当前位置:文档之家› Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines

Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines

Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines
Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines

Voltage Sags Ride-Through of Motion Sensorless Controlled PMSG for Wind Turbines
Marius Fatu*, Cristian Lascu*, Gheorghe-Daniel Andreescu*, Remus Teodorescu**, Frede Blaabjerg**, Ion Boldea*
University “Politehnica” of Timisoara, Faculty of Electrical Engineering, 300223 Timisoara, Romania, Phone/Fax: +40-256-204402, fatu_marius@https://www.doczj.com/doc/5b2439839.html,, cristi@et.upt.ro, dandre@aut.upt.ro, boldea@lselinux.upt.ro
** *
Aalborg University, Institute of Energy Technology, 9220 Aalborg East, Denmark, Phone/Fax: +45-96359254, ret@iet.aau.dk, fbl@iet.aau.dk reference frame, are used [2] with good results when the utility voltages are balanced. Under unbalanced voltage conditions, however, the response is deteriorated [3]. To overcome this problem, algorithms based on different PLL structures are used for the detection of the positive-sequence component [4]-[6].
PLANT
1:1
Abstract –This paper describes a variable-speed motion-sensorless permanent magnet synchronous generator (PMSG) control system for wind energy generation. The proposed system contains a PMSG connected to the grid by a back-to-back PWM inverter with bidirectional power flow, a line filter, and a transformer. The control system employs PI current controllers with crosscoupling decoupling for both inverters, an active power controller, and a DC link voltage controller. The PMSG rotor speed without using emf integration, and the line voltage frequency are estimated by two PLL based observers. A Dmodule filter is used to robustly estimate the grid voltage positivesequence for control in the case of asymmetric voltages. The paper investigates the ride-through performance of this system during asymmetric power grid voltage sags. Design details for various parts of the control system are presented, together with experimental results for single-, two-, and three-phase voltage source sags. Smooth transition through asymmetric voltage sags is demonstrated by all experiments. Index terms – permanent magnet synchronous generator, wind energy generation, sensorless control, ride-through capability.
Fault
PMSM
Mover
PMSG
PMSG Inverter
LC
FILTER
Prime
Grid Inverter Load
Grid
Fig. 1. Distributed generation system
I. INTRODUCTION Distributed energy systems (energy generation systems that are connected to the distribution grid, or energy supply systems that dispatch the load on the grid) are becoming an increasingly important means of meeting society's energy requirements and are regarded as having the potential to address energy-related greenhouse gas emissions. Sustainable distributed energy systems include photo-voltaic, micro gas turbine, solar thermal, solar hot water, mini hydro-electric, bioenergy, and wind energy systems. Distributed generation can provide emergency power, peak shaving capabilities and cogeneration. It improves the power quality and power supply flexibility and reduces transmission and distribution costs. An advanced variable speed permanent magnet synchronous generator (PMSG) connected to the power grid via two backto-back voltage source PWM inverters with bidirectional power flow, as shown in Fig. 1, is typical for distributed generation systems of the future. When the utility grid frequency is constant, the method of instantaneous symmetrical components [1] is successfully used to synchronize the source-side inverter to the power grid during symmetric voltage sags. On the other hand, when the utility frequency is not constant, phase-locked loop (PLL) close-loop adaptive methods, usually implemented in synchronous
Other alternative technique based on dual second order generalized integrator for frequency-adaptive positivesequence detection was proposed in [7]. In [3] only the grid inverter is considered, while in [4]-[7] the DC-link voltage of the grid inverter is constant. Two transfer methods from gridconnected to stand-alone and vice versa for critical loads in the event of fault grid are described in [8], [9]. This paper aims to demonstrate smooth passage through asymmetric voltage sags of a variable-speed PMSG connected to the power grid through two back-to-back voltage source PWM inverters and a transformer. The system was designed for wind energy generation, and employs motion-sensorless control for the PMSG. The novelty consists on the sensorless control implementation and the application of D-module filters that are used to identify the positive-sequence voltage of the power grid during asymmetric voltage sags. The paper describers the control system for the PMSG-side and for the line-side inverter, and documents its ride-trough performance during single-, two-, and three-phase voltage sags. Experimental results are provided for each situation. II. WIND TURBINE EMULATOR The wind turbine mechanical shaft is emulated using a 14.7Nm-3000rpm PMSM driven by a commercial inverter operated in open loop torque control mode. The aerodynamic model of the wind turbine is characterized by a nondimensional curve that introduces the performance coefficient Cp as a function of blade tip-speed ratio ? defined as
0197-2618/07/$25.00 ? 2007 IEEE
171

