各种单位换算及公式 长度单位面积单位 1 in = 25.4 mm 1 in 2 = 6.45 cm2 1 ft = 0.3048 m 1 ft2 = 0.09 3 m2 1 micron = 0.001 mm 体积单位 1 litre = 0.001 m3 1 cu.ft. = 0.0283 m3 1 cu.in. = 16.39 cm3 1 fluid oz.(imp) = 28.41 mL 1 fluid oz.(us) = 29.57 mL 1 gal(imp) = 4.546 L 1 gal(us) = 3.79 L 温度单位 (°F-32)X5/9=℃K-273.15 = ℃ 功及能量单位 1 Nm = 1 J 1 kgm = 9.807 J 1 kW/hr = 3.6 MJ 1 lbft = 1.356 J 功率单位 1 Nm/sec = 1 W 1 lbft/sec = 1.356 W 1 kgm/sec = 9.807 W 1 Joule/sec = 1 W 1 H.P.(imp) = 745.7 W 质量单位 1 lb = 453.6 g 1 tonne = 1000 kg 1 ton(imp) = 1016 kg 1 ton(us) = 907. 2 kg

流量计算公式 Q = Cv值X 984 = Kv值X 1100 Cv = So ÷ 18 力单位 1 kgf = 9.81 N 1 lbf = 4.45 N 1 kp(kilopound) = 9.81 N 1 poundal = 138.3 mN 1 ton force = 9.964 kM 力矩单位 1 kgm = 9.807 Nm 1 ft. poundal = 0.0421 Nm 1 in lb = 0.113 Nm 1 ft lb = 1.356 Nm 压力单位 1 psi = 6.89 kPa 1 kgf/cm 2 = 98.07 kPa 1 bar = 100 kPa 1 bar = 14.5 psi 1 mm mercury = 133.3 Pa 1 in mercury = 3.39 kPa 1 Torr = 133.3 Pa 1 ft water = 0.0298 bar 1 bar = 3.33 ft water 1 atmosphere = 101.3 kPa 1 cm water = 97.89 Pa 1 in water = 248.64 Pa 换算表 1psi=6.895kPa=0.07kg/cm2=0.06895bar=0.0703atm 1standard atmosphere=14.7psi=101.3kPa=1.01325bar 1kgf/cm2 = 98.07kPa=14.22psi = 28.96ins mercury 1m3 = 1000000cm3 1cu ft/min = 28.3 l/min

承压设备带压密封技术规范

GB/T*****—2008 承压设备带压密封技术规范 编制说明 前言 《承压设备带压密封技术规范》标准由全口锅炉压力容器标准化技术委员会提出并归口。于2007年经国家标准化管理委员会在第五批国家标准制修订计划中批准。 在全国锅炉压力容器标准化技术委员会的指导下,该标准主要起草单位翔悦密封材料有限公司,于2005年起进行标准起草准备工作,于2006年上报该标准立项申报稿。为完善充实该标准,全国锅炉压力容器标准化技术委员会于2007年元月在北京召开了有带压密封技术研究和应用单位参加的会议并成立标准编制组。 为了保证该标准的编制质量,组织召开多次会议,确定编制原则和编写大纲。在编制组内成立了《承压设备带压密封技术规范》编制组。完成初稿后经多次修改,并在天津市翔悦密封材料有限公司网站上广泛征求意见。于2008年8月由全国锅炉压力容器标准化技术委员会固定式压力容器分会将征求意见稿在网上向全国征求意见。对提出的建议经认真研究贯彻到该标准中,力求完善准确。 1、编制目的和意义 带压密封技术在我国于1984年通过省部级技术鉴定,填补了国内空白,属于新型检维修技术。带压密封综合技术包括:包容泄漏部位的夹具、填充密封空腔形成新的密封比压的密封剂、注入密封剂的专用工具和为建立新的密封结构实施的封堵操作技术等四部分。 通过国内外查新未见同类国家标准,该标准是以多年应用实践为基础,结合已进行的科学实验和检测数据作为依据编制的。 带压密封技术应用有以下特点: (1)带压密封技术施工,是在泄漏介质,带温带压喷射工况下封堵,多数介质带有不同的毒性,而且泄漏部位,大部分属于压力容器压力管道,故施工有一定的风险性。因此执行相应安全规范成为必要的因素。 (2)由于带压密封技术适应性广泛,对连续化流程企业的长周期运行,具有显著的企业经济效益和社会效益,因此,目前在石油、化工、冶金、核电、热电、医药等行业广泛应用。(3)带压密封技术必须将四个组成部分协调才能收到好的效果,尤其是泄漏介质的复杂性,使技术成为需多门学科结合起来的边缘技术,带压密封的动态过程,使得经验性非常突出。 为规范带压密封施工应用操作,提高作业的安全性和成功率,特编制该标准。 2、标准编制的指导原则 在编写过程中我们主要基于标准的内容应要点突出,溯源有科学依据,便于和方便使用,(1)带压密封技术基础理论是指导带压密封操作的依据。对泄漏部位进行包容或覆盖、形成一定容积容纳密封剂的空腔,用专用工具将密封剂注入到密封空腔并形成高于泄漏介质压力的密封比压、终止泄漏,建立新的密封结构。 (2)控制密封空腔内的密封剂挤压力,既保持包容或覆盖泄漏部位的包容物(固定夹具、钢带)的稳定,同时又必须保证泄漏法兰螺栓和原泄漏结构不致超载,又能实现密封空腔内的密封剂致密。都是以合理控制密封剂挤压力为基本条件。

