当前位置:文档之家› 锂电池长期浮充

锂电池长期浮充

锂电池长期浮充
锂电池长期浮充

而且在日常生活中,都知道。。。长期浮充会造成电解液蒸发,膨胀等一系列的问题,

笔记本电池长期浮充,为什么反而造成电池使用寿命锐减?(IBM ThinkPad R60e) 常年接220V外接电源浮充电池,系统显示充点次数才47此,但是电池指标只有99%,永远充不满

问题补充:续:电池放电时间15-25min之间不等,电池寿命感觉已经接近损坏。满意答案:如果长时间使用交流电,建议将电池取下,密闭避光保存,大概一个月左右完全充放电一次,这样有利于电池的健康~

IBM给的答案是:不用的时候放电至40%左右存放,最好每月一次完整的充放电,至少每半年一次。

前面看到有网友说到锂里池越来越不经用的问题。下面我就给出几个建议吧。有兴趣的往下看吧。

说明一下,我不是在乱说,都是阵年翻技术贴和多年亲身使用的体验。

1,电池肯定是越用越差,这是肯定的,所以尽量别折磨你的手机、

2,根据锂电池的特性,请别把它当成以前其它种类电池的错误使用方法来保养!

3,锂电池不存在头三次使用一定要充满12小时的说法,这样只会让你的电池更加容易损坏!

4,锂电池所谓的记忆功能有别与其它各类的电池,千万别按以前其它各类老式电池错误理念来进行充电,完全可以即用即充,也就是说电量尽量不要低于20%后再充电,千万别等到只留一点点电了或是无法开机后再充,这样非常伤是以叹也,具体原理看下面的技术介绍。

5,千万别听信一些电池保养的软件,由于各类电池都在市场上普及,如果没有一个针对锂电的方案,那么你就小心别损坏了你爱机吧。

6,通常充电时间为提示充满后(亮绿灯)再一个小时左右就行了。也就是说一次充电时间最长不要超过4或5小时(根据锂电池的容量和充电器的流量速度)

7,请严格按照你机子的说明书上介绍的充电方案去保养你的机子,听厂家的不会有错,别自做聪明,得不偿失啊!

下面再复一些技术资料,大家一起来参考学习一下。有耐心的就往下看吧。

手机锂电池的正确使用方法(原理、充电、保养),彻底消除误导言论!

在手机中,无论是从技术角度评估还是从价格方面的考虑,电池都占有十分重要的地位。时值今日,市场上正在销售的手机中,所使用的电池已经基本完成了从镍电池到锂电池的过渡。也许是由于手机电池刚刚完成了一次镍电池到锂电池的革命,所以人们对锂电池的认识并不统一,在许多情况下不正确的说法和做法颇为流行。因此,懂得一点锂电池的知识,掌握锂电池的正确使用方法是非常有必要的。

锂电池的种类

目前市面上所使用的二次电池主要有镍氢(Ni-MH)与锂离子(Li-ion)两种类型。锂离子电池中已经量产的有液体锂离子电池(LiB)和聚合物锂离子电池(LiP)两种。所以在许多情况下,电池上标注了Li-ion的,一定是锂离子电池。但不一定就是液体锂离子电池,也有可能是聚合物锂离子电池。

锂离子电池是锂电池的改进型产品。锂电池很早以前就有了,但锂是一种高度活跃(还记得它在元素周期表中的位置吗?)的金属,它使用时不太安全,经常会在充电时出现燃烧、爆裂的情况,后来就有了改进型的锂离子电池,加入了能抑制锂元素活跃的成份(比如钴、锰等等)从而使锂电真正达到了安全、高效、方便,而老的锂电池也随之基本上淘汰了。至于如何区分它们,从电池的标识上就能识别,锂电池为Li、锂离子电池为Li-ion。现在,笔记本和手机使用的所谓“锂电池”,其实都是锂离子电池。

现代电池的基本构造包括正极、负极与电解质三项要素。作为电池的一种,锂离子电池同样具有这三个要素。一般锂离子技术使用液体或无机胶体电解液,因此需要坚固的外壳来容纳可燃的活性成分,这就增加了电池的重量和成本,也限制了尺寸大小和造型的灵活性。一般而言,液体锂离子二次电池的最小厚度是6mm,再减少就比较困难。

而所谓聚合物锂离子电池是在这三种主要构造中至少有一项或一项以上使用高分子材料作为其主要的电池系统。新一代的聚合物锂离子电池在聚合物化的程度上已经很高,所以形状上可做到薄形化(最薄0.5毫米)、任意面积化和任意形状化,大大提高了电池造型设计的灵活性,从而可以配合产品需求,做成任何形状与容量的电池。同时,聚合物锂离子电池的单位能量比目前的一般锂离子电池提高了50%,其容量、充放电特性、安全性、工作温度范围、循环寿命与环保性能等方面都较锂离子电池有大幅度的提高。

目前市面上所销售的液体锂离子(LiB)电池在过度充电的情形下,容易造成安全阀破裂因而起火的情形,这是非常危险的,所以必需加装保护IC线路以确保电池不会发生过度充电的情形。而高分子聚合物锂离子电池方面,这种类型的电池相对液体锂离子电池而言具有较好的耐充放电特性,因此对外加保护IC线路方面的要求可以适当放宽。此外在充电方面,聚合物锂离子电池可以利用IC

定电流充电,与锂离子二次电池所采用的CCCV(Constant Currert-Constant Voltage)充电方式所需的时间比较起来,可以缩短许多的等待时间。

手机制造商对锂电池的应用情况

虽然近几年来几乎所有厂家都已经倾向于采用锂离子电池,但世界各大手机制造商对电池的选择还是有自己的特点和习惯,例如曾经在相同的一段历史时期里:

诺基亚:采用Ni-MH(镍氢)电池、LiB(液体锂离子)电池,未采用LiP(聚合物锂离子)电池。

爱立信:采用Ni-MH电池、LiB电池、LiP电池。

摩托罗拉:采用Ni-MH电池、LiB电池,未采用LiP电池。

不难发现,从为手机最早选用LiP聚合物锂离子电池这件事情上,爱立信体现出自己手机技术先驱的本色。根据我查找到的资料表明,目前聚合物锂离子电池主要制造厂为日*本SONY、松下、GS

等几家公司,2000年的生产量达到2100万只,其中50%为爱立信手机配套。进入2002年的今天,锂离子电池在其它手机厂商的手机上也已广泛的应用与普及。但在聚合物锂离子电池的使用上,还远没