Vta
Vdc
Vai
Vbi
iai Lf Rf ibi
Vci
ifb
ifa V tb
B
ita
A
A
iA
VAB
VA
VB
VCA
ici
Cf
LOAD
itb
C
iCA
iBC
iAB
B
VBC
iB
iC
Grid
VC
itc
C
Fig. 3. Configuration of the grid-side inverter connected through delta-wye transformer to local grid Fig. 2. Cp versus ? characteristic of the wind turbine
λ = Rt ω / v , (1) where Rt is the radius of wind turbine rotor (m), ? is the wind turbine rotor velocity (rad/s), and v is the wind velocity (m/s). For the wind turbine used here, Cp as a function of ? is expressed by the following equation and it is shown in Fig. 2. C p = 0.0284λ + 0.119λ 2 ? 0.1508λ 3 + 0.0679λ 4 ? 0.0089λ 5 (2) The output power of the wind turbine is calculated as (3) Pt = 0.5C p ( λ ) ρπ Rt2 v 3 , where ? = 1.225 kg/m3 is the air density and Rt = 1.2 m. The torque developed by the wind turbine is
Tt = 0.5 ρπ Rt 3 Cp (λ )
Vp = [VAB VBC VCA] and phase voltages by Vgrid = [VA VB VC]. During the experiments the grid was emulated by a programmable ac three-phase voltage source that cannot receive power, and for this reason the transformer with ac voltage sources are considered as disturbance. Therefore, the single phase equivalent circuit is presented in Fig. 4. The transfer function between the current if and the inverter voltage Vi is i f (s ) 1 . (7) H p (s) = = Vi ( s) (sL f + R f ) ? ( sRLoad C f + 1) + RLoad The filter parameters are: Lf = 0.01 H, Rf = 0.4 ?, Cf = 0.7 μF, and the resistive load RLoad that was set to 80?.
λ
v2 .
(4)
ii Vi
Lf
Rf
if
Equation (4) is implemented in the PMSM prime mover drive that emulates the wind turbine in the actual experiments. III. PMSG MODEL The space-vector model of PMSG, equipped with interior permanent magnets, in rotor reference frame (Park’s transformation in dq axes) [10] is dΨ s ?V s = i s Rs + + jωrΨ s , (5) dt Ψ s = Ψ d + jΨ q = λPM + Ld id + jLq iq , (6) where V s = Vd + jVq , i s = id + jiq , and Ψ s are the stator voltage, current and flux vectors, respectively, Rs is the stator phase resistance, Ld and Lq are the dq inductances, ?PM is the PM flux, ?r is the rotor speed. IV. GRID-SIDE INVERTER / FILTER / TRANSFORMER / GRID MODELING In a typical situation, the distributed generation system is connected through a transformer to local grid. The plant considered in this application, shown in Fig. 3, contains the LC filter attached to the line-side power inverter, a nonlinear resistive load and the secondary side of the line transformer. The circuit shown in Fig. 3 uses the following quantities to describe its behavior. The inverter output phase voltages and phase currents are represented by the vectors Vi = [Vai Vbi Vci ] and ii = [iai ibi ici ], respectively. The transformer secondary windings are Y-connected and its phase voltage and current vectors are represented by Vt = [Vta Vtb Vtc] and it = [ita itb itc ], respectively. The transformer primary windings are ¨connected and its line-to-line voltages are represented by
Cf
ic
RLoad
VLoad
Fig. 4. Single phase model of the plant
V. POSITIVE-SEQUENCE ESTIMATION IN STATIONARY REFERENCE FRAME BY D-MODULE FILTER The grid voltage-vector position is estimated by means of a PLL observer which has as input the positive voltage sequence obtained from a band-pass filter using D-module filter, as shown in Fig. 5a. Vector (two-input/output) filters in Dmodule, shown in Fig. 6 [11], are a class of filters that can separate the positive and negative-sequence frequencies of signals, which is crucial to solve the problem here. In this application, a 2nd order scalar filter with the following transfer function was considered b s 2 + b1 s + b0 F (s ) = 2 2 . (8) s + a1 s + a0 The D-module filter design is based on the following property: if the parameters of the single input-output filter F(s) are designed as low-pass filter (LPF) with an appropriate bandwidth, then the associated vector (two input/output) filter in D-module, F ( D (s, ωc )) will be a band-pass filter (BPF) with the central frequency ?c and the same bandwidth. Define a 2x2 matrix D(s,?c) using a real shift-signal ?c and the differential operator “s” as ? s -X c ? ?0 -1? - - - - D ( s , Xc )  ?  sI

Xc J , J  ? , (9) ? ? - - ? ?1 0 ? - - s ? ? ? Xc
where I is the identity matrix.
172

ωc
Vtabc
+ Filter V abc V in PLL ?? D-module
(a)
θ
(b)
V+
(12)
Δθ
ω
A PLL observer is used to estimate the phase of the positivesequence grid-voltage vector V+, in order to maintain the synchronism of the line inverter voltages. In essence, the angle estimation error ?? = ?grid – ? is obtained from the imaginary + # component Im(V ?V1 ) , where V1 is a unity vector.
V + = V +e
jθ grid
e ? jθ
PLL
θ
Fig. 5. a) Extraction of grid voltage positive-sequence, b) PLL observer structure
The D-module filter has the following filtering property for the positive voltage sequence [12]: Va


jVb

 F s

jXc
Va

电压暂降科普之三:严重程度

电压暂降科普(3)——严重程度 本文系电压暂降系列文章第三篇接第二篇电压暂降科普(2)——根本原因之后 不同原因引起的电压暂降的特征和严重程度不同。如:三相铁芯饱和程度不同,变压器激磁引起的三相电压暂降的深度不同,变压器投切引起的电压暂降幅值(剩余电压)一般不低于80%,且含有谐波分量。短路引起的电压暂降的有效值波形通常为矩形,不同故障类型、故障位置引起的电压暂降的幅值和持续时间不同,变化范围较大。感应电机启动引起的电压暂降的电压有效值波形一般非矩形,电压下降较小,但持续时间较长。 暂降幅值和持续时间是刻画电压暂降事件的基本特征。单一的一次暂降事件,可用电压幅值-持续时间平面上的一个点表示。电压幅值的大小和持续时间的长短,可直观地反映电压暂降的严重程度。不同原因引起的电压暂降的严重程度在电压幅值-持续时间平面上的分布,如图6。 图6不同原因引起电压暂降的典型幅值-持续时间特性 可见,不同原因引起的电压暂降严重程度,在电压幅值-持续时间平面上的分布不同。输电网故障引起的电压暂降,深度较深(剩余电压较小),持续时间较短,约100ms;本地配电网故障引起的电压暂降,深度深(剩余电压小),持续时间长于输电网故障引起的电压暂降;远方配电网故障引起的电压暂降,深度较浅(剩余电压较大),持续时间与本地配电网故障引起的电压暂降较一致;大型电动机启动等引起的电压暂降,深度浅(剩余电压大),持续时间较长。 为了提高供电可靠性,本地配电网可能采用自动重合闸、熔断器和电流保护装置相互配合的方式清除故障。当本地配电网内发生故障时,首先由过流速断保护清除故障,在清除故障的断路器动作前会产生一个持续时间很短的电压暂降,持续时间几乎等于断路器动作时间;第一次故障清除后,发生电压中断,自动重合闸装置按整定的时间重合闸,如果重合闸成功,供电恢复,如果重合于故障,在配电馈线分支线上配置了熔断器保护的配电网中,需在熔断器清除故障的动作时间定值之后,由保护再次清除故障。通过保护时间定值与熔断器动作时间的配合,如果熔断器清除了故障,电流保护不再动作,供电可靠性得到了保证;如

电压降计算方法80181

电缆电压降 对于动力装置,例如发电机、变压器等配置的电力电缆,当传输距离较远时,例如900m,就应考虑电缆电压的“压降”问题,否则电缆采购、安装以后,方才发觉因未考虑压降,导致设备无法正常启动,而因此造成工程损失。 一.电力线路为何会产生“电压降”? 电力线路的电压降是因为导体存在电阻。正因为此,所以不管导体采用哪种材料(铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的10%时一般是不会对线路的电力驱动产生后果的。 二.在哪些场合需要考虑电压降? 一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略“压降”的问题,例如线路只有几十米。但是,在一些较长的电力线路上如果忽略了电缆压降,电缆敷设后在启动设备可能会因电压太低,根本启动不了设备;或设备虽能启动,但处于低电压运行状态,时间长了损坏设备。 较长电力线路需要考虑压降的问题。所谓“长线路”一般是指电缆线路大于500米。 对电压精度要求较高的场合也要考虑压降。 三.如何计算电力线路的压降? 一般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:I= P/1.732×U×cosθ 其中: P—功率,用“千瓦”U—电压,单位kV cosθ—功率因素,用0.8~0.85 2 .计算线路电阻R 公式:R=ρ×L/S 其中:ρ—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入