设备润滑技术规范

设备润滑技术规范(试行) 定期按照标准对使用设备进行润滑油加注、换油是设备运行过程中减缓磨损,提高使用效率,延长使用寿命,保障安全运行,使之处于完好状态的重要保证,为了更好使用设备,确保有效完成生产任务,特制订本规范。 1、各部门要严格执行本规范内相关的加油、换油规范,认真检查设备相关润滑部位的油质、油量,及时处理润滑缺陷,详细做好加换油记录。 2、维护好润滑用具,做到专油专具,即每一品类润滑油都要有专门的加油油具并都贴上标识,不得混用。 3、加油、换油时润滑油必须严格注意油的品质,严禁杂质进入设备,必要时对润滑油先进行过滤。 4、机修工在对设备进行定期维护,小、大、中修后必须按本规范对设备进行清洗、换油。 5、加油、换油过程中各设备的油位控制必须符合该机器油位标准。

油位标准以标准操作规程为准。 6、设备长时间停止使用的,使用车间应通知机修对该设备进行维修保养。机修要在检维修结束后放光设备内的润滑油,并用清洁的润滑油冲洗油箱后将油放出,并注入新的润滑油后封存设备。 7、各部门要对使用的设备加油、换油时间作出明确的时间规定,并在重新制作设备管理卡时写进此内容。 8、设备运行时严禁加注润滑油。 9、设备运行或静止时严禁带压加注润滑油。 10、设备运行时严禁换油。 11、如因停产或生产没有按时间要求进行加油、换油的则顺延到具备条件时进行加换油,但不得超过规定期限时间的50%。 12、使用部门要对使用设备设立专门的加油记录。换油记录由换油者负责在设备检修记录内以检修项目填写。

13、设备加油工作由设备使用部门自行安排相关人员负责;设备换油工作由机修工结合该设备的检维修计划时间安排换油或者在机修工的指导下由设备使用部门安排换油。 14、使用部门对加油、换油方法需要进行专门培训的,由使用部门提出申请,设备科将给予专门的培训。 15、对相关部门执行本规范不力的,视情况由设备科提出整改、限期整改、责令整改意见并使情况予以相应的处罚。 16、本规范自公布之日起试行。 附:各部门设备润滑技术规范

带压堵漏技术规范书

神华神东电力有限责任公司神东热电公司带压堵漏技术规范书 发包人:神华神东电力有限责任公司神东热电公司 承包人: 二○一一年十一月八日

目录 1. 总则 (1) 2. 外部条件和运行环境 (2) 3. 主要技术规范 (3) 4. 带压堵漏范围 (11) 5. 服务职责 (12) 6. 质量保证和试验 (16) 7. 报价内容 (17)

1. 总则 1.1本技术规范书适用于神东电力公司上湾热电厂承压管件和大柳塔热电厂承压管件的带压堵漏。它提出了带压堵漏方面的技术要求。 1.2本技术规范书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,施工单位应提供符合本规范书和工业(行业)标准的施工工艺及方案。 1.3在投标工程中投标方没有以书面形式对本规范书的条文提出异议,则意味着投标方在施工过程以及施工质量完全符合招标技术规范书的要求。 1.4本规范书所使用的标准如遇与投标方所执行的标准发生矛盾,应按较高标准执行。 1.5本技术规范书作为招标文件的技术附件,投标方要认真审阅,按照技术规范书的要求进行报价。