有达到在所有手机厂家的产品中得到普及的程度,广泛应用还有待时日。

另一方面,虽然锂离子电池优点多多,但也有缺陷,如价格高和充放电次数少等等。锂电池的充放电次数只有400-600次,经过特殊改进的产品也不过800多次。而镍氢电池的充电次数能够达到700次以上,某些质量好的产品充放电可达1200次,这样一比较,镍氢电池要比锂电池长寿。此外镍氢电池的价格也要比锂电池低很多。而且严格说来,锂电池同样会有记忆效应,只是它的记忆效应非常低,基本上可以忽略不计。

由此看来,目前还没有十全十美电池。

离子电池的使用

这部分是本文的重点,我们分三点来谈。

1、如何为新电池充电

在使用锂电池中应注意的是,电池放置一段时间后则进入休眠状态,此时容量低于正常值,使用时间亦随之缩短。但锂电池很容易激活,只要经过3-5次正常的充放电循环就可激活电池,恢复正常容量。由于锂电池本身的特性,决定了它几乎没有记忆效应。因此用户手机中的新锂电池在激活过程中,是不需要特别的方法和设备的。不仅理论上是如此,从我自己的实践来看,从一开始就采用标准方法充电这种“自然激活”方式是最好的。

对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法。所以这种说法,可以说一开始就是误传。锂电池和镍电池的充放电特性有非常大的区别,而且可以非常明确的告诉大家,我所查阅过的所有严肃的正式技术资料都强调过充和过放电会对锂电池、特别是液体锂离子电池造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。

此外,锂电池的手机或充电器在电池充满后都会自动停充,并不存在镍电充电器所谓的持续10几小时的“涓流”充电。也就是说,如果你的锂电池在充满后,放在充电器上也是白充。而我们谁都无法保证电池的充放电保护电路的特性永不变化和质量的万无一失,所以你的电池将长期处在危险的边缘徘徊。这也是我们反对长充电的另一个理由。

此外在对某些手机上,充电超过一定的时间后,如果不去取下充电器,这时系统不仅不停止充电,还将开始放电-充电循环。也许这种做法的厂商自有其目的,但显然对电池和手机/充电器的寿命而言是不利的。同时,长充电需要很长的时间,往往需要在夜间进行,而以我国电网的情况看,许多地方夜间的电压都比较高,而且波动较大。前面已经说过,锂电池是很娇贵的,它比镍电在充放电方面耐波动的能力差得多,于是这又带来附加的危险。

此外,不可忽视的另外一个方面就是锂电池同样也不适合过放电,过放电对锂电池同样也很不利。这就引出下面的问题。

2、正常使用中应该何时开始充电

我们经常可以见到这种说法,因为充放电的次数是有限的,所以应该将手机电池的电尽可能用光再充电。但是我找到一个关于锂离子电池充放电循环的实验表,关于循环寿命的数据列出如下:循环寿命 (10%DOD):>1000次

循环寿命 (100%DOD):>200次

其中DOD是放电深度的英文缩写。从表中可见,可充电次数和放电深度有关,10%DOD时的循环寿命要比100%DOD的要长很多。当然如果折合到实际充电的相对总容量:10%*1000=100,

100%*200=200,后者的完全充放电还是要比较好一些,但前面网友的那个说法要做一些修正:在正常情况下,你应该有保留地按照电池剩余电量用完再充的原则充电,但假如你的电池在你预计第2天不可能坚持整个白天的时候,就应该及时开始充电,当然你如果愿意背着充电器到办公室又当别论。

而你需要充电以应付预计即将到来的会导致通讯繁忙的重要事件的时候,即使在电池尚有很多余

电时,那么你也只管提前充电,因为你并没有真正损失“1”次充电循环寿命,也就是“0.x”次而已,而且往往这个x会很小。

电池剩余电量用完再充的原则并不是要你走向极端。和长充电一样流传甚广的一个说法,就是“尽量把手机电池的电量用完,最好用到自动关机”。这种做法其实只是镍电池上的做法,目的是避免记忆效应发生,不幸的是它也在锂电池上流传之今。曾经有人因为手机电池电量过低的警告出现后,仍然不充电继续使用一直用到自动关机的例子。结果这个例子中的手机在后来的充电及开机中均无反应,不得不送客服检修。这其实就是由于电池因过度放电而导致电压过低,以至于不具备正常的充电和开机条件造成的。

3、对锂电池手机的正确做法

归结起来,我对锂电池手机在使用中的充放电问题最重要的提示是:

①按照标准的时间和程序充电,即使是前三次也要如此进行;

②当出现手机电量过低提示时,应该尽量及时开始充电;

③锂电池的激活并不需要特别的方法,在手机正常使用中锂电池会自然激活。如果你执意要用流传的“前三次12小时长充电激活”方法,实际上也不会有效果。

因此,所有追求12小时超长充电和把锂电池手机用到自动关机的做法,都是错误的。如果你以前是按照错误的说法做的,请你及时改正,也许为时还不晚。

当然,在手机及充电器自身保护和控制电路质量良好的情况下,对锂电池的保护还是有相当保证的。所以对充电规则的理解才是重点,在某些情况下也是可以做出某种让步的。比如你发现手机在你夜晚睡觉前必须充电的话,你也可以在睡前开始充电。问题的关键在于,你应该知道正确的做法是什么,并且不要刻意按照错误的说法去做

蓄电池的均充和浮充

蓄电池的均充和浮充 蓄电池在各个行业的应用非常的广泛,电力电源、通信、各种需要用到电源的行业都用到蓄电池,蓄电池的应用好坏直接影响到蓄电池的寿命,那么,蓄电池的充电方式主要是浮充电和均衡充电两种,为了延长阀控电池的使用寿命,必须了解不同充电方式的特点和要求,严格按照要求对蓄电池进行充电。 一般密封铅酸蓄电池投入使用的日期距出厂日期时间较长,电池经过长期的自放电,容量必然大量损失,并且由于单体电池自放电大小的差异,致使电池的比重、端电压等出现不均衡,投入使用前应对电池进行一次均衡充电,否则,个别电池会进一步发展成落后电池并会导致整组电池不可用。另外,如果蓄电池长期不投入使用,闲置时间超过3个月后,应该对电池进行一次均衡充电。 在浮充状态下,充电电流除维持电池的自放电以外,还维持电池内的氧循环,但是浮充状态下充电电流又是与电池的浮充电压密切相关的。因此,为了使阀控铅酸蓄电池有较长的使用寿命,在电池使用过程中,要充分结合电池制造的原材料及结构特点和环境温度等几方面的情况,设定浮充电压。根据通信用阀控密封铅酸蓄电池行业标准YD/T799-2002的规定,在环境温度25℃时浮充电压允许变化范围为2.20~2.27V。浮充电压设置过低,电池长期处于欠充电状态,不仅会在电池极板内部形成不可逆的硫酸盐化,而且还会在活性物质和板栅之间形成高电阻阻挡层,使电池的内阻增加、容量下降。浮充电压设置过高,电池长期处于过充电状态,使电池负极析出的H2和正极