L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:ΔU=I×R 举例说明: 某电力线路长度为600m,电机功率90kW,工作电压380v,电缆是70mm2铜芯电缆,试求电压降。 解:先求线路电流I I=P/1.732×U×cosθ=90÷(1.732×0.380×0.85)=161(A) 再求线路电阻R R=ρ×L/S=0.01740×600÷70=0.149(Ω) 现在可以求线路压降了: ΔU=I×R =161×0.149=23.99(V) 由于ΔU=23.99V,已经超出电压380V的5%(23.99÷380=6.3%),因此无法满足电压的要求。 解决方案:增大电缆截面或缩短线路长度。读者可以自行计算验正。 例:在800米外有30KW负荷,用70㎜2电缆看是否符合要求? I=P/1.732*U*COS?=30/1.732*0.38*0.8=56.98A R=ρL/S=0.018*800/70=0.206欧 △U=IR=56.98*0.206=11.72<19V (5%U=0.05*380=19) 符合要求。 电压降的估算 1.用途

电压暂降科普之四:电压暂降特征

电压暂降科普之四:电压暂降特征 从物理现象看,电压暂降是母线电压方均根值下降至额定电压的90%~10%,持续0.5 周波~1min的扰动事件。相对于谐波、三相不平衡、电压波动与闪变等平稳电能质量扰动,电压暂降、短时电压中断、电压暂升等为非平稳扰动。前者需外部人为干预后才能消失,后者会自动消失。因此,前者被称作扰动现象或连续型扰动,后者被称作扰动事件或事件型扰动。区分两者的关键在于是否需要人工干预才能消失,这样,便于工程技术人员理解。 为了理解和分析电压暂降事件,用恰当的电压暂降特征刻画暂降事件是基础。 1、刻画形式 电压暂降事件的本质特性是电特性,表现为电压突然降低然后自动恢复的电压事件,表现为事件过程中电压随时间在持续较短时间内发生突然降低,然后突然恢复两次变化,可用三相电压瞬时值、有效值随时间变化的波形图、相量图、三相电压表达式等形式刻画。 以三相对称电压暂降为例,表现形式如图1、图2。 图1三相对称电压暂降瞬时值波形图和有效值波形图

图2三相对称电压暂降相量图 三相对称电压暂降的数学表达式如下,其中,V为发生电压暂降相的电压幅值。 其中,电压暂降事件的瞬时值波形图和有效值波形图,均能直观地刻画电压暂降事件中电压随时间的变化,而相量图和数学表达式是对电压暂降事件中某瞬间电压的描述。 2、暂降特征 暂降特征是人们对暂降事件的客观理解和认识,是由人定义的用于描述和刻画电压暂降事件的物理量。根据刻画目的、认知程度的不同,刻画电压暂降事件时采用的特征也不同。 根据需要和认知程度,用于刻画电压暂降事件的特征有多个,通常可用合理的特征向量刻画。刻画电压暂降的特征向量中的特征主要有:暂降幅值(剩余电压)、暂降持续时间、暂降频次等。其中,暂降频次是对某母线或系统暂降次数的统计,是对单一暂降事件的统计量,很多文献和著作中未当作电压暂降特征,但从全面刻画电压暂降事件的角度,尤其是需要分单一事件、节点和系统等不同层面进行电压暂降及其严重程度的刻画时,将暂降频次作为特征之一,具有一定的合理性。 在2014年IEEE颁布的标准IEEEStd1564中,定义了单一电压暂降事件指标、节点指标和系统指标等,这些均是用于刻画、描述和分析电压暂降事件及其严重程度的特征。 2.1暂降幅值 暂降幅值通常用剩余电压的方均根值表示,定义为电压暂降事件中,三相电压方均根值中电压最低一相的电压值。根据时域采样进行计算:

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

微生物实验室常用仪器配置

微生物实验室常用仪器配置 1 超净工作台(已有)微生物的培养都是在特定培养基中进行无菌培养,那么无菌培养必然需要超净工作台提供一个无菌的工作环境 2、培养箱(已有)培养箱有多种类型,它的作用在于为微生物的生长提供一个适宜的环境。生化培养箱只能控制温度,可作为一般细菌的平板培养;霉菌培养箱可以控制温度和湿度,可作为霉菌的培养;CO2培养箱适用于厌氧微生物的培养。 3、天平(已有待完善)天平用于精确称量各类试剂。实验室常用的是电子天平,电子天平按照精度不同有不同的级别。 4、微生物均质器(无)用于从固体样品中提取细菌。用微生物均质器制备微生物检测样本具有样品无污染、无损伤、不升温、不需要灭菌处理,不需洗刷器皿等特点,是微生物实验中使用较为方便的仪器 5、菌落计数器(无)菌落计数仪可协助操作者计数菌落数量。通过放大,拍照,计数等方式准确的获取菌落的数量。有些高性能的菌落计数器还可连接电脑完成自动计数的操作。 微波炉/ 电炉用于溶液的快速加热,微生物固体培养基的加热溶化。 7、高压灭菌锅(已有坏)微生物学所用到的大部分实验物品、试剂、培养基都应严格消毒灭菌。灭菌锅也有不同大小型号,有些是手动的,有些是全自动的。用户需要根据自己的需要选购。 8、移液器(无)液体量器用于精密量取各类液体。常见的液体量器有量筒、移液管、微量取液器、刻度试管、烧杯。 9、低温冰箱(已有)冰箱是实验室保存试剂和样品必不可少的仪器。微生物学实验中用到的试剂有些要求是 4 度保存,有些要求是负20 度保存,实验人员一定要看清试剂的保存条件,放置在恰当的温度下保存。 11、摇床(已有)摇床是实验室常用的一种仪器,在微生物实验操作过程中,液体培养基培养细菌时需要在特定温度下振荡使用。 12、纯水装置 13、生物显微镜(无)由于微生物体积较小,所以在观察时需要借助生物显微镜。生物显微镜用于微生物和微小物品结构,形态等的观察。 16、恒温干燥箱 17、恒温水浴锅(已有------ 其他实验室) 水浴锅是一种控温装置,水浴控温对于样品来说比较快速且接触充分。有些微生物反应需要在37度,42度,56度下水浴进行,所以恒温水浴锅可以提供需要的温度。 (18)酸度计(无) 用于配置试剂时精确测量PH 值,从而保证配置的溶液的精确性。有时也需要利用pH 计测定样品溶液的酸碱度。 (19)离心机(无)用于收集微生物菌体以及其他沉淀物。离心机有冷冻和常温之分。 有些样品由于在常温下不太稳定,需要低温环境,要视样品的种类而定。 20 接种仪器:试管(有)、接种针、牛角勺(无)、药勺、接种环、接种钩,解剖刀、培养皿(无)、镊子、酒精灯、接种锄、玻璃刮刀(无)