2. 外部条件和运行环境 2.1室外气象条件 厂址:内蒙古鄂尔多斯市伊旗上湾镇以及大柳塔镇 ?气象台站位置:北纬39°34′,东经109°44′,海拔高 度1097.50~1150m ?冬季采暖室外计算温度-18℃ ?冬季通风室外计算温度-12℃ ?夏季通风室外计算温度26℃ ?冬季空气调节室外计算温度-21℃ ?夏季空气调节室外计算温度30℃ ?夏季空调日平均室外计算温度:25℃ ?冬季空气调节室外计算相对湿度:54 % ?最热月月平均室外计算相对湿度:59 % ?夏季室外平均风速 3.6m/s ?冬季室外平均风速 3.6m/s ?夏季主导风向及频率NW—16 %;C—21 % ?冬季主导风向及频率C—11 %;S—10 % ?夏季大气压力872.1hPa ?冬季大气压力863.8hPa ?日平均温度≤+5°C的天数:163 天 ?年平均温度:18℃ ?极端最低温度:-29.6℃ ?极端最高温度:36.1℃ ? 2.2.2电源参数 2.2 所提供的电源参数为:AC 380/220V,50Hz。

压力单位换算方法

工程上常用的是兆帕(MPa):1MPa=1000000Pa。 1个标准大气压力=1.00336×0.098MPa=0.10108MPa≈0.1Mpa。 1bar=0.1MPa 压力的法定单位是帕斯卡(Pa):1Pa=1N/㎡(牛顿/平方米)。 压力单位换算: 1MPa=1000kPa 1kPa=10mbar=101.9716 mmH2O = 4.01463imH2O 10mWC=1bar=100kPa bar 巴= 0.987 大气压= 1.02 千克/平方厘米= 100 千帕= 14.5 磅/平方英寸 PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi 1psi=6.895kPa=0.06895bar

1兆帕(MPa)=145磅/英寸2(psi)=10.2千克/厘米2(kg/cm2)=10巴(bar)=9.8大气压(atm) 1磅/英寸2(psi)=0.006895兆帕(MPa)=0.0703千克/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm) 1巴(bar)=0.1兆帕(MPa)=14.503磅/英寸2(psi)=1.0197千克/厘米 2(kg/cm2)=0.987大气压(atm) 1大气压(atm)=0.101325兆帕(MPa)=14.696磅/英寸2(psi)=1.0333千克/厘米2(kg/cm2)=1.0133巴(bar) ------------------------------------------------------------------------------------- 压力单位换算方法 1. 1atm=0.1MPa=100KPa=1公斤=1bar=10米水柱=14.5PSI 2.1KPa=0.01公斤 =0.01bar=10mbar=7.5mmHg=0.3inHg=7.5torr=100mmH2O=4inH2O 3. 1MPa=1N/mm2 14.5psi=0.1Mpa 1bar=0.1Mpa 30psi=0.21mpa,7bar=0.7mpa 现将单位的换算转摘如下: Bar---国际标准组织定义的压力单位。 1 bar=100,000Pa 1Pa=F/A, Pa: 压力单位, 1Pa=1 N/㎡ F : 力, 单位为牛顿(N) A: 面积, 单位为㎡ 1bar=100,000Pa=100Kpa 1 atm=101,325N/㎡=101,325Pa 所以,bar是一种表压力(gauge pressure)的称呼。

设备密封管理规定

设备密封管理规定 1、主题内容与适用范围 化工企业历来把设备密封管理与考核作为一项十分重要的工作,因为生产过程中发生泄露关系到安稳长满优生产和员工的生命安全,为此设备部把无泄漏作为设备密封管理的重要内容。为达到创建无泄漏设备、无泄漏分厂、无泄漏企业的目的,特制定本规定。 本规定适用于全公司各分厂。 2、管理内容及要求 2.1设备密封管理 2.1.1系统开车之后,要做好热紧或冷紧工作。 2.1.2化工操作人员必须经过专业培训,考试合格持证上岗。每班要进行认真巡检,发现漏点要做好记录挂漏点标示牌并及时通知专业维修人员进行处理。凡是不停车可以处理的必须在本班内进行消缺堵漏,凡是不停车不能处理的要做好准备一旦有机会立即处理。 2.1.3对运行中带有压力的漏点,所属分厂发现后要立即以书面形式报设备部,设备部要立即组织或联系外委单位在第一时间进行带压堵漏,严格防止事故扩大。堵漏前要对堵漏地点进行测厚分析,并编写堵漏方案,方案经审批后,方可实施堵漏。 2.1.4专业维修人员达到“四懂三会三好”,遵守服务承诺。(四懂:懂结构,懂性能,懂原理,懂用途;三会:会操作,会维护保养,会排除故障;三好:用好,管好,修好。) 2.1.5认真执行设备安全操作规程。

