当前位置:文档之家› 年产530万吨生铁的高炉炼铁车间工艺设计毕业论文

年产530万吨生铁的高炉炼铁车间工艺设计毕业论文

年产530万吨生铁的高炉炼铁车间工艺设计毕业论文
年产530万吨生铁的高炉炼铁车间工艺设计毕业论文

年产530万吨生铁的高炉炼铁车间工艺

设计毕业论文

目录

前言 (1)

1 高炉配料计算 (2)

1.1原始资料 (2)

1.1.1 矿石的选配 (4)

1.2原始资料的整理 (4)

1.3冶炼条件的确定 (4)

1.4物料平衡 (11)

1.4.1 根据碳平衡计算风量 (11)

1.4.2 煤气的成分和数量计算 (13)

1.4.3物料平衡表的编制 (15)

1.5热平衡 (16)

1.5.1 计算热量收入项 (16)

1.5.2 计算热量支出项 (18)

1.5.3 列出热量平衡表 (21)

1.5.4 高炉热工指标的分析 (22)

2 高炉本体设计 (23)

2.1高炉内型相关计算 (23)

2.2高炉内衬设计 (26)

2.2.1炉底 (26)

2.2.2炉缸 (27)

2.2.3炉腹 (27)

2.2.4炉腰 (28)

2.2.5炉身 (28)

2.3高炉炉壳和高炉基础 (32)

2.4炉体设备 (35)

2.4.1 炉体冷却设备 (35)

2.4.3 铁口套 (36)

2.4.4炉喉钢砖 (36)

2.4.5 炉顶保护板 (36)

3 料运系统计算及装料布料设备 (37)

3.1贮矿槽 (37)

3.1.1 平面布置 (37)

3.1.2 槽上运输方式 (37)

3.1.3 储矿槽工艺参数 (37)

3.1.4 槽下供料 (37)

3.2料坑设备 (38)

3.3碎焦运送设施 (39)

3.4上料设备 (39)

4 高炉鼓风机的选择 (40)

4.1高炉鼓风量及鼓风压力的确定 (40)

4.1.1 高炉入炉风量 (40)

4.1.2 鼓风机出口风量 (40)

4.1.3 高炉鼓风压力 (41)

4.2高炉鼓风机能力的确定 (41)

4.2.1 大气状况对高炉鼓风的影响 (41)

4.2.2 鼓风机工况的计算 (42)

4.3高炉鼓风机的工艺过程 (43)

5 热风炉 (44)

5.1计算的原始数据 (44)

5.2燃烧计算 (45)

5.2.1 煤气成分换算 (45)

5.2.2 煤气发热值计算 (45)

5.2.3 燃烧1标米3煤气的空气需要量 (46)

5.2.4燃烧1标米3煤气生成的烟气量百分组成 (46)

5.2.5理论燃烧温度和实际燃烧温度计算 (47)

5.3热平衡计算 (50)

5.3.1 计算鼓风从80℃提高到1200℃所增加的热含量 (50)

5.3.3 煤气消耗量及烟气量 (51)

5.4蓄热室热工计算 (51)

5.4.1 热工计算的原始条件 (54)

5.4.2 蓄热室各部位的烟气及鼓风温度 (55)

5.4.3 蓄热室面积及各段砖格子高度的计算 (56)

5.4.4 蓄热室面积及蓄热室各段高度的调整 (57)

5.5热风炉的蓄热面积指标 (58)

6 风口平台及渣铁处理系统 (60)

6.1风口平台和出铁场布置 (60)

6.1.1 铁口及出铁场数目的确定 (60)

6.1.2 渣、铁沟及其流嘴布置 (61)

6.2风口平台和出铁场设备 (61)

6.2.1 泥炮 (61)

6.2.2 开铁口机 (62)

6.2.3堵渣口机 (62)

6.2.4炉前吊车 (63)

6.2.5铁水罐车 (63)

6.2.6渣罐车 (64)

6.3风口平台和出铁场结构 (65)

6.3.1风口平台 (65)

6.3.2 出铁场 (65)

6.4铁水处理 (65)

6.5渣的处理 (65)

7 高炉煤气处理系统 (67)