设备检测实验室设备配置建议最新

第十八章无线电设备检测实验室设备配置建议 一、概述: 无线电设备检测工作是无线电管理的一个重要方面,随着科学技术水平的飞速发展,无线电通信应用愈来愈广泛,各种无线电通信设备迅速增加,新技术、新体制、新设备不断涌现,越来越多的无线电通信技术在我国得以应用。为了使有限的频谱资源能够科学地、有效地开发和利用,防止无线电设备本身产品质量不合格产生的各种有害干扰,从源头上减少无线电干扰信号,维护空中电波秩序,确保各种无线电设备正常进行,必须加强对各类无线电设备的管理,应积极开展无线电设备检测工作。 现阶段在我国应用的通信技术体制非常广泛,目前 TDMA(GSM900/DCS1800/GPRS)、CDMA(cdmaOne)、PHS(小灵通)为代表的通信体制正在被中国移动、中国联通、中国电信、中国网通广泛的应用。同时,第三代(3G)移动通信系统(cdma2000、W-CDMA、TD-S-CDMA、LAS-CDMA 等)也正在紧锣密鼓的研究开发之中,在不远的将来可能得到应用。在当前的数字时代,除电信运营企业全部采用数字调制技术实现运营网络的数据、语音、图象等的无线传输外,其它应用场合也越来越多地应用数字调制技术,如DBS直接广播卫星通信、数字集群通信、Bluetooh蓝牙数据传输、WirelessLAN无线区域通信等。同时,各种新的系统如LMDS,WLAN,BLUETOOTH等不断投入使用。必将对无线电设备检测工作提出了更高的要求。我们认为,作为无线电频谱的管理部门,监管的重点首先是无线发射机系统的射频指标,如:发射总功率、频率准确度、占用带宽、杂散发射

等。在此基础上,可适当进行其他指标的测试,辅助运营商进行系统检测。其主要测试项目应包括: 1.频率准确度 2.最大输出功率 3.发射机互调 4.杂散发射 5.占用带宽 OBW、邻道功率ACP 6.相位误差 另外,针对GSM系统,可增加调制及开关的频谱,功率时间曲线的测试;针对CDMA系统和扩频系统,可增加矢量幅度误差(EVM),码域功率和幅度统计特性(CCDF)等测试项目。 为了确保检测工作的准确性、权威性,必须建立一个合格的检测实验室。它必须具备有效的质量管理体系、完全满足被测设备技术指标的测量仪器、经过培训的专业技术人员。以下重点讨论检测实验室需配备的仪器。 二、检测实验室仪器仪表的配置应原则: 1.仪器功能强:应提供符合国家标准规范所要求的主要项目和指标。 2.测量基准高:测量结果应具备权威性,以便对网络设备和用户终端进行认证、验收、日常抽查、事故判别和质量检测。 3.通用性能好:应尽量基于单台设备平台对各种体制网络设备(TDMA、CDMA、PHS、CDMA2000、W-CDMA等)进行测量。 4.方便携带性:可以方便地在野外现场搭建测量系统。运输、搬移方便,抗震动和适应恶劣环境的能力强。

微生物实验室常用仪器配置

微生物实验室常用仪器配置 微生物学实验室是生物学领域的一个基本实验室,对于一个完备的微生物学实验室,我们需要配置哪些仪器呢?环凯为您的微生物学实验仪器配置提供如下参考。 1、超净工作台 微生物的培养都是在特定培养基中进行无菌培养,那么无菌培养必然需要超净工作台提供一个无菌的工作环境。 2、培养箱 培养箱有多种类型,它的作用在于为微生物的生长提供一个适宜的环境。生化培养箱只能控制温度,可作为一般细菌的平板培养;霉菌培养箱可以控制温度和湿度,可作为霉菌的培养;CO2培养箱适用于厌氧微生物的培养。 3、天平 天平用于精确称量各类试剂。实验室常用的是电子天平,电子天平按照精度不同有不同的级别。 4、微生物均质器

用于从固体样品中提取细菌。用微生物均质器制备微生物检测样本具有样品无污染、无损伤、不升温、不需要灭菌处理,不需洗刷器皿等特点,是微生物实验中使用较为方便的仪器。 5、菌落计数器 菌落计数仪可协助操作者计数菌落数量。通过放大,拍照,计数等方式准确的获取菌落的数量。有些高性能的菌落计数器还可连接电脑完成自动计数的操作。 6、微波炉/电炉 用于溶液的快速加热,微生物固体培养基的加热溶化。 7、高压灭菌锅 微生物学所用到的大部分实验物品、试剂、培养基都应严格消毒灭菌。灭菌锅也有不同大小型号,有些是手动的,有些是全自动的。用户需要根据自己的需要选购。 8、移液器 液体量器用于精密量取各类液体。常见的液体量器有量筒、移液管、微量取液器、刻度试管、烧杯。 9、低温冰箱 冰箱是实验室保存试剂和样品必不可少的仪器。微生物学实验中用到的试剂有些要求是4度保存,有些要求是负20度保存,实验人员一定要看清试剂的保存条件,放置在恰当的温度下保存。 10、生物安全柜 微生物实验中涉及的试剂和样品微生物有些是有毒的,对于操作人员来说伤害较大。为了防止有害悬浮微粒、气溶胶的扩散,可以利用生物安全柜对操作人员、样品及样品间交叉感染和环境提供安全保护。 11、摇床 摇床是实验室常用的一种仪器,在微生物实验操作过程中,液体培养基培养细菌时需要在特定温度下振荡使用。 12、纯水装置