⑴、启动前严细检查。 ⑵、运行中认真巡检,各项指标符合要求,做到“四不准”(不准超温、不准超压、不准超速、不准超负荷)。 ⑶、停车后妥善处理,不把问题交给下一班。 2.1.6设备、管线、表盘、支架、基础、地面、房屋建筑要达到“五不漏”(不漏水、不漏气、不漏油、不漏液、不漏煤)。 2.1.7开展创建“完好设备”活动。 ⑴、完好设备标准 ①、主辅机零部件齐全、质量符合要求; ②、仪表、仪器、信号、连锁等各种安全装置、自动调节装置完整齐全、灵敏、准确; ③、基础机座稳固可靠,各部位连接紧固; ④、管线、阀门、支架安装牢固,标志分明; ⑤、防腐、保温、防冻设施完整有效。 ⑵、设备运转正常,性能良好,达到铭牌出力或核定能力 ①、设备润滑良好,油质符合要求,做到“五定”“三级过滤”; ②、无振动、松动、杂音等不正常现象; ③、各部位温度、压力、转速、流量、电流等运行参数符合要求; ④、生产能力达到铭牌出力或核定能力。 ⑶、技术资料齐全、准确。 ①、设备档案完整。 ②、验收及试车记录齐全; ③、运行时间记录、统计真实;

AWG-标准线径对照表

AWG 标准线径对照表 线径的粗细是以号数(xxAWG)来表示的,数目越小表示线径愈粗,所能承载的电流就越大,反之则线径越细,耐电流量越小。例如说:12号的耐电流量是20安培,最大承受功率是2200瓦,而18号线的耐电流量则是7安培,最大承受功率是770瓦。 为什么AWG号数越小直径反而越大?如这么解释你就会明白,固定的截面积下能塞相同的AWG线的数量,如11#AWG号数可塞11根而15#AWG号数可塞15根,自然的15#AWG的单位线径就较小。 美规线径值单一导体或群导体【各正值或负值】的线径值(Gauge)是以圆或平方厘米(mm2) 量测而得,平方厘米不常用在量测线径值,由于牵涉到不正确,因一般大部份的导体形体,包含长方形及其他怪异形状。因此我们拿全部的量测以圆平方厘米(c/m)为参考值 群导体计算的方法或公式: 加上单一导体的线径值总和,并比较上表求得。如果值落入两者之间,取比较少的值。 40股群导体线的线径值为,如每一芯为24 Guage = 40 x 405 c/m = 16,200 c/m = 9 AWG(得出值落入12960c/m和16440c/m之间) 快速求得线径值的方法: 两条(AWG)相加时,该单一线径值减3. ex. 2 x 18 AWG = (18-3=) 15 AWG 三条(AWG)相加时,该单一线径值减5. ex. 3 x 24 AWG = (24-5=) 19 AWG 四条(AWG)相加时,该单一线径值减6. ex. 4 x 10 AWG = (10-6=) 04 AWG 请记得“快速求得线径值的方法”一些案例也许边际会不正确,只采用此方式为大原则 AWG 标准线径规格对照表

常用钢板厚度规格大全

常用钢板厚度规格大全: 0.2;0.25;0.3;0.35;0.4;0.45;0.5;0.55;0.6;0.7; 0.75;0.8;0.9;1.0;1.1;1.2;1.25;1.4;1.5;1.6;1.8; 2.0;2.2;2.5;2.8; 3.0;3.2;3.5;3.8; 4.0;4.5; 5.0; 5.5; 6.0; 7.0; 8.0; 9.0;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29;30;32;34;36;38;40;42;44;46;48;50;52;54;56;58;60 无缝钢管的规格尺寸 1寸钢管公称口径是25mm.;外径33.70mm;壁厚3.2mm 4分、6分、1寸是英制说法。是按1英寸=25.4mm来算的,取近似数。 4分管1\2"---公称口径15mm ;外径(公称尺寸)21.30mm;壁厚2.80mm. 6分管3\4"---公称口径20mm ; 外径(公称尺寸)26.90mm; 壁厚2.80mm. 5/4’’--公称口径32mm; 外径(公称尺寸)42.40mm; 壁厚3.50mm. 1吋管1"---公称口径25mm ; 外径(公称尺寸)33.70mm; 壁厚3.20mm. 2吋管2’’---公称口径50mm; 外径(公称尺寸)60.3mm; 壁厚3.80mm. 3吋管3’’----公称口径80mm; 外径(公称尺寸)88.90mm; 壁厚4.0mm 4吋管4’’----公称口径100mm; 外径(公称尺寸)114.30mm; 壁厚4.0mm. 也就是说平时家用的是4分管直径是15,或者2寸管直径就是50 最新圆管理论重量表大全|常用圆管理论重量价格表|圆钢尺寸规格 表 最新圆管理论重量表大全|常用圆管理论重量价格表|圆钢尺寸规格表 圆钢材质:10#、20#、35#、45#、Q215-235、20Cr、40Cr、20CrMo、35CrMo、42CrMo、40CrNiMo、GCr15、65Mn、50Mn、50Cr、3Cr2W8V、