析出的O2难以全部再化合成H2O,造成电池失水,板栅腐蚀加速,使用寿命提前终止。因此,在蓄电池的使用和维护管理过程中,应根据电池厂家提供的资料进行浮充电压设置。如电池厂家推荐的单体电池浮充电压为 2.25V,此时应设置组合电源的浮充电压为54V(2.25×24)。 根据《电信电源维护规程》规定,阀控铅酸蓄电池遇到下列情况之一时,应进行均衡充电: 1)2只以上单体电池的浮充电压低于2.18V; 2)放电深度超过20%; 3)闲置不用的时间超过3个月; 4)全浮充时间超过3个月。

铅酸蓄电池常见故障分析及处理方法

铅酸蓄电池常见故障分析及处理方法 常见故障不良现象故障产生的原因故障的处理方法 蓄电池充电不足1.静止电压低 2.密度低,充电结束后达不 到规定要求 3.工作时间短 4.工作时仪表显示容量下降 快 1.充电器电压、电流设置 过低 2.初充电不足 3.充电机故障 1.调整,检修充电 器 2.蓄电池补充充电 3.严重时需更换新 电池 蓄电池过充电1.注液盖篓色泽变黄,变红 2.外壳变形 3.隔板炭化、变形 4.正极腐蚀、断裂 5.极柱橡胶套管上升、老 化、开裂 6.经常补水,充电时电解液 浑浊 1.充电器电压,电流设置 过高 2.充电时间过长 3.频繁充电 4.放电量小而充电量大 5.充电机故障 1.调整,检修充电 器 2.调整充电制度 3.严重时需更换新 电池

铅酸蓄电池热失控故障分析 当电池处于充电状态时,电池温度发生一种积累性的增强作用。当增温过程的热量积累到一定程度,电池端电压会突然出现降低,迫使电流骤然增大,电池温度高升而损坏蓄电池的现象称之为热失控。 1.故障现象 充电时特别到了末期,充电器不转绿灯,同时电池严重发热,如果测量充电电流会发现电流很高可达到2A或2A以上。发热严重时,析气压力过高,会导致电池壳受热变形,直至电池报废。 2.故障产生原因 ⑴电池失水 失水后,蓄电池中超细玻璃纤维隔板发生收缩现象,使之与正负极板的附着力变得很差,内阻增大,充放电过程中发热量加大。经过上述过程,蓄电池内部产生的热量只能经过电池槽散热,如散热小于发热量,即出现温度上升现象。温度上升,使蓄电池析气过电位降低,析气量增大,正极大量的氧气通过“通道”,在负极表面反应,发出大量的热量,使温度快速上升,形成恶性循环,即所谓的“热失控”。最

蓄电池容量计算方法

蓄电池容量计算部分 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中Cc—事故放电容量; Kcc—蓄电池容量系数; Krel—可靠系数,一般取1.40 对于阶梯型负荷,可采用分段计算法计算。以东直门车站为例,各阶段负荷分布如下图所示: 图中: I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 80 .1 108 220 885 .0 = ? = Ud cc s rel c K C K C=

在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 mi i mi t I C =n a a i mi sa C C ...2,11 |==∑=n a Kcca KrelCsa Cca ...2,1|== Cca n a Cc max 1 =≥10 tC KrelCs K =

浮充电

一种连续、长时间的恒电压充电方法。浮充电电压略高于涓流充电,足以补偿蓄电池自放电损失并能够在电池放电后较快地使蓄电池恢复到接近完全充电状态。又称连续充电。这种充电方式主要用于电话交换站、不间断电源(UPS)及各种备用电源。 浮充就是恒压小电流充电,目的一是防止蓄电池自放电,二是增加充电深度 浮充电就是指将充足电的蓄电池组与充电设备列运行,浮充电主要由充电设备供给恒定负荷,蓄电池平时不供电,充电设备以不大的电流来补充蓄电池的自放电,以及由于负载在短路时突然增大所引起的少量放电。 基础电压范围内的工作电压有浮充电压,均衡电压和终止电压三种.在通信电源供电系统中,整流器和蓄电池并接于馈电线上,当市电正常时,由整流器供电,同时也给蓄电池微小的补充电流,这种供 当电池处于充满状态时,充电器不会停止充电,仍会提供恒定的浮充电压与很小浮充电流供给电池,因为,一旦充电器停止充电,电池会自然地释放电能,所以利用浮充的方式,平衡这种自然放电. 均充 一种蓄电池的充电模式。以定电流和定时间的方式对电池充电,充电较快。充电电压与浮充相比要大。在专业维护人员对电池保养时经常用的充电模式,这种模式还有利于激活电池的化学特性。 浮充 蓄电池组的一种供(放)电工作方式,系将蓄电池组与电源线路并联连接到负载电路上,它的电压大体上是恒定的,仅略高于蓄电池组的断路电压,由电源线路所供的少量电流来补偿蓄电池组局部作用的损耗,以使其能经常保持在充电满足状态而不致过充电。因此,蓄电池组可随电源线路电压上下波动而进行充放电。当负载较轻而电源线路电压较高时,蓄电池组即进行充电,当负载较重或电源发生意外中断时,蓄电池组则进行放电,分担部分或全部负载。这样,蓄电池组便起到稳压作用,并处于备用状态。(用于备用电池) 浮充供电工作方式可分为半浮充和全浮充两种。当部分时间(负载较轻时)进行浮充供电,而另部分时间(负载较重时)由蓄电池组单独供电的工作方式,称为半浮充工作方式,或称定期浮充工作方式。倘全部时间均由电源线路与蓄电池组并联浮充供电,则称为全浮充工作方式,或称连续浮充工作方式。 以净充工作方式使用的蓄电池组,其寿命一般较全充放工作方式者要长,而且可改用较小些容量的蓄电池组来代替。这种浮充供电工作方式多用于发电厂的断电备用电源和电话局的电话正常供电电源。 基础电压范围内的工作电压有浮充电压,均衡电压和终止电压三种.在通信电源供电系统中,整流器和蓄电池并接于馈电线上,当市电正常时,由整流器供电,同时也给蓄电池微小的补充电流,这种供电方 式称为浮充,这一过程中整流器输出的电压称为浮充电压。 浮充电是存在于极板间电容上的,极板间电容是不大的,浮充电又叫做表面浮电。放电的话很快就能放完而蓄电池的工作绝对不能依靠这些浮电只能靠液体和极板的化学反应只有化学反应储存的化 学能才能保证足够的放电容量。 (1)蓄电池平时均应处于在线浮充状态。