如何计算电缆压降

如何计算电缆压降 问题1:电缆降压怎么算 50kw 300米采用vv电缆??? 25铜芯去线阻为 R=0.0172(300/25)=0.2 其压降为U=0.2*100=20 也就是说单线压降为20V 2相为40V 变压器低压端电压为400V 400-40=360V 铝线R=0.0283(300/35)=0.25 其压降为U=0.25*100=25 末端为350V 长时间运行对电机有影响建议使用 35铜芯或者50铝线 25铜芯其压降为 U=0.0172(300/35)=0.147(≈15V)15*2=30 末端为370V 铝线 U=0.0283(300/50)=0.17 17*2=34 末端为366V 可以正常使用(变压器电压段电压为400V) 50KW负荷额定电流I=P/1.732UcosΦ=50/1.732/0.38/0.8=50/0.53=94A 按安全载流量可以采用25平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/25=0.2欧 电压损失U=IR=94X0.2=18V 如果用35平方毫米的铜电缆,算电压损失: R=ρ(L/S)=0.017X300/35=0.15欧 电压损失U=IR=94X1.15=14V 选择导线的原则: 1)近距离按发热条件限制导线截面(安全载流量); 2)远距离在安全载流量的基础上,按电压损失条件选择导线截面,要保证 负荷点的工作电压在合格范围; 3)大负荷按经济电流密度选择。 为了保证导线长时间连续运行所允许的电流密度称安全载流量。 一般规定是:铜线选5~8A/mm2;铝线选3~5A/mm2。 安全载流量还要根据导线的芯线使用环境的极限温度、冷却条件、敷设条件 等综合因素决定。 一般情况下,距离短、截面积小、散热好、气温低等,导线的导电能力强些, 安全载流选上限; 距离长、截面积大、散热不好、气温高、自然环境差等,导线的导电能力弱 些,安全载流选下限; 如导电能力,裸导线强于绝缘线,架空线强于电缆,埋于地下的电缆强于敷 设在地面的电缆等等。 问题2:55变压器,低压柜在距离变压器230米处。问变压器到低压柜需多粗电 缆 55KVA变压器额定输出电流(端电压400V):I=P/1.732/U=55/1.732/0.4≈80(A) 距离:L=230米,230米处允许电压为380V时,线与线电压降为20V,单根导线电压降:U=10V,铜芯电线阻率:ρ=0.0172 求单根线阻:R=U/I=10/80=0.125(Ω) 求单根导线截面:S=ρ×L/R=0.0172×230/0.125≈32(平方) 取35 平方铜芯电线。 55KVA的变压器,最大工作电流约80A,输出电压400V。

电压暂降科普之九:损失评估

电压暂降科普(9):损失评估 电能质量,尤其是电压暂降和短时中断给用户造成的损失不容忽视。2001年,美国支持数字化社会电力基础设施协会、美国电科院,对不同行业和地区985家企业的调查显示,美国每年电能质量损失约150-240亿美元;2007年,欧洲莱昂纳多电能质量工作协会估算,欧盟25国每年电能质量损失约1517亿欧元;我国2011年对上海100多家用户的调查显示,年经济性损失高达数十亿。电压暂降和短时中断,因其频次高,难预知,有较强的不确定性,采用不同定制电力技术均存在成本高且效果差异大的难题,因此,科学评估损失是采取低成本、高效益措施的前提。美国电科院统计的电能质量损失关系,如图1。其中,电压暂降损失占了几乎一半。 图1 电能质量给用户造成影响原因调查(美国) 统计表明,暂降损失在电能质量损失中占的比重最大,但实际中对此的认识广度和深度还很不足,在损失评估方法、损失构成和调查统计方法等方面,均值得完善,并使之更加理性。 1暂降损失评估方法暂降损失评估对于用户正确了解和认识电压暂降危害,采取合理措施具有重要意义。常用评估指标有:单次事件损失、单位产值损失(年暂降总损失与年产值之比)、单位功率损失(年暂降总损失与用户峰值功率之比)或单位用电量损失(年暂降总损失与年用电量之比)、暂降年损失等,用于比较单个暂降事件对不同行业、不同用户造成的损失,以及总损失。 《IEEE1346-1998评估供电和电子处理设备兼容性的推荐实施规程》提出了暂降损失直接评估法,流程如图2。

图2暂降损失直接评估法 直接法原理简单,易理解,但通过比较暂降严重程度与设备敏感度所确定的全年暂降引起的中断次数M与单次中断损失C,理论上可行,实际操作性不强。事实上,不同严重程度的暂降给用户造成的损失具有时空差异性。幅值低、持续时间长的暂降,可能类似电压中断造成的单次损失C;但幅值较高、持续时间较短的暂降,虽未导致经济活动中断,仅导致不正常,同样会造成损失,这样的损失评估难度更大。为此,有学者提出了影响因子或暂降风险评估法,结合中断损失评估用户暂降损失。 直接法的关键是单次暂降损失的确定。暂降损失的构成及其量化方法,一直存在争论,相关利益方,如:用户、供电企业、第三方参与者等,各自的出发点不同,对暂降损失的构成,认知差异大,对损失构成中损失值的确定也存在分歧。我国电压电流等级和频率标准化技术委员制定的《电能质量经济性评估第一部分:电力用户的经济性评估方法》中给出了电能质量经济损失的构成和各项损失的意义,具体见后文。实际上,暂降损失与用户经济活动有关,同类型同行业的不同用户之间存在较大差异,额定损失值难以推广;同时,用户经济活动具有时变性,损失大小也随之变化,确定额定值在不同情境下的可信度是尚需认识的问题。 直接法中不同暂降导致的损失不同,单次暂降损失量化困难。为此,有学者提出了间接法:可接受意愿法(WTA)和支付意愿法(WTP)。WTP是指用户愿意用一定数量的可支配货币采取措施提高电能质量的意愿,以此衡量用户对电能质量的评价。通常,给定一些场景,要求用户给出愿意支付的金额,以此作为暂降损失。WTA是指在给定场景下,用户对愿意接受的补偿的估计。WTA和WTP类似,均在假象场景下,由用户给出相应值,是用户对损失的主观角评价,对于用户的主观评价所涉及的诸多问题,以及其中蕴含的固有规律的认识,是完善间接法的必然要求。2暂降损失的构成近年来,通过媒体或其他途径,常听到暂降造成巨大损失的传闻,如:我国中部某厂宣称一次暂降损失13亿元;2010年,日本四日市东芝晶圆厂,一次70ms电压暂降造成2个月产量降低20%,损失上亿,导致全球闪存价格上涨10%。这些报道或传闻,无论损失数据的可信度如何,至少说明暂降损失不容忽视,且对暂降损失的理性认识急需加快。实际上的暂降损失或许没有报道或宣称值那么严重。因此,如何获得真实暂降损失很关键。为此,国内外学者和有关机构对暂降损失的构成进行了大量分析和调研,我国《电能质量经济性评估》标准给出了经济损失构成。该标准将暂降损失分为直接经济损失和间接经济损失。直接经济损失是因电压暂降对经济活动造成的人员、设备、财产的损失以及产出为废品的成本支出。间接经济损失只统计因电能质量问题使按计划本应生产出来的产品数量减少或产生次品,从而造成的利润损失,如表1。