带压密封堵漏技术国家现行标准术语

带压密封(堵漏)技术国家现行标准术语汇编 一、泄漏术语 1)泄漏leaking 高能流体经隔离物缺陷通道向低能区侵入的负面传质现象。 2)界面泄漏interface leaking 高能流体通过密封面间隙向低能区侵入的传质现象。 3)参透泄漏permeating leaking 高能流体通过密封材料毛细管向低能区侵入的传质现象。 4)破坏泄漏destroyed leaking 高能流体通过隔离体裂纹、孔洞及已失效的密封件向低能区侵入的剧烈传质现象。 5)流体fluid 泛指液体、气体、气液混合体、含有固体颗粒的气体或液体。 6)隔离物spacer 特指各种密封构件和物理隔离物;也泛指承压设备、管道、器皿等的可能发生泄漏的壁面和部位。 7)缺陷通道destroying channel 密封副间隙、毛细管、腐蚀孔洞,承压设备上的裂纹、焊接缺陷、冲刷孔洞,物品上的穿透裂纹及孔洞等。 8)负面传质negative mass transfer 不希望发生的流体介质泄漏走向。 9)泄漏介质leaking medium

经隔离物缺陷通道淌失的流体。 10)极度危害介质exceeding hazard medium GB 5044《职业性接触毒物危害程度分级》中表2所规定的介质。 二、带压xx术语 1)xxseal 隔离高能流体向低能区进行负面传质的有效措施。 2)带压密封online sealing 流体介质发生泄漏时,创建新密封结构为目的的技术手段。 3)带压密封工程online sealing engineering 以流体泄漏状态下实现再密封为研究对象,泄漏部位勘测数据为依据,应用基础科学原理及密封理论,结合工程实践活动和科学试验中所积累的理论和技术经验,创建带压密封装置为目的的一门新兴的工程技术学科。 4)带压密封工程原理online sealing engineering principle 应用流体力学的原理,以工程力学和机械科学为理论基础,通过研究流体泄漏状态下的泄漏压力与密封压力间的平衡关系,提供带压密封理论和方法。 5)注剂式带压密封online sealing for injecting sealant 向特定的封闭空腔注射密封注剂,创建新的密封结构为目的的一种技术手段。 6)密封比压sealing pressure 紧固法密封tightening leak sealing 通过紧固钢带、卡箍或缠绕带拉紧使密封材料产生有效密封比压终止泄漏的密封方法。

[修订]钢板规格型号、厚度尺寸大全

[修订]钢板规格型号、厚度尺寸大全钢板规格型号、厚度尺寸大全 钢板是钢材四大品种(板、管、型、丝)之一,在发达国家,钢板产量占钢材生产总量50,以上,随着我国国民经济的发展,钢板生产量逐渐增长。 钢板是一种宽厚比和表面积都很大的扁平钢材。钢板按厚琊分为薄板和厚板两大规格。薄钢板是用热轧或冷轧方法生产的厚度在0.2-4mm之间的钢板。薄钢板宽度在500-1400mm之间。根据不同的用途,薄钢板采用不同材质钢坯轧制而成。通常采用材质有普碳钢、优碳钢、合金结构钢、碳素工具钢、不锈钢、弹簧钢和电工用硅钢等。它们主要用于汽车工业、航空工业、搪瓷工业、电气工业、机械工业等部门。薄钢板除轧制后直接交货之外,还有经过酸洗的、镀锌和镀锡等种、类。 厚钢板是厚度在4mm以上的钢板的统称,在实际工作中,常将厚度小于20mm 的钢板称为中板,厚度,20mm至60mm的钢板称为厚板,厚度, 60mm的钢板则需在专门的特厚板轧机上轧制,故称特厚板。厚钢板的宽度从0.6mm-3.0mm。厚板按用途又分造船钢板、桥梁钢板、锅炉钢板、高压容器钢板、花纹钢板、汽车钢板、装甲钢板和复合钢板等。钢板的一个分支是钢带,钢带实际上是很长的薄板,宽度比较小,常成卷供应,也称为带钢。钢带常在多机架连续式轧机上生产,切成定尺长度后就是钢带,因此生产率比单张机制时高。一、中、厚板 (一)普通中、厚钢板 1、普碳钢沸腾钢板(GB3274-88) 普碳钢沸腾钢板顾名思义是由普通碳素结构钢的沸腾钢热轧制成的钢板。沸腾钢是一种脱氧不完全的钢材,钢液含氧量较高,当钢水注入钢锭模后,碳氧反应产生大量气体,造成钢液呈沸腾状态而得名。