锂电池的基本知识

锂电池的基本知识 便携式电子产品以电池作为电源。随着便携式产品的迅猛发展,各种电池的用量大增,并且开发出许多新型电池。除大家较熟悉的高性能碱性电池、可充电的镍镉电池、镍氢电池外,还有近年来开发的锂电池。本文主要介绍有关锂电池的基本知识。这包括它的特性、主要参数、型号的意义、应用围及使用注意事项等。 锂是一种金属元素,其化学符号为Li(其英文名为lithium),是一种银白色、十分柔软、化学性能活泼的金属,在金属中是最轻的。它除了应用于原子能工业外,可制造特种合金、特种玻璃(电视机上用的荧光屏玻璃)及锂电池。在锂电池中它用作电池的阳极。 锂电池也分成两大类:不可充电的及可充电的两类。不可充电的电池称为一次性电池,它只能将化学能一次性地转化为电能,不能将电能还原回化学能(或者还原性能极差)。而可充电的电池称为二次性电池(也称为蓄电池)。它能将电能转变成化学能储存起来,在使用时,再将化学能转换成电能,它是可逆的,如电能化学能锂电池的主要特点 灵巧型便携式电子产品要求尺寸小、重量轻,但电池的尺寸及重量与其它电子元器件相比往往是最大的及最重的。例如,想当年的“大哥大”是相当“粗大、笨重”,而今天的手机是如此的轻巧。其中电池的改进是起了重要作用的:过去是镍镉电池,现在是锂离子电池。 锂电池的最大特点是比能量高。什么是比能量呢?比能量指的是单位重量或单位体积的能量。比能量用Wh/kg或Wh/L来表示。Wh是能量的单位,W是瓦、h是小时;kg是千克(重量单位),L是升(体积单位)。这里举一个例来说明:5号镍镉电池的额定电压为12V,其容量为800mAh,则其能量为096Wh(12V×08Ah)。同样尺寸的5号锂-二氧化锰电池的额定电压为3V,其容量为1200mAh,则其能量为36Wh。这两种电池的体积是相同的,则锂-二氧化锰电池的比能量是镍镉电池的375倍! 一节5号镍镉电池约重23g,而一节5号锂-二氧化锰电池约重18g。一节锂-二氧化锰电池为3V,而两节镍镉电池才24V。所以采用锂电池时电池数量少(使便携式电子产品体积减小、重量减轻),并且电池的工作寿命长。 另外,锂电池具有放电电压稳定、工作温度围宽、自放电率低、储存寿命长、无记忆效应及无公害等优点。 锂电池的缺点是价格昂贵,所以目前尚不能普遍应用,主要应用于掌上计算机、PDA、通信设备、照相机、卫星、导弹、鱼雷、仪器等。随着技术的发展、工艺的改进及生产量的增加,锂电池的价格将会不断地下降,应用上也会更普遍。 不可充电的锂电池 不可充电的锂电池有多种,目前常用的有锂-二氧化锰电池、锂—亚硫酰氯电池及锂和

铅酸蓄电池正确使用与充电管理

铅酸蓄电池正确使用与充电管理 在现今这个以工业为主的社会中,后备直流电源的应用越来越广泛了,作为后备直流电源重要组成部分的蓄电池,其性能状况的优劣状态对于保证后备直流电源的正常运行就显得尤为重要。在蓄电池家族中,阀控铅酸蓄电池在直流后备电源中的应用越来越广泛了。 虽然阀控式铅酸蓄电池在电力操作电源广泛使用,但由于阀控式铅酸蓄电池结构的特殊性,想尽可能地延长蓄电池的使用寿命,就必须在运行中正确的使用蓄电池,而可靠地检测蓄电池的性能,并有针对性地对蓄电池进行维护就变得非常迫切了。合理地选择及使用目前直流电源系统中的蓄电池和电池监测模块,对延长蓄电池的使用寿命及相关设备的正常运行有很大的作用,为获得最大的安全效益和经济效益有着很重要的意义。 方法/步骤 1. 1 一铅酸蓄电池的失效机理 铅酸电池的失效研究对于电源系统的安全运行具有重要的意义,我们对这一问题进行一下概要的讨论,以使读者对这一问题有一个概要的认识。 1.1电池失水 铅酸蓄电池失水会导致电解液比重增高、导致电池正极栅板的腐蚀,使电池的活性物质减少,从而使电池的容量降低而失效。 铅酸蓄电池密封的难点就是充电时水的电解。当充电达到一定电压时(一

般在2.30V/单体以上)在蓄电池的正极上放出氧气,负极上放出氢气。一方面释放气体带出酸雾污染环境,另一方面电解液中水份减少,必须隔一段时间进行补加水维护。阀控式铅酸蓄电池就是为克服这些缺点而研制的产品,其产品特点为: (1)采用多元优质板栅合金,提高气体释放的过电位。即普通蓄电池板栅合金在2.30V/单体(25℃)以上时释放气体。采用优质多元合金后,在2.35V/单体(25℃)以上时释放气体,从而相对减少了气体释放量。 (2)让负极有多余的容量,即比正极多出10%的容量。充电后期正极释放的氧气与负极接触,发生反应,重新生成水,即O2+2Pb→2PbO,PbO+H2SO4→H2O+PbSO4使负极由于氧气的作用处于欠充电状态,因而不产生氢气。这种正极的氧气被负极铅吸收,再进一步化合成水的过程,即所谓阴极吸收。 (3)为了让正极释放的氧气尽快流通到负极,必须采用和普通铅酸蓄电池所采用的微孔橡胶隔板不同的新超细玻璃纤维隔板。其孔率由橡胶隔板的50%提高到90%以上,从而使氧气易于流通到负极,再化合成水。另外,超细玻璃纤维板具有吸附硫酸电解液的功能,因此阀控式密封铅酸蓄电池采用贫液式设计,即使电池倾倒,也无电解液溢出。 (4)采用密封式阀控滤酸结构,使酸雾不能逸出,达到安全、保护环境的目的。 在上述阴极吸收过程中,由于产生的水在密封情况下不能溢出,因此阀控式密封铅酸蓄电池可免除补加水维护,这也是阀控式密封铅酸蓄电池称为免维电池的由来。