分子生物学实验室需要的仪器配置

分子生物学实验室需要的仪器配置 (1)培养箱在分子生物学试验中,有很多反应都是在特定温度下进行的,这时就需要一个控温的装置。例如:用于细菌的平板培养,我们通常设定为37℃于培养箱倒置培养;其他分子生物学实验如酶切等需要25℃,30℃,37℃等条件。 (2)冰箱冰箱是实验室保存试剂和样品必不可少的仪器。分子生物学实验中用到的试剂有些要求是4度保存,有些要求是负20度保存,实验人员一定要看清试剂的保存条件,放置在恰当的温度下保存。具体来说,不同温度下保存的物品如下: a. 4℃适合储存某些溶液、试剂、药品等。 b.-20℃适用于某些试剂、药品、酶、血清、配好的抗生素和DNA、蛋白质样品等。 c.-80℃适合某些长期低温保存的样品、大肠杆菌菌种、纯化的样品、特殊的低温处理消化液,感受态等的保存。 d.0-10℃的层析冷柜适合低温条件下的电泳、层析、透析等实验。 (3)摇床摇床是实验室常用仪器,一般有常温型和低温型两种。对于分子生物学实验室,如果能配置低温型摇床,就可以适应不同的实验需求。例如:用于大肠杆菌,酵母菌等生物工程菌种的振荡培养及蛋白的诱导表达,培养通常为28度和37度,诱导表达需要20-37度;在感受态的制备过程中,需要有18度的温度控制;用于蛋白凝胶的染色脱色时振荡,常温使用;用于大肠杆菌常规转化时振荡复苏,常为37度。对于控制温度低于室温时,我们需要低温型摇床来控温。 (4)水浴锅水浴锅也是一种控温装置,水浴控温对于样品来说比较快速且接触充分。例如,用于42度的大肠杆菌转化时的热激反应;用于DNA杂交过程中水浴控温。 (5)烘箱烘箱是用于灭菌和洗涤后的物品烘干。烘箱有不同的控温范围,用户可以根据实验需求进行选择。例如,有些塑料用具只能在42-45℃的烤箱中进行烘干;用于RNA方面的实验用具,需要在250℃烤箱中烘干。 (6)纯水装置纯水装置包括蒸馏水器和纯水机。蒸馏水器的价格便宜,但在造水过程中需要有人值守;纯水机价格高些,但是使用方便,可以储存一定量的纯水。纯水使用也有不同的级别,一般实验用水需要纯水,用于PCR、DNA测序、酶反应均需要超纯水。 (7)灭菌锅分子生物学所用到的大部分实验用具都应严格消毒灭菌。包括实验物品、试剂、培养基等。灭菌锅也有不同大小型号,有些是手动的,有些是全自动的。用户需要根据自己的需要选购。 (8)天平天平用于精确称量各类试剂。实验室常用的是电子天平,电子天平按照精度不同有不同的级别。

各行业实验室仪器基本配置

各行业实验室建设所需仪器基本配置 各行业实验室仪器基本配置 供水公司 仪器名称具体应用 BOD测定仪测量水中生物需氧量 双道原子荧光光度计可检测多种元素 溶解氧测定仪测溶解氧 数字浊度计测量液体浊度 原子吸收分光光度计根据被测元素的基态原子对特征辐射的吸收程度进行定量分析实验室专用超纯水机清洗玻璃器皿、配置标准溶液、理化分析等,制备纯水和超纯水电导率仪测电解质溶液电导率值 气相色谱仪定性、定量分析 多功能红外测油仪测量水中油含量 二氧化碳分析仪分析二氧化碳含量 放射性测量仪测量水中放射性核素 分光光度计定量分析 傅里叶红外变换光谱仪定性分析 光电式浑浊度仪测水的浑浊度 总有机碳测定仪对水溶液中总有机碳进行定量测定 离子色谱仪适用于亲水性阴、阳离子的分离 酸度计测PH值 显微镜观察微小物质 火焰光度计测定元素含量 激光粉尘仪测空气中粉尘含量 露点仪测露点 冷原子荧光测汞仪测汞含量 微量氧分析仪测微量的氧气浓度 油份浓度分析仪测定水中油的含量 水气厂 仪器名称具体应用 离子色谱仪适用于亲水性阴、阳离子的分离 液相色谱仪定性、定量分析 实验室专用超纯水机清洗玻璃器皿、配置标准溶液、理化分析等,制备纯水和超纯水TOPC测定仪测量源水、饮水和超纯水的总有机碳含量 火焰光度计分析二氧化碳含量 浊度计测定元素含量 露点仪测量液体浊度 微量氧分析仪测露点 原子吸收分光光度计测定水中微量氧