各种单位换算及公式

各种单位换算及公式

各种单位换算及公式 长度单位面积单位 1 in = 25.4 mm 1 in 2 = 6.45 cm2 1 ft = 0.3048 m 1 ft 2 = 0.09 3 m2 1 micro n = 0.001 mm 体积单位 1 litre = 0.001 m3 1 cu.ft. = 0.0283 m3 1 cu.i n. = 16.39 cm3 1 fluid oz. (imp) = 28.41 mL 1 fluid oz. (us) = 29.57 mL 1 gal(imp) = 4.546 L 1 gal(us) = 3.79 L 温度单位 (°-32)X5/9= C K-273.15 = C 功及能量单位 1 Nm = 1 J 1 kgm = 9.807 J 1 kW/hr = 3.6 MJ 1 Ibft = 1.356 J 功率单位 1 Nm/sec = 1 W 1 lbft/sec = 1.356 W 1 kgm/sec = 9.807 W 1 Joule/sec = 1 W 1 H.P.(imp) = 745.7 W

质量单位 1 to nne = 1000 kg 1 lb = 453.6 g

流量计算公式 Q = Cv 值X 984 = Kv 值X 1100 Cv = So 48 力单位 1 kgf = 9.81 N 1 Ibf = 4.45 N 1 kp(kilopou nd) = 9.81 N 1 pou ndal = 138.3 mN 1 ton force = 9.964 kM 力矩单位 1 kgm = 9.807 Nm 1 ft. poun dal = 0.0421 Nm 1 in lb = 0.113 Nm 1 ft lb = 1.356 Nm 压力单位 1 psi = 6.89 kPa 1 kgf/cm 2 = 98.07 kPa 1 bar = 100 kPa 1 bar = 14.5 psi 1 mm mercury =133.3 Pa 1 in mercury =3.39 kPa 1 Torr = 133.3 Pa 1 ft water = 0.0298 bar 1 bar = 3.33 ft water 1 atmosphere = 101.3 kPa 1 cm water = 97.89 Pa 1 in water = 248.64 Pa 换算表 1psi=6.895kPa=0.07kg/cm2=0.06895bar=0.0703atm 1sta ndard atmosphere=14.7psi=101.3kPa=1.01325bar 1kgf/cm2 = 98.07kPa=14.22psi = 28.96i ns mercury 1m3 = 1000000cm3

常用钢板厚度规格大全

钢板是钢材四大品种(板、管、型、丝)之一,在发达国家,钢板产量占钢材生产总量50%以上,随着我国国民经济的发展,钢板生产量逐渐增长。钢板是一种宽厚比和表面积都很大的扁平钢材。钢板按厚度分为薄板和厚板两大规格。薄钢板是用热轧或冷轧方法生产的厚度在0.2-4mm之间的钢板。薄钢板宽度在500-1400mm之间。根据不同的用途,薄钢板采用不同材质钢坯轧制而成。通常采用材质有普碳钢、优碳钢、合金结构钢、碳素工具钢、不锈钢、弹簧钢和电工用硅钢等。它们主要用于汽车工业、航空工业、搪瓷工业、电气工业、机械工业等部门。薄钢板除轧制后直接交货之外,还有经过酸洗的、镀锌和镀锡等种类。厚钢板是厚度在4mm以上的钢板的统称,在实际工作中,常将厚度小于20mm的钢板称为中板,厚度>20mm至60mm 的钢板称为厚板,厚度> 60mm的钢板则需在专门的特厚板轧机上轧制,故称特厚板。厚钢板的宽度从0.6mm-3.0mm。厚板按用途又分造船钢板、桥梁钢板、锅炉钢板、高压容器钢板、花纹钢板、汽车钢板、装甲钢板和复合钢板等。钢板的一个分支是钢带,钢带实际上是很长的薄板,宽度比较小,常成卷供应,也称为带钢。钢带常在多机架连续式轧机上生产,切成定尺长度后就是钢带,因此生产率比单张机制时高。一、中、厚板(一)普通中、厚钢板 1、普碳钢沸腾钢板(GB3274-88)普碳钢沸腾钢板顾名思义是由普通碳素结构钢的沸腾钢热轧制成的钢板。沸腾钢是一种脱氧不完全的钢材,钢液含氧量较高,当钢水注入钢锭模后,碳氧反应产生大量气体,造成钢液呈沸腾状态而得名。沸腾钢含碳量低,且由于不用硅铁脱氧,故钢中含硅