7.1工艺流程 (67)

7.2煤气除尘设备 (67)

7.2.1 粗除尘设备——重力除尘器 (67)

7.2.2 精细除尘设备——布袋除尘器 (68)

7.2.3 脱水器 (68)

7.3煤气除尘系统附属设备 (69)

7.3.1 粗煤气管道 (69)

7.3.2 调节阀组 (69)

7.3.3 煤气遮断阀 (69)

7.3.4 煤气放散阀 (69)

8 高炉喷吹煤粉系统 (71)

8.1喷煤系统 (71)

8.2喷吹工艺 (71)

8.3主要设备 (72)

8.3.1 混合器 (72)

8.3.2 分配器 (72)

8.3.3 喷煤枪 (72)

8.3.4 喷氧枪 (72)

9 部分车间布置与总图运输 (73)

9.1车间平面布置 (73)

9.2厂区的选择 (73)

9.3总图运输 (73)

10 参考文献 (74)

致谢 (75)

专题浅析高炉煤气的综合利用 (76)

前言

毕业设计是大学学习过程中的最后一个环节,对每个大学生的学习能力和以后的工作实践能力都会有很大的帮助与提高。毕业设计是为了更好地将理论和实践结合起来,达到学以致用的目的。本设计说明书是作者赴陕西省汉中钢铁集团有限公司实习后,经杨双平老师悉心指导的年产530万吨生铁的高炉的工艺设计说明书。本设计参照了近年来国内外炼铁工艺方面的资料。

本设计说明书着重以工艺角度论述生铁冶炼工艺所涉及的基本流程和主要设备的基本结构,工作原理设计原则及设计方法。本设计说明书的设计原则是,拟建两座高炉其中每座高炉有效容积2518m3,尽可能采用通用的工艺和技术,关键工艺装备水平达到国家同类型高炉水平,本设计说明书主要包括高炉配料计算、高炉本体设计、料运系统方案设计、高炉炉顶、高炉鼓风机、内燃式热风炉、渣铁处理系统及煤气处理系统设计等几大部分,同时对炼铁的其他工艺流程式进行了设计说明。

其中高炉配料计算,先从原料入手,对各种原料的化学分析结果进行成分处理。接着进行高炉配料计算,包括产品方案的确定,对物料平衡的计算,生铁炉渣性能指标的计算及校核等。高炉部分包括高炉的选型及高炉内型的计算,配砖的计算,冷却设备及本体结构设计等,热风炉部分包括热工计算,结构设计。这两部分作为炼铁设计的主体部分。

其它工艺流程包括出铁场的设计,渣铁处理系统,高炉鼓风机,煤气处理系统的工艺设计及主要设备的选型。车间平面布置及总图运输方案,以联合企业为背景,尽量使车间布置趋向合理。

本设计说明书附有高炉砖量图,热风炉剖面图,车间平面布置图各一张。由于编者缺乏实作和经验,如有疏忽和错误,还望见谅和批评指正!

1 高炉配料计算

1.1 原始资料

配料计算所需的铁矿石、炉尘、及喷吹物的整理成分见表1-1、表1-2、表1-3、表1-4、表1-5。

表1-1 球团矿和烧结矿的化学成分(%)

类型TFe FeO SiO2CaO MgO Al2O3S P MnO 烧结矿58.85 7.62 5.10 9.70 3.40 2.85 0.035 0.061 1.2 球团矿61.22 0.75 8.12 1.2 0.91 1.48 0.028 0.035 1.3

表1-2 块矿的化学成份(%)

TFe FeO SiO2CaO MgO Al2O3S P MnO

61.5 1.04 6.62 0.55 0.48 1.47 0.06 0.049 0.09

表1-3 焦炭工业分析表(%)

固定炭灰份挥发份硫合计游离水

87.46 9.94 1.17 0.87 100 3.2

表1-4 燃料灰份分析表(%)

MgO SiO2Al2O3P2O5CaO Fe2O3SO3FeO 合计焦炭0.95 49.99 34.09 0.37 3.02 0.88 1.24 9.46 100

煤粉 1.03 48.31 35.82 0.30 3.68 2.98 0.93 6.95 100

表1-5 焦炭挥发份成分(%)