油分浓度分析仪根据被测元素的基态原子对特征辐射的吸收程度进行定量分析 常量氧分析仪测定水中油的含量 多功能红外测油仪测定水中氧 傅里叶红外变换光谱仪定性分析 溶解氧分析仪测溶解氧 农产品质检站 仪器名称具体应用 酸度计测pH值 电导率仪测电解质溶液电导率值 液相色谱仪定性、定量分析 实验室专用超纯水机清洗玻璃器皿、配置标准溶液、理化分析等,制备纯水和超纯水 气相色谱仪定性、定量分析 自动电位滴定仪酸碱滴定、氧化还原滴定、沉淀滴定、络合滴定 紫外—可见分光光度计测量物质对不同波长单色辐射的吸收程度,定量分析 可见分光光度计测量物质对不同波长单色辐射的吸收程度,定量分析 原子吸收分光光度计根据被测元素的基态原子特征辐射的吸收程度进行定量分析 红外分光光度计根据物质在红外光区的吸收光谱特征和朗伯比尔定律对物质进行定性定量 分析 卡尔费休水份仪测定含水的仪器 傅立叶变换红外光谱仪定性、定量的分析 色差计定性分析 离子色谱仪检测农家产品中的微量水份 微量水份测定仪用于易形成氢化物元素、易形成气态组分元素和易还原成原子蒸汽元素的测 定 荧光分光光度计测物质旋光度,分析物质的浓度、纯度、含糖量 旋光仪(目视、自动)根据酶与底物能产生显色反应,对底物进行研究定性及定量分析 酶标分析仪移取微量溶液 微量移液器农产品中物质的定性定量分析 气质联用仪测折射率 阿贝尔折射仪测面粉、淀粉等粉剂的白度值 白度计氨基酸含量 氨基酸自动分析仪通过用标准色比较测颜色 比较测色仪用未知浓度样品与已知浓度标物比较方法进行定量分析 比色计测定粮食中含水量 电脑粮食水分仪测蛋白质中氮的含量 凯氏定氮仪测谷物中含水量 谷物水份仪测黄曲霉素含量 黄曲霉素测定仪测甲醛、氨含量 甲醛氨测定仪测定空气中甲醛气体的含量 甲醛测定仪测定谷物、面粉及其它含有淀粉的产品中淀粉酶活性 降落值测定仪测混浊度 浊度仪测含糖量、糖度

用电压暂降严重程度和最大熵评估负荷电压暂降敏感度

第29卷第31期中国电机工程学报 V ol.29 No.31 Nov. 5, 2009 2009年11月5日 Proceedings of the CSEE ?2009 Chin.Soc.for Elec.Eng. 115 文章编号:0258-8013 (2009) 31-0115-07 中图分类号:TM 711 文献标志码:A 学科分类号:470·40 用电压暂降严重程度和最大熵 评估负荷电压暂降敏感度 肖先勇,马超,杨洪耕,李华强 (四川大学电气信息学院,四川省成都市 610065) Stochastic Estimation of Equipment Sensitivity to Voltage Sag Based on Voltage Sag Severity Index and Maximum Entropy Principle XIAO Xian-yong, MA Chao, YANG Hong-geng, LI Hua-qiang (College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, Sichuan Province, China) ABSTRACT: Based on physical characteristics, existing stochastic estimation methods of equipment sensitivity to voltage sag use subjective probability models to express the probability distribution of voltage tolerance curve (VTC) of equipment in the uncertain region. But the parameter estimation needs vast sample data. These methods may result in man-made errors. In order to investigate the universal rule of sensitivity estimation method, the concept of severity index was introduced and a new stochastic assessment method was proposed based on maximum entropy principle in this paper. In this method, the probability density function of VTC was determined by the maximum entropy model under limited sample data. The accumulative summing was used to calculate the failure rate of equipment during voltage sag. The estimation principle, the maximum entropy model, its constraints and the solution were investigated in detail. The approaches were also presented. As a case study, the personal computer was simulated. The simulation results compared with existing methods show that the method needs no subjective assumption under the condition of small samples and the results accord with the practical situation when the probability distribution of VTC is unknown. And this method is with good adaptability. KEY WORDS: voltage sag; equipment sensitivity; voltage sag severity; voltage tolerance curve (VTC); uncertain region; probability density function; maximum entropy principle 摘要:现有负荷敏感度随机估计法以电压暂降的物理特征为 基金项目:国家自然科学基金项目(50877049,50677041);四川省应用基础研究项目(2008JY0043-2)。 Project Supported by National Natural Science Foundation of China (50877049, 50677041).基础,用主观概率模型描述负荷电压耐受曲线(voltage tolerance curve,VTC)的随机分布规律,所需样本量大,在实际中难以实现且可能引入主观误差。将电压暂降特征转换为电压暂降严重性指标,在负荷VTC曲线分布规律未知和样本数较少的情况下,根据最大熵原理确定VTC曲线的概率密度函数,用累计求和法计算负荷故障率,提出一种适合于小样本的随机评估方法。对评估原理、最大熵模型、约束条件、求解算法与评估过程等进行详细研究。对个人计算机(personal computers,PC)进行仿真并与现有4种评估方法比较,结果证明,该方法对样本量依赖性小,无需主观假设,在未知VTC曲线随机分布规律时,评估结果准确,适应性强。 关键词:电压暂降;负荷敏感度;电压暂降严重性;电压耐受曲线;不确定区域;概率密度函数;最大熵原理 0 引言 随着科技和经济的发展,电网中使用敏感负荷的用户越来越多,对电能质量提出了越来越高的要求,引起了人们高度重视[1-5]。电压暂降(voltage sag 或dip)是影响用电设备正常运行的主要电能质量问题[6]。敏感负荷,如可调速电机(adjustable speed drives,ASD)、PC、可编程逻辑控制器(programmable logic controllers,PLC)和交流接触器(AC-contactor,ACC)等对电压暂降非常敏感[7-12],单个元件故障可能引起整条生产线产品报废,造成巨大经济损失[7]。因此,准确评估敏感负荷对电压暂降的敏感度,对采取合理技术措施、降低用户风险有重要意义。 负荷电压暂降敏感度是用户设备与供电系统扰动之间的兼容性问题,受供电系统运行状态、暂降特征、负荷用电特性等诸多因素影响[13],一般用

简单明了的告诉你—电缆线路的压降计算方法及案例

一般来说,计算线路的压降并不复杂,可按以下步骤: 1.计算线路电流I 公式:I= P/1.732×U×cosθ 其中:P—功率,用“千瓦”U—电压,单位kV cosθ—功率因素,用0.8~0.85 2 .计算线路电阻R 公式:R=ρ×L/S 其中:ρ—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入 L—线路长度,用“米”代入 S—电缆的标称截面 3.计算线路压降 公式:ΔU=I×R 线路电压降最简单最实用计算方式线路压降计算公式:△U=2*I*R I:线路电流 L:线路长度。 1、电阻率ρ铜为0.018欧*㎜2/米 铝为0.028欧*㎜3/米 2、I=P/1.732*U*COS? 3、电阻R=ρ*l/s(电缆截面mm2) 4、电压降△U=IR<5%U就达到要求了。