铅酸电池的浮充与均充

浮充 floating charge 浮充特性:蓄电池组是电力直流系统的备用电源。浮充线路特点,是电池组与电源线路并联地连接到负载电路上。在正常的运行状态下,与直流母线相连的充电装置,除对常规负载供电外,还向蓄电池组提供浮充电流。这种运行方式称为全浮充工作方式,简称浮充运行. 浮充是蓄电池组的一种供(放)电工作方式,系统将蓄电池组与电源线路并联连接到负载电路上,它的电压大体上是恒定的,仅略高于蓄电池组的端电压,由电源线路所供的少量电流来补偿蓄电池组局部作用的损耗,以使其能经常保持在充电满足状态而不致过充电。因此,蓄电池组可随电源线路电压上下波动而进行充放电。当负载较轻而电源线路电压较高时,蓄电池组即进行充电,当负载较重或电源发生意外中断时,蓄电池组则进行放电,分担部分或全部负载。这样,蓄电池组便起到稳压作用,并处于备用状态。 浮充供电工作方式可分为半浮充和全浮充两种。当部分时间(负载较重时)进行浮充供电,而另部分时间(负载较轻时)由蓄电池组单独供电的工作方式,称为半浮充工作方式,或称定期浮充工作方式。倘全部时间均由电源线路与蓄电池组并联浮充供电,则称为全浮充工作方式,或称连续浮充工作方式。 以浮充工作方式使用的蓄电池组,其寿命一般较全充放工作方式者要长,而且可改用较小些容量的蓄电池组来代替。这种浮充供电工作方式多用于发电厂的断电备用电源和电话局的电话正常供电电源。 一般的蓄电池都是浮充,均充的实现不了。 均充 一种蓄电池的充电模式。以定电流和定时间的方式对电池充电,充电较快。充电电压与浮充相比要大。在专业维护人员对电池保养时经常用的充电模式,这种模式还有利于激活电池的化学特性

锂离子电池保护电路基本知识

锂离子电池保护电路 1.什么是锂离子电池保护ic? 答:在锂离子电池使用过程中,过充电、过放电对锂电池的电性能都会造成一定的影响,为避免使用中出现这种现象,专门设计了一套电路,并用微电子技术把它小型化,成为一个芯片,该芯片俗称锂电池保护ic。 2.保护ic外形是什么样的? 答:保护ic外形常用的有两种: 一种称为SOT-23-5封装。 另一种较薄,称TSSOP-8封装。

3.Ic内部有些什么电路,能大概介绍一下吗?答:ic内部的简化的逻辑图如下: 其各个端口的功能简述如下: V DD:1。IC芯片电源输入端。 2.锂电池电压采样点。 V SS:1。IC芯片测量电路基准参考点。 2.锂电池负极和IC连接点。 D O:IC对放电MOS管的输出控制端 C O:IC对充电MOS管的输出控制端 V M:IC芯片对锂电池工作电流的采样输入端

从简化的逻辑图可见:电池过充电、过放电,放电时电流过大(过电流),外围电路短路,该ic都会检测出来,并驱动相应的电子器件动作。 4.Ic有哪些主要技术指标? 答:1)过充电检测电压:V CU 4.275±25mv (4.25 4.275 4.30)2)过充电恢复电压:V CL 4.175±30mv (4.145 4.175 4.205) 3) 过放电检测电压:V DL 2.3±80mv (2.22 2.3 2.38 ) 4) 过放电恢复电压:V DU 2.4±0.1mv (2.3 2.4 2.5 ) 5) 过电流检测电压:VIOV10.1±30mv (0.07V 0.1 0.13V) VIOV20.5±0.1mv (0.4 0.5 0.6 ) 6) 短路检测电压:VSHORT -1.3V (-1.7 -1.3 -0.6 ) 7) 过充电检测延时:tcu 1s (0.5 1 2 ) 8) 过放电检测延时:tdl 125ms (62.5 125 250 ) 9) 过流延时:TioV1 8ms (4 8 16 ) TioV2 2ms (1 2 4 ) 10)短路延时:Tshort 10us (10 50us) 11)正常功耗:10PE 3uA (1 3 6uA) 12)静电功耗:1PDN 0.1 uA 5.锂电池保护电路的PCB板上,除了保护ic外,还需要哪些元件,才能组成一个完整的保护PCB? 答:还需要作为开关功能用的两只场效应管、若干电阻、电容。 6.场效应管是什么样子? 答:场效应管也称MOS FET,在锂电池保护PCB上,都是成对使用,因此制造商把两只独

太阳能电池板与蓄电池配置计算公式

太阳能电池板与蓄电池配置计算公式 一:首先计算出电流: 如:12V蓄电池系统; 30W的灯2只,共60瓦。 电流=60W-12V= 5A 二:计算出蓄电池容量需求: 如:路灯每夜累计照明时间需要为满负载7小时(h); (如晚上8:00 开启,夜11:30 关闭1 路,凌晨4:30 开启2 路,凌晨5:30 关闭) 需要满足连续阴雨天5 天的照明需求。(5 天另加阴雨天前一夜的照明,计6 天) 蓄电池=5A X7h X(5 + 1)天=5A X42h= 210AH 另外为了防止蓄电池过充和过放,蓄电池一般充电到90%左右;放电余留20%左右。 所以210AH也只是应用中真正标准的70%左右。 三:计算出电池板的需求峰值(WP): 路灯每夜累计照明时间需要为7小时(h); ★:电池板平均每天接受有效光照时间为小时(h) ; 最少放宽对电池板需求20%的预留额。 W- = (5A X7h X120%— WP-= WP=162(W)

光伏发电系统计算方法 光伏系统的规模和应用形式各异,如系统规模跨度很大,小到几瓦的太阳能庭院灯,大到MV级的太阳能光伏电站。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或11 0V,还需要配置逆变器。各部分的作用为: (一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保 护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项; (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220VAC 110VAC的交流电源。由于太阳能的直接输出一般 都是12VDC 24VDC 48VDC为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电 能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。光伏系统的设计包括两个方面:容量设计和硬件设计。