CO 2 CO H 2 CH 4 N 2 合计 34.2

37.8

6

4

18

100

表1-6 煤粉成分(%)

C Ad 灰分 S H 2O 合计 75.73

8.00

4.04

0.26

1.85

100

表1-7 生铁成分表(%)

Si Mn P C Fe S 合计 0.32

0.94

0.145

4.01

94.55

0.035

100

表1-8 炉渣成分表(%)

MgO SiO 2

Al 2O 3

BaO CaO FeO S/2 MnO 合计 8.14

36.13 9.93

3.72

38.91

0.90

0.93

1.34

100

表1-9 炉顶煤气成分表(%)

CO 2 CO H 2 CH 4 N 2 合计 17.1

25.3

1.3

0.6

55.7

100

表1-10 炉尘分析表(%)

T F e

P

S

Fe 2O 3 FeO CaO SiO 2 Al 2O 3 MnO MgO BaO

C 烧损

合计

重力尘 41.42 0.04 0.40 51.45 7.01 8.30 8.61 2.61 1.12 1.97 0.84 17.64 15.78 100

文氏尘

44.67 0.04 0.40 56.62 7.03 8.24 8.63 2.11 1.03 2.03 0.90 12.97 14.6 100

1.1.1 矿石的选配

高炉使用多种矿石冶炼时,应根据矿石的供应量及炉渣成分和渣量的要求选

择适当的比例,本设计选用60%的烧结矿和35%的球团矿,5%的块矿。为计算方便,求出混合矿的成分,计算时看作单一矿石。

在选配矿石时,应注意检查矿石

含磷量不得超过生铁含磷量。冶炼铸铁时还应检查矿石含锰量是否满足生铁的要求,否则应加锰矿。

注:烧结矿:球团矿:生矿=60:35:5

1.2 原始资料的整理

配料计算所需的铁矿石、熔剂、炉尘及喷吹物等的整理成分如下表1-11,表1-12,表1-13,表1-14。

表1-11 原料整理后的成分

TFe P S FeO Fe2O3SiO2CaO 烧结矿55.68 0.058 0.033 7.21 71.60 4.82 9.18

球团矿61.22 0.035 0.028 0.75 86.46 8.12 0.89

块矿61.5 0.049 0.06 1.04 86.77 6.92 0.95

混合矿57.91 0.049 0.033 4.46 77.56 6.08 5.87

MgO Al2O3P2O5S/2 烧损合计

3.22 2.696 0.132 0.0166 0 100.00

1.16 1.73 0.08 0.014 0 100.00

0.73 1.72 0.112 0.03 1.628 100.00

2.37 2.31 0.113 0.017 0.081 100.00

1.3 冶炼条件的确定

根据冶炼铁种和原燃料成分,除确定矿石的配比外,尚需要定炉渣碱度、焦比、喷物数量、尘、铁成分与各种元素在渣铁中的分配比。

(1)各种元素在炉渣、煤气、和生铁中的分配比如下表1-12。

表1-12 各种元素在炉渣、煤气、和生铁中的分配比

产品Fe Mn P S

生铁0.997 0.70 1.00 0.02

炉渣0.003 0.30 0 0.98

煤气0 0 0 0.05 (2)预定生铁成分,见表1-13:

表1-13 预定生铁成分

Si P C Fe S Mn 合计

0.32 0.145 4.01 94.55 0.035 0.94 100

(3)燃料使用量的假定:

①湿焦比为480kg/吨铁;

②焦炭与喷吹燃料中总碳量的1.2%与H2生成CH4;

③煤粉喷吹量为150 kg /吨铁;

④碎铁使用量为20 kg /吨铁;

⑤选择的炉渣碱度CaO/SiO2=1.0;

⑥冶炼强度i= 2.0吨焦/立方米·昼夜;

⑦热风温度t=1200℃,鼓风湿度φ=1%;

⑧炉尘吹出量为15 kg /吨铁;

⑨直接还原度γd=0.45;炉顶煤气温度tr=200℃

(4) 根据铁平衡求铁矿石的量

①焦炭带入的铁量:

Fe2O3~2Fe FeO~Fe

159.70 111.70 71.55 55.85

0.0088 X1 0.0946X2

故X1=0.00616 X2=0.0738

所以焦炭带入的铁量:m(Fe)j=480×(1-0.032)×0.0994×(0.00616+0.0738)=3.68(㎏)

②矿石的需求量:

其中煤粉带入的铁量(1t生铁)m(Fe)me

Fe2O3~2Fe FeO~Fe

159.70 111.70 71.55 55.85

0.0298 X1 0.0695X2

故X1=0.021 X2=0.054

所以煤粉带入的铁量

m (Fe )m e=150×0.0404×(0.021+0.054)=0.455

(㎏)

t Fe (生铁)=1000×94.55%=945.5㎏ za Fe (炉渣)=945.5×0.003/0.997=2.845㎏

ch

Fe (炉尘)=15×0.4142=6.213㎏

Fe m (碎铁)=20×0.85=17㎏ 故 k Q t z a c h j m e

k

F e F e F e F e F e Fe ++--=

=(945.5+2.845+6.213-17-0.45-3.68)/0.5791

1=612㎏

式中:k Q ——矿石的需要量,kg/t(铁);

t Fe ——进入生铁的铁量,kg/t(铁);

za

Fe ——进入炉渣的铁量 ,kg/t(铁);

ch Fe ——进入炉尘的铁量 ,kg/t(铁);

j

Fe ——焦炭带入的铁量 ,kg/t(铁); me Fe ——煤粉带入的铁量 ,g/t(铁);

k

Fe ——矿石的含铁量 ,kg/t(铁)。

Fe m ——碎铁带入的铁量,kg/t(铁)。

2012年高炉炼铁毕业设计

(2012届) 专科毕业设计(论文)资料 湖南工业大学教务处

本次设计是根据娄底地区设计年产量为480万吨的高炉炼铁车间,该地区矿藏丰富,水资源充沛,交通发达,设计炼铁车间比较合理。炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸H 2 造外,绝大部分是作为炼钢原料。虽然现在高炉并不是以后炼钢的发展趋势,但高炉冶金是获得生铁的重要手段。它是以铁矿石是为原料,焦炭煤粉作为燃料和还原剂,在高炉内通过燃料燃烧,氧化物中铁元素的还原以及非铁氧化物造渣等一系列复杂的物理化学过程。随着冶金技术的不断发展,对其冶炼的关键设备——“高炉”。也有了越来越严格的要求。高效率、高质量、高寿命、低能耗、低污染——是本次设计所追求的目标。 在本次设计中翻阅了大量的参考文献,相当于又系统的学习了一遍高炉的有关知识,是对高炉发展的新的具体认识和总结,是本人三年专业知识学习的一个促进过程。本次设计中得到了王建丽老师的悉心指导和帮助,本人表示非常的感谢。然而,由于本人水平有限,设计中难免有不足和纰漏之处。望各位给予指正。

第一章绪论 (1) 1.1 高炉炼铁任务及工艺流程 (1) 1.2 高炉生产的特点及优点 (2) 1.3 设计原则和指导思想 (2) 1.4 厂址及建厂条件论证 (3) 第二章炼铁工艺计算 (4) 2.1 配料计算 (4) 2.2 根据铁平衡求铁矿石需要量 (6) 2.3 渣量及炉渣成分计算 (6) 2.4 物料平衡计算 (7) 2.5 热平衡计算 (8) 第三章高炉本体 (14) 3.1 高炉炉型 (14) 3.2 高炉炉衬 (16) 3.3 炉体冷却方式 (16) 3.4 冷却系统 (19) 3.5 高炉钢结构及高炉基础 (20) 第四章炉顶装料系统 (23) 4.1 串罐式无钟炉顶装料设备 (23) 4.2 串罐式无钟炉顶的特点 (25) 第五章供料系统 (26) 5.1 高炉供料系统 (26) 5.2 储矿(焦)槽及其主要设备 (27)