例:在800米外有30KW负荷,用70㎜2电缆看是否符合要 求?I=P/1.732*U*COS?=30/1.732*0.38*0.8=56.98A R=Ρl/电缆截面 =0.018*800/70=0.206欧 △U=2*IR=2*56.98*0.206=23.44>19V (5%U=0.05*380=19) 不符合要求。 2、单相电源为零、火线(2根线)才能构成电压差,三相电源是以线电压为标的,所以也为2根线。电压降可以是单根电线导体的损耗,但以前端线电压380V(线与线电压为2根线)为例,末端的电压是以前端线与线电压减末端线与线(2根线)电压降,所以,不论单相或三相,电压降计算均为2根线的 就是欧姆定律:U=R*I 但必须要有负载电流数据、导线电阻值才能运算。铜线电阻率:ρ=0.0172,铝线电阻率:ρ=0.0283 例: 单相供电线路长度为100米,采用铜芯10平方电线负载功率10KW,电流约46A,求末端电压降。求单根线阻: R=ρ×L/S=0.0172×100/10≈0.17(Ω) 求单根线末端电压降: U=RI=0.17×46≈ 7.8(V) 单相供电为零、火2根导线,末端总电压降: 7.8×2=15.6(V)

电压降计算方法

电缆电压降对于动力装置,例如发电机、变压器等配置的电力电缆,当传输距离较远时,例如900m,就应考虑电缆电压的压降”问题,否则电缆采购、安装以后,方才发觉因未考虑压降,导致设备无法正常启动,而因此造成工程损失。 一?电力线路为何会产生电压降”? 电力线路的电压降是因为导体存在电阻。正因为此,所以不管导体采用哪种材料 (铜,铝)都会造成线路一定的电压损耗,而这种损耗(压降)不大于本身电压的 10%时一般是不会对线路的电力驱动产生后果的。 二.在哪些场合需要考虑电压降? 一般来说,线路长度不很长的场合,由于电压降非常有限,往往可以忽略压降”的问题,例如线路只有几十米。但是,在一些较长的电力线路上如果忽略了电缆压降,电缆敷设后在启动设备可能会因电压太低,根本启动不了设备;或设备虽能启动,但处于低电压运行状态,时间长了损坏设备。 较长电力线路需要考虑压降的问题。所谓长线路”一般是指电缆线路大于500米。 对电压精度要求较高的场合也要考虑压降。 三?如何计算电力线路的压降? 一般来说,计算线路的压降并不复杂,可按以下步骤: 1?计算线路电流I 公式:1= P/1.732 X U X cos 9 其中:P—功率,用千瓦” U—电压,单位kV cos 9—功率因素,用0.8?0.85 2 .计算线路电阻R 公式:R=pX L/S 其中:p—导体电阻率,铜芯电缆用0.01740代入,铝导体用0.0283代入 L—线路长度,用米”代入

S —电缆的标称截面 3?计算线路压降 公式:△U=I XR 举例说明: 某电力线路长度为600m,电机功率90kW,工作电压380v,电缆是70mm 2铜芯电缆,试求电压降。 解:先求线路电流I 匸P/1.732 X U X cos 9 =97J32r 关 0.380 X 0=861)) 再求线路电阻R R= pX L/S=0.01740 X 600 - 70=0.149( Q) 现在可以求线路压降了: △U=I X R =161 X 0.149=23.V9 ( 由于△ U=23.99V,已经超出电压380V的5% (23.99 -380=6.3% ,因此无法满足电压的要求。解决方案:增大电缆截面或缩短线路长度。读者可以自行计算验正。 例:在800米外有30KW负荷,用70伽2电缆看是否符合要求? 匸P/1.732*U*COS?=30/1.732*0.38* 0.8=56.98A R= pL/S=0.018*800/70=0.206 欧 △ U=IR=56.98*0.206=11.72<19V (5%U=0.05*380=19) 符合要求。 电压降的估算 根据线路上的负荷矩,估算供电线路上的电压损失,检查线路的供电质量 2. 口诀

食品实验室设备配置清单(原创)

实验室常用设备 1 常规理化分析实验室: 名 称数 量 电热恒温水浴锅2 旋转蒸发器2 真空循环水泵1 电热恒温干燥箱1 真空恒温干燥箱1 超声波提取/清洗器1 索式提取器2 挥发油提取器(轻 2 油) 电子数字天平1 PH酸度计1 磁力搅拌器1 超纯水器1 玻璃仪器及其他常用仪器: 玻璃干燥器、布氏漏斗、过滤瓶、培养皿、加料漏斗、烧杯、量筒、 具塞三角瓶、三角瓶、具塞抽滤瓶、茄形瓶、单口圆底烧瓶、三口烧瓶、表面皿、储液球、塑料洗瓶、普通干燥器、玻璃棒、四氟吸棒导气管、烧瓶托、抽滤套、温度计、注射器、红皮头、双连球、酒精灯、石棉网、镊子、四氟搅拌棒、刮刀、托盘、加热电圈、冷凝管夹、德式十字架、中铁台、铁圈、电热套调温控温、变压器、磁子、标签纸、自封袋、优质真空管、玻璃刀、毛细管、座式酒精灯、手套、干燥塔、球形冷凝管、直形冷凝管、层析柱、一球干燥管、斜行干燥管、蒸馏头75度、搅拌器套管、90度抽气接头、真空接收管、四氟搅拌器塞头、转接头、防溅球、布氏漏斗、三角漏斗、分液漏斗、恒压漏斗、具塞二通活塞、分水器、高效板、刻度试管、玻璃研钵、滤纸、脱脂棉、真空硅酯、螺旋夹、烧瓶夹、十字夹、甲基硅油、牛角匙、点样管、温度计、PH试纸、称量纸、试管刷、试管夹、生胶带、电吹风、封口膜、酒精喷灯、滴管、吸管、样品瓶、刮勺、搪瓷盘、离心管、分馏头、梨

形漏斗、展开槽/染色缸、西林瓶(青霉素瓶)及塞子。 注:特殊玻璃仪器都可向玻璃公司定做,可根据提出要求做,可向他们要有关尺寸规格。 2 工艺研究实验室 名 称数 量 台式高速离心机1 低速台式大容量离心机1 超速离心机1 冷冻离心机1 小型粉碎机1 超声波破碎机1 冷冻干燥机1 实验室喷雾干燥机1 微波炉1 冰箱1 分离填料1 高效硅胶预制板2 3 精密分析实验室 名 称数 量 电子分析天平1 紫外分析仪1 标准比色仪1 紫外分光光度计1 食品物性分析仪1 凝胶成像分析仪1 红外水份测定仪1 水份活度仪1

相关主题
文本预览
相关文档 最新文档