蓄电池的正确使用和维护

摘要:蓄电池是变电站直流系统的一个重要组成部分,蓄电池在供电可靠性保障和提高方面起到了十分重要的作用,现阶段使用较为广泛的蓄电池主要是全密封铅酸蓄电池,这类蓄电池具有免维护的优点,但相应地,电池密封也给蓄电池的日常维护和巡视带来较大困扰。 关键词:蓄电池;正确维护;使用 1 影响蓄电池正常使用寿命的因素(主要指免维护的铅酸蓄电池) 1.1 运行环境温度因素。周围运行环境温度较高是影响蓄电池正常使用寿命的重要因素,大部分蓄电池的生产厂家要求蓄电池的正常运行环境温度应在15~20℃之间,蓄电池在正常使用时,随着周围环境温度的升高,蓄电池的放电能力也会得到相应提高,但是若周围环境温度超过25℃时,温度每升高10℃,蓄电池的正常使用寿命就会减半。 1.2 蓄电池的过度放电。对蓄电池来讲,被过度放电也是影响蓄电池正常使用寿命的另一个重要因素。这种现象主要发生在变电站交流电源停电以后,使用蓄电池作为负载的供电电源期间。当蓄电池被过度放电时,尤其是当蓄电池过度放电到输出电压接近零时,会导致电池内部电解液中大量的硫酸铅被吸附到电池内部阴极导体的表面,导致电池阴极发生“硫酸盐化”现象。由于硫酸铅属于绝缘体,在阴极导体表面大量形成会对电池的充、放电性能产生不利的影响,在阴极导体表面形成的硫酸铅越多,蓄电池的内阻将变得越大,电池的性能就会越差,使用寿命就缩短。 1.3 板栅腐蚀程度。板栅的腐蚀,也是影响蓄电池正常使用寿命的重要因素。在蓄电池开路的状态下,蓄电池内部阴极导体铅合金与活跃的二氧化铅直接接触,并且共同浸泡在硫酸溶液中,它们各自与硫酸溶液建立起不同的电极电位。正常使用过程中,蓄电池正极栅板会不断溶解,特别是在蓄电池过度充电情况下,正极由于发生析氧反应,h2o被消耗,h+不断增加,从而导致正极附近溶液ph值下降,板栅的腐蚀速率增加。因此,如果蓄电池使用维护不当,长期处于过充状态时,蓄电池的板栅就会溶解变薄,导致蓄电池容量降低,使用寿命缩短。 1.4 电解液失水。蓄电池内部电解液失水,是影响其正常使用寿命的因素之一,蓄电池的电解液失水会导致电解液浓度增大,电池栅板的腐蚀速率增加,蓄电池电解液中活性物质逐渐减少,进而导致蓄电池的容量降低、使用寿命减少。 1.5 长期处于浮充状态。目前,变电站中蓄电池大多都处于长期的浮充状态,只进行充电,而不进行放电,这种状态很不科学。大量运行实践统计表明,长期处于浮充状态会发生蓄电池阳极极板钝化现象,从而使蓄电池的内阻急剧加大,进而导致蓄电池所容量大大减小,影响其正常使用寿命。 2 蓄电池正确运行和维护措施 2.1 如果运行条件允许,应当把蓄电池安装在独立的安装有空调的蓄电池室内,使其工作在合适的温度范围内(15到20℃之间)。 2.2 保持蓄电池室和蓄电池本体的清洁。安装调试好的蓄电池,其极柱均应涂抹一层凡士林,防止其极柱发生腐蚀。 2.3 严格遵守蓄电池放电后“恒流均充”再“恒压浮充”的充电规律要求,蓄电池组建议增加智能充电装置,以便在蓄电池放电后能得到合理的充电。 2.4 针对供电可靠性较高,很少发生停电问题,长期处于浮充状态的的变电站蓄电池来说,应当定期对其进行活化和核对性充放电。在正常的运行维护工作中,应该每隔2~3个月,人为的对直流电源的交流进线断电,或利用备用蓄电池组使用核对性放电仪,对蓄电池进行一次核对性放电,同时要注意加强监控,不能使蓄电池放电过度,放电幅度应在30%到50%之间;放电后,再重新对其进行充电。这样的可以延长蓄电池的正常使用寿命,保持蓄电池的容量。

锂电池的一些基本概念

锂电池的一些基本概念 时间:2014-12-3 10:39:48来源:本站原创浏览次数:74 从能量角度来说将其它形式能量直接转换为直流电能的装置俗称为电池。电池按是否可以被再次利用可分为一次电池和二次电池。不可充电电池称为一次电池;可充电电池称为二次电池。二次电池的确切定义:利用化学反应的可逆性,可以组建成一个新电池,即当一个化学反应转化为电能之后,还可以用电能使化学体系修复,然后再利用化学反应转化为电能,具有上述特性的电池称为二次电池。概括地说二次电池是指在电池放电后可通过充电的方式使活性物质激活而继续使用的电池。 锂电池(Lithium Cell)是指电化学体系中含有锂(金属锂、锂合金和锂离子、锂聚合物)的最基本电化学单位。锂电池大致可分为三类:锂金属电池、锂离子电池和锂离子聚合物电池。 (1)锂电池(Lithium battery):严格意义的锂电池是锂原电池(锂金属电池),内含纯态的锂金属。锂原电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。一次性使用,为一次电池。 (2)锂离子电池(Li-ion Batteries)是一种二次电池,不含有金属态的锂。锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。它主要依靠锂离子在正极和负极之间移动来传递电荷,从而形成电流。 (3)锂离子聚合物电池(Lithium-ion polymer batteries):是一种用胶态或固态聚合

物取代液态有机溶剂的二次锂离子电池,具有较好的安全性。也称之为“锂聚合物电池”。习惯上把二次锂离子电池简称为锂离子电池,而锂离子电池又被简称为锂电池。

铅酸蓄电池电池失效的主要原因和分析

铅酸蓄电池电池失效的主要原因和分 析 铅酸蓄电池失效可能有多种原因造成的,例如硫化、失水、热失控、活性物质脱落、极板软化等等,接下来将一一为大家介绍和分析。 1.硫化 铅酸蓄电池充放电的过程是电化学反应的过程,放电时,生成硫酸铅,充电时硫酸铅还原为氧化铅。这个电化学反应过程正常情况下是循环可逆的,但硫酸铅是一种容易结晶的盐化物,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会"抱成"团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,这就破坏了原本可逆的循环,导致硫酸铅部分不可逆。结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会吸附在栅板上,造成了栅板工作面积下降,铅酸蓄电池发热失水,铅酸蓄电池容量下降,这一现象叫硫化,也就是常说的老化。硫化还会导致短路、活性物质松弛脱落、栅板变形断裂等"并发症"。 只要是铅酸蓄电池,在使用的过程中都会硫化,但其它领域的铅酸电蓄池却比电动自行车上使用的铅酸蓄电池有着更长的寿命,这是因为电动车的铅酸蓄电池有着一个更容易硫化的工作环境。与汽车用启动电池不同,汽车电池点火放电后,电池始终处于浮充状态,放电形成的硫酸铅很快又被转化为氧化铅,而电动车放电时,不可能同时进行充电,这就造成硫酸铅大量堆集,如果深放电,这时硫酸铅浓度更高,而且电动车骑行后很难有条件及时充电,放电形成的硫酸铅不能及时充电转化为氧化铅,就会形成结晶。所以,循环寿命,根据放电深度不同而差别很大,放电深度越深,循环次数越少,放电深度越浅,循环次数越多,根据试验结果放电深渡与循环次数联系如下表:放电深度70%50%20%10% 循环寿命500次1000次2800次7000次 一些铅酸蓄电池在做70%的1C充电和60%的2C放电中,由于采用连续大电流循环,破坏了电池生成大硫酸铅结晶的条件,所以可能看不到铅酸蓄电池硫化对电池的破坏。如果试验中途停顿,铅酸蓄电池硫化的问题就会显现。由于电池重量大,一些用户经常采取电池经过多次使用放完电才再次充电,这样电池放电以后没有及时充电,铅酸蓄电池硫化就比较严重。另外,铅酸蓄电池的硫酸比重比较高,也是铅酸蓄电池硫化的重要因素。而铅酸蓄电池硫化,破