量常<0.07%。沸腾钢的外层是在沸腾状态下结晶的,所以表层纯净、致密,表面质量好,加工性能良好。沸腾钢没有大的集中缩孔,用脱氧剂少,钢材成本低。沸腾钢心部杂质多,偏析较严重,力学性能不均匀,钢中气体含量较多,韧性低、冷脆和时效敏感性较大,焊接性能较差,故不适用于制造承受冲击截荷,在低温下工作的焊接结构件和其他重要结构件。(1)主要用途沸腾钢板大量用制造各种冲压件、建筑及工程结构和一些不太重要的机器结构和零件。(2)材质的牌号、化学成分和力学性能符合GB700-79(88)(普通碳素结构钢技术条件)中沸腾钢的规定。参阅(型钢)等部分。(3)钢板规格尺寸热轧厚钢板厚度为4.5-200mm。(4)生产单位普碳沸腾钢板由鞍钢、武钢、马钢、太钢、重庆钢厂、邯郸钢铁总厂、新余钢厂、柳州钢厂、安阳钢钢公司、营口中板厂和天津钢厂等生产。 2、普碳钢镇静钢板(GB3274-88)普碳镇静钢钢板是由普通碳素结构钢镇静钢坯热轧制成的钢板。镇静钢是脱氧完全的钢,钢液在注锭前用锰铁、硅铁和铝等进行充分脱氧,钢液在钢锭模中较平静,不产生沸腾状态,故得名为镇静钢。镇静钢的优点是化学成分均匀,所以各部分的机械性能也均匀,焊接性能和塑性良好、抗腐蚀性较强。但表面质量较差,有集中缩孔,成本也较高。(1)主要用途普通镇静钢板主要用于生产在低温下承受冲击的构件、焊接结构及其他要求较高强度的结构件。(2)材质的牌号、化学成分和力学性能符合GB700-79(88)(普通碳素结构钢技术条件)中镇静钢的规定。参阅型钢等部分。(3)钢板规格尺寸热轧厚板厚度4.5-200mm。(4)生产单位普碳镇静

带压堵漏作业规范

带压堵漏作业规范 1、定义:带压堵漏技术是在运行状态下对管道、法兰、阀门的泄漏部位(原来封闭空腔或新建立的空腔)注入密封剂而实现消除泄漏的临时性应急措施(不包括焊接打套部分)。 2、级别划分: 2.1、为有利于带压堵漏技术应用管理,根据带压堵漏技术及封堵条件的不同,将注胶堵漏作业分为两个等级。同时具备下列条件为一类作业: 1)泄漏点温度:-20℃<T≤300℃; 2)泄漏点压力:P≤4.0MPa; 3)泄漏介质:空气、水、水蒸汽、油类、酸、碱等危害性较小的介质; 4)泄漏部位:法兰公称直径Φ≤600毫米的法兰密封面泄漏;5)管道、阀门泄漏部位在地面或有围栏的固定平台处作业。 2.2、具备下列情况之一的为二类作业: 1)泄漏点温度:300℃<T<650℃; 2)泄漏点压力:4.0MPa<P<32MPa; 3)泄漏介质:毒性危害程度为中度、高度的介质如DMF、四氯化碳、氯、氟化氢; 3、各类低温压力容器及管道应用带压堵漏无安全保障时,不采用带压堵漏,而按有关压力容器及管道规程管理。有下列情况之一

者,不能进行带压注胶堵漏作业: 1)毒性程度为极度的介质如苯、氯乙烯等; 2)设备主要受压元件及管道因裂纹而产生的泄漏部位; 3)高压、高温管道漏点; 4)管道腐蚀、冲刷减薄状况不清楚的泄漏点; 5)由于介质泄漏,使螺栓承受高于原来设计使用温度的泄漏点;6)由于介质泄漏,易使螺栓受到腐蚀的泄漏点; 7)堵漏现场安全措施不符合企业安全规定。 4、带压注胶堵漏作业的相关要求: 1)带压堵漏的施工单位必须设技术负责人,并配备必要的检测仪器及可靠的的堵漏工机具。施工过程中,现场专人负责带压堵漏技术的现场操作及安全措施的落实,并对施工质量和可靠性负责。2)带压堵漏施工前应做好准备工作。专业技术人员和施工操作人员要到泄漏现场详细调查和勘测,进行强度核算,提出具体施工方案,制定有效的操作要求和防护措施。 3)凡应用带压堵漏的作业人员必须经专业培训并持证操作。 4)凡经培训获证的作业人员中,应有取得带压密封专用夹具设计资格的人员,否则只能组织进行一类作业。 5)严格执行带压堵漏相关的国家劳动安全技术标准。高压、高温、剧毒介质管道出现泄漏情况时,要及时进行停车处理,原则上不允许带压堵漏或带压紧固。 5、专用夹具规定:

常用线规号码与线径对照表

常用线规号码与线径对照表

线规SWG BWG BG AWG 号码英寸毫米英寸毫米英寸毫米英寸毫米 7/0 6/0 5/0 4/0 3/0 2/0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0.500 0.464 0.432 0.400 0.372 0.348 0.324 0.300 0.276 0.252 0.232 0.212 0.192 0.176 0.160 0.144 0.128 0.116 0.104 0.092 0.080 0.072 0.064 0.056 0.048 0.040 0.036 0.032 0.0280 0.0240 0.0220 0.0200 0.0180 12.700 11.786 10.973 10.160 9.449 8.839 8.230 7.620 7.010 6.401 5.893 5.385 4.877 4.470 4.046 3.658 3.251 2.946 2.642 2.337 2.032 1.829 1.626 1.422 1.219 1.016 0.914 0.813 0.711 0.610 0.559 0.508 0.457 -- -- 0.500 0.454 0.425 0.330 0.340 0.300 0.284 0.259 0.238 0.220 0.203 0.180 0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049 0.042 0.035 0.032 0.028 0.025 0.022 0.020 0.018 -- -- 12.700 11.532 10.795 9.652 8.639 7.620 7.214 6.579 6.045 5.588 5.156 4.572 4.191 3.759 3.404 3.048 2.769 2.413 2.108 1.829 1.651 1.473 1.245 1.067 0.839 0.813 0.711 0.635 0.559 0.508 0.457 0.6666 0.6250 0.5883 0.5416 0.5000 0.1152 0.3954 0.3532 0.3147 0.2804 0.2500 0.2225 0.1981 0.1764 0.1570 0.1398 0.1250 0.1313 0.0991 0.0882 0.0785 0.0699 0.0625 0.0556 0.0495 0.0440 0.0392 0.0349 0.03125 0.02782 0.02476 0.02204 0.01961 16.932 15.875 14.943 13.757 12.700 11.308 10.069 8.971 7.993 7.122 6.350 5.652 5.032 4.481 3.988 3.551 3.175 2.827 2.517 2.240 1.994 1.775 1.588 1.412 1.257 1.118 0.996 0.887 0.794 0.707 0.629 0.560 0.498 -- 0.5800 0.5165 0.4600 0.4096 0.3648 0.3249 0.2893 0.2576 0.2294 0.2043 0.1819 0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0。0808 0.0720 0.0648 0.0571 0.0508 0.0453 0.0403 0.0359 0.0320 0.0285 0.02535 0.02010 0.01790 0.01594 0.01420 -- 14.732 13.119 11.684 10.404 9.266 8.252 7.348 6.544 5.827 5.189 4.621 4.115 3.665 3.264 2.906 2.588 2.305 2.053 1.828 1.628 1.450 1.291 1.150 1.024 0.912 0.812 0.723 0.644 0.573 0.511 0.455 0.405 常用线规号码与线径对照表

带压堵漏安全管理规定(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 带压堵漏安全管理规定(新版) Safety management is an important part of production management. Safety and production are in the implementation process

带压堵漏安全管理规定(新版) 1目的和范围 为规范带压堵漏安全管理,降低作业风险,确保作业人员安全,特制定本规定。 本规定适用于各装置运行状态下的设备、管道、法兰、阀门等泄漏部位带压、带温堵漏的安全管理。 2管理职责 2.1设备部负责带压堵漏作业的管理。 2.2带压堵漏单位负责制定带压堵漏安全操作规程、作业方案等,负责带压堵漏作业的实施及管理。 2.3各分厂、车间负责带压堵漏作业过程中的工艺管理,提供工艺、设备相关参数及相关安全要求。 2.4HSE管理部对带压堵漏作业进行监督检查。 3管理流程

3.1总体要求 3.1.1设备部对带压堵漏单位、操作人员的资质进行审核,确保满足带压堵漏作业要求。 3.1.2带压堵漏作业专用工具和施工工具必须满足耐温、耐压、防火防爆和国家规定的其它安全要求,不允许在现场使用不合格的工具。 3.1.3带压堵漏作业防护用品必须符合标准。 3.1.4每次作业前都必须取得公司相关部门的同意后,才能按方案进行带压堵漏作业。 3.2带压堵漏作业风险分析及方案、防护措施的制定 3.2.1泄漏介质分为普通介质和危险介质,其中危险介质有:高温高压介质、有毒介质、腐蚀和烧灼介质、易燃易爆介质等。 3.2.2作业前,施工单位对现场进行检查,对泄漏部位的泄漏介质、温度、压力、孔洞大小,外部尺寸和缺陷等情况必须勘测清楚,认真记录,彻底了解现场工况,针对泄漏的介质及带压堵漏操作可能带来的风险,制定施工方案和安全措施。

相关主题
文本预览
相关文档 最新文档