光伏电站蓄电池容量的计算方法

光伏电站蓄电池容量的计算方法 在确定蓄电池容量时,并不是容量越大越好,一般以20%为限。因为在日照不足时,蓄电池组可能维持在部分充电状态,这种欠充电状态导致电池硫酸化增加,容量降低,寿命缩短。不合理地加大蓄电池容量,加大蓄电池容量,将增加光伏系统的成本。 在独立光伏发电系统中,对蓄电池的要求主要与当地气候和使用方式有关,因此各有不同。例如,标称容量有5h 率、24h 率、72h 率、100h 率、240h 率以及720h 率。每天的放电深度也不相同,南美的秘鲁用于“阳光计划”的蓄电池要求每天40%~50%的中等深度放电,而我国“光明工程”项目有的户用系统使用的电池只进行20%~30%左右的放电深度,日本用于航标灯的蓄电池则为小电流长时间放电。蓄电池又可分为浅循环和深循环两种类型。因此选择太阳能用蓄电池应既要经济又要可靠,不仅要防止在长期阴雨天气时导致电池的储存容量不够,达不到使用目的;又要防止电池容量选择过小,不利于正常供电,并影响其循环使用寿命,从而也限制了光伏发电系统的使用寿命;又要避免容量过大,增加成本,造成浪费。确定蓄电池容量的公式为: a K U L P F D C ????=0 C -蓄电池容量,kW ·h (Ah );D -最长无日期间用电时数,h ;F —蓄电池放电效率的修正系数,(通常取1.05);PO -平均负荷容量,kW ;L为蓄电池的维修保养率,(通常取0.8);U 为蓄电池的放电深度(通常取0.5);Kα为包括逆变器等交流回路的损耗率(通常取0.7~0.8)。上式可简化为: C =3.75× D ×P0 这是根据平均负荷容量和最长连续无日照时的用电时数算出的蓄电池容量的简便公式。由于蓄电池容量一般以安时数表示,故蓄电池容量应该为: V Wh C Ah C )(1000)(?=' H I Ah C ?=')( C '为蓄电池容量,A ·h;V 为光伏系统的电压等级(系统电压),通常为12V 、24V 、48V 、110V 或220V 。 例如,按宁波太阳能电源有限公司提供的晶体电池组件,对浙江南都电源动力股份有限公司的阀控式密封铅酸蓄电池进行选型。基本要求为:可为400W 的负载连续5天阴雨天的

铅酸蓄电池充电方法及特性说明

铅酸蓄电池充电方法及特性说明 铅蓄电池的充电特征就是指蓄电池在恒定流充电状态下,电解液相对密度ρ(15℃)、蓄电池端电压UC随充电时间的变化规律。图5-12是将某型号铅蓄电池以5A进行恒流充电时测得的规律曲线。充电过程中,电解液相对密度基本以直线逐渐上升。这是因为采用等流充电,充电机每单位时间向蓄电池输入的电量相等,每单位时间内电解液中的水变为硫酸的量也基本相等。充电过程中,铅蓄电池端电压上升的规律由四个阶段组成:第一阶段:充电开始,端电压上升较快。这是由于极板活性物质孔隙内部的水迅速变为硫酸,孔隙外部的水还未来得及渗透入补充,极板内部电解液相对密度迅速上升所致。 第二阶段:端电压上升较平稳,至单格电压2.4V。该阶段,每单位时间内极板内部消耗的水与外部渗入的水基本相等,处于动态平衡状态。 第三阶段:端电压由2.4V迅速上升至2.7V,该阶段电解液中的水开始电解,正极板表面逸出氧气,负极板处逸出氢气电解液中冒出气泡,出现所谓的电解液“沸腾”现象。 第四阶段:该阶段过充电阶段,端电压不再上升。为了观察端电压和电解液相对密度不再上升的现象,保证蓄电池充分充电,一般需要过充电2h~3h。由于过充电时剧烈地放出气泡会导致活性物质脱落,造成蓄电池容量降低,使用寿命缩短,因此应尽量避免长的时间过充电。过充电时,蓄电池逸出的氢气与氧气混合,混合气体具有易烯、易爆特点,因此充电的蓄电池附近应免明火出现。 铅蓄电池充电终了的特征是: (1)端电压和电解液相对密度上升到最大值,且2h~3h内不再上升。 (2)电解液中产生大量气泡,呈现“沸腾”状态。 3.蓄电池的充放电控制技术 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。 (1)充电过程阶段的划分 在实际光伏发电系统的蓄池中,为了实现设定的充电模式,须对充电过程进行控制,运用正确的充电控制方法,有利于提高蓄电池的充电效率和使用寿命。充电过程一般分为主充、均充和浮充3个阶段。充电末期主要是以恒小电流长时间充电的涓流充电流为主(充电倍率小于0.1C时,称为涓流充电)。

蓄电池浮充与均充

浮充 浮充特性:蓄电池组是电力直流系统的备用电源。浮充线路特点,是电池组与电源线路并联地连接到负载电路上。在正常的运行状态下,与直流母线相连的充电装置,除对常规负载供电外,还向蓄电池组提供浮充电流。这种运行方式称为全浮充工作方式,简称浮充运行. 浮充是蓄电池组的一种供(放)电工作方式,系统将蓄电池组与电源线路并联连接到负载电路上,它的电压大体上是恒定的,仅略高于蓄电池组的端电压,由电源线路所供的少量电流来补偿蓄电池组局部作用的损耗,以使其能经常保持在充电满足状态而不致过充电。因此,蓄电池组可随电源线路电压上下波动而进行充放电。当负载较轻而电源线路电压较高时,蓄电池组即进行充电,当负载较重或电源发生意外中断时,蓄电池组则进行放电,分担部分或全部负载。这样,蓄电池组便起到稳压作用,并处于备用状态。 浮充供电工作方式可分为半浮充和全浮充两种。当部分时间(负载较重时)进行浮充供电,而另部分时间(负载较轻时)由蓄电池组单独供电的工作方式,称为半浮充工作方式,或称定期浮充工作方式。倘全部时间均由电源线路与蓄电池组并联浮充供电,则称为全浮充工作方式,或称连续浮充工作方式。 以浮充工作方式使用的蓄电池组,其寿命一般较全充放工作方式者要长,而且可改用较小些容量的蓄电池组来代替。这种浮充供电工作方式多用于发电厂的断电备用电源和电话局的电话正常供电电源。 一般的蓄电池都是浮充,均充的实现不了。 均充 一种蓄电池的充电模式。为了均衡电池组中各个电池的端压、比重所进行的充电,以定电流和定时间的方式对电池充电,充电较快。充电电压与浮充相比要大。在专业维护人员对电池保养时经常用的充电模式,这种模式还有利于激活电池的化学特性。

UPS容量和蓄电池容量计算方法

UPS容量和蓄电池容量计算方法 UPS容量和蓄电池容量计算方法 蓄电池的放电时间定义为:当蓄电池以规定的放电电流进行恒流放电时,蓄电池的端电压下降到所允许的临界电压(终了电压)时所经过的时间。 UPS容量计算 P入=P出/(COSφ×ц) COSφ----功率因数(一般取0.8) P出-------额定输出功率(KVA) (注:计算时负载多为W) P入-------输入功率(KVA)(UPS容量) ц--------保险系数(一般取0.8) UPS蓄电池容量计算 电池放电电流计算: I=(S×COSφ)/(n×V×ц逆) S----------UPS额定输出容量(或实际或预期负载)(VA) ц逆-------逆变器效率(一般取0.8~0.85) n----------蓄电池只数 V---------蓄电池放电终止电压(2V电池对应1.8V;12V电池对应10.8V)COSφ---- UPS (或负载)功率因数(1~20 kVA为0.7,20~120 kVA为0.8) 艾默生UH31系列(10-20KVA)UPS电池电压240VDC(2组)20节(2组) 艾默生UL33系列(20-60KVA)UPS电池电压360VDC 12V电池30节 蓄电池容量计算 1、普通蓄电池计算(与华为计算方法相同) Q:蓄电池容量(Ah); K:安全系数; I:负荷电流(A); T:放电小时数(h); η:放电容量系数; t:实际电池所在地的最低环境温度数值,有采暖设备时,按15℃考虑;无采暖设备时,按5℃考虑; α:电池温度系数,电解液温度以25℃为标准时,放电小时率≥10时,取0.006;10>放电小时率≥1时,取0.008;<1时,取0.01 以上公式可以简化成:

蓄电池的充放电方法

蓄电池的充放电 1.浮充电压 12V,6V电池:正常的浮充电压为2.35~2.40V/单格(环境温度25℃)温度补偿系数为:每格3mV/℃。当蓄电池单只在线电压低于2.20V/单格,则需要进行均衡充电。 2V电池:12V,6V电池:正常的浮充电压为2.35~2.40V/单格(环境温度25℃)温度补偿系数为:每格3mV/℃。当蓄电池浮充运行时,蓄电池单格在线电压不应低于2.2V,如果单格电压低于2.2V,则需要进行均衡充电。 2.均衡充电(时间约为8~16小时) 12V,6V电池:均衡充电一般采用恒压限流进行充电,充电电压按 2.35~2.40V/单格(环境温度25℃)温度补偿系数为:每格5mV/℃。充电频率:半年/每次。(注:每单格5V/℃意为温度每增加1℃,均充电压降低5mV/单格) 恒压限流充电:以2.35~2.40V/单格电压充电,同时充电电流不超过0.25C(注:C为电池容量)直到充电电流降到0.006C以下3小时不变,就认为电池充足。 限流限压充电:即先限定电流,将充电电流限制在0.25C以下(一般推荐0.20C充电)12V,6V电池待电压上升到2.35~2.40V/单格,立即以 2.40V/单格电压恒压连续充电;2V电池待电压上升到 2.30~2.35V/单只时,立即用2.35V/单只恒压连续充电,直到充电电流降到0.006C以下3小时不变,就认为电池充足。

3.放电时间在20小时以上,电压降到1.8V/单格应终止放电;放电 时间在2-20小时,电压降到1.7V/单格应终止放电,放电时间在2小时以内,电压降到1.6V/单格时应终止放电,否则电池将收到损坏,放电完毕应立即充电。 4.库存中的电池每月应检查一次,发现端电压低于额定电压,应立 即补充电,否则自放电引起的过放电可能造成无法再充电,一般要求每三个月补充充电一次。

动力电池基础知识普及讲解

锂电池基础的方方面面介绍 目录 1. 锂电池的构成 2. 锂电池的优缺点 3. 锂电池的分类 4. 常用术语解释 5. 锂电池命名规则 6. 锂电池工艺 7. 锂电池成组和串并联 8. 各种动力电池对比 9. 锂电池模型 10. 锂电池电气特性与关键参数 11. 锂电池保护和管理系统 12. 锂电池应用领域 13. 锂电池相关标准

(一)锂电池的构成 锂电池主要由两大块构成,电芯和保护板PCM(动力电池一般称为电池管理系统BMS),电芯相当于锂电池的心脏,管理系统相当于锂电池的大脑。 电芯主要由正极材料、负极材料、电解液、隔膜和外壳构成,而保护板主要由保护芯片(或管理芯片)、MOS管、电阻、电容和PCB板等构成。 锂电池的产业链结构如下图: 电芯的构成如下面两图所示:

锂电池的PACK的构成如下图所示:

●(二)锂电池优缺点 锂电池的优点很多,电压平台高,能量密度大(重量轻、体积小),使用寿命长,环保。锂电池的缺点就是,价格相对高,温度范围相对窄,有一定的安全隐患(需加保护系统)。 ●(三)锂电池分类 锂电池可以分成两个大类:一次性不可充电电池和二次充电电池(又称为蓄电池)。 不可充电电池如锂二氧化锰电池、锂-亚硫酰胺电池。 二次充电电池又可以分为下面根据不同的情况分类。 1.按外型分:方形锂电池(如普通手机电池)和圆柱形锂电池(如电动工具的18650);2.按外包材料分:铝壳锂电池,钢壳锂电池,软包电池; 3.按正极材料分:钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)、三元锂(LiNixCoyMnzO2)、磷酸铁锂(LiFePO4); 4.按电解液状态分:锂离子电池(LIB)和聚合物电池(PLB); 5.按用途分:普通电池和动力电池。 6.按性能特性分:高容量电池、高倍率电池、高温电池、低温电池等。

铅酸蓄电池最佳充电方法

铅酸蓄电池最佳充电方法 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线。 目录 1原理简介

蓄电池放电后,用直流电按与放电电流相反的方向通过蓄电池,使它恢复工作能力,这个过程称为蓄电池充电。蓄电池充电时,电池正极与电源正极相联,电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。 2详细内容 蓄电池充电器原理 蓄电池里面有大量的硫酸等可供电离的溶液,当插上电源,电流就通过里面的铅板(有些电池不是铅)电离溶液,这样就将电能转化为化学能;如果要使用,溶液就会转化为电能通过电极输送出去。这是原理上的描述,事实上,真实的情况十分复杂,可参考相关专业书籍。 充电方法制度 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。鉴于这种缺点,

相关主题
文本预览
相关文档 最新文档