年产量500万吨高炉炼铁车间设计毕业论文

年产量500万吨高炉炼铁车间设计毕业论文 目录 1 绪论 1.1 高炉炼铁的任务及工艺流程 (8) 1.2 高炉生产的特点及优点 (9) 1.3 设计原则和指导思想 (9) 2炼铁工艺计算 2.1 配料计算 (10) 2.2 物料平衡计算 (12) 2.3 热平衡计算 (15) 3高炉本体 3.1 高炉炉型 (19) 3.2 高炉炉衬 (20) 3.3 炉体冷却方式 (21) 3.4 冷却系统 (24) 3.5 高炉钢结构及高炉基础 (25) 4 炉顶装料制度 4.1 并罐式无钟炉顶装料设备 (29) 4.2 均压装置 (31) 4.3 探料尺 (32) 5 供料系统 5.1 矿槽、焦槽容积与数量的确定 (33) 5.2 筛分 (33) 5.3上料系统 (33) 5.4 贮矿槽下运输称量 (34)

6送风系统 6.1 鼓风机的选择 (35) 6.2 热风炉的结构 (35) 6.3 热风炉常用耐火材料 (37) 6.4 燃烧器及送风制度的选择 (37) 6.5 热风炉主要管道直径的选定 (37) 7.渣铁处理系统 7.1 风口平台及出铁场 (39) 7.2 炉前设备 (39) 7.3 炉渣处理 (41) 8 煤气除尘系统 8.1 除尘设备及原理 (44) 8.2 有关设备 (45) 8.3 重力除尘器 (45) 9 喷吹设备 9.1 设计为喷吹煤粉 (47) 9.2 高炉喷煤设备 (48) 10车间布置形式 10.1 车间布置 (50) 10.2 本设计车间平面布置形式 (50) 结束语 (52) 参考文献 (53)

1 绪论 1.1 高炉炼铁的任务及工艺流程 高炉炼铁的任务是用还原剂(焦炭、煤粉)在高温条件下将铁矿石或含铁原料还原成液态生铁的过程。高炉生产要求以最小的投入获得最大的产出,即做到高产、优质、低耗、有良好的经济效益。 高炉生产时借助高炉本体和其辅助设备来完成的。高炉本体是冶炼生铁的主体设备,它是由耐火材料砌筑的竖立式圆筒形炉体,最外层是由钢板制成的炉壳,在炉壳和耐火材料之间有冷却设备。要完成高炉炼铁生产,除高炉本体外,还必须有其他附属系统的配合,其生产工艺流程如图1-1所示。 图1-1 高炉炼铁生产工艺流程 1—矿石输送皮带机;2—称量漏斗;3—贮矿槽;4—焦炭输送皮带机;5—给料机; 6—焦粉输带机;7—焦粉仓;8—贮焦槽;9—电除尘器;10—调节阀;11—文氏管除尘器;12—净煤气放散管;13—下降管;14—重力除尘器;15—上料皮带机;16—焦炭称量漏斗;17—矿石称量漏斗;18—冷风管;19—烟道;20—蓄热室;21—热风主管;22—燃烧室; 23—煤气主管;24—混风管;25—烟筒。 (1)供料系统。包括贮矿槽、贮焦、称量与筛分等一系列设备,其任务是将

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计 摘要 人类获得生铁重要手段是通过高炉炼铁,高炉炼铁是钢铁冶金中的基础环节,同时也是最重要的环节。本设计任务是设计一个年生产能力达200万吨炼铁高炉车间。 本次设计的高炉1100m3。高炉炉型为五段式,高炉炉衬设计依据各个部分的工作条件的不同以及炉衬破损的机理,选择相应的耐火材料。热风炉采用的传统改进型内燃式热风炉,燃烧室为复合型断面,热风炉数量为3座,关于热风炉的设计部分还包括热风炉的各种设备以及相应的技术参数。上料系统采用的是可不间断上料,原料破损率低的皮带运输上料,炉顶装料设备是并罐式无钟炉顶。煤气处理系统的功能是降低高炉煤气粉尘含量,一般分为三个阶段--粗除尘、半精细除尘、精细除尘。煤粉喷吹系统采用了单管路串罐式直接喷吹工艺,这种工艺大大提高了喷吹效率,改善冶炼条件。本设计中还包括了其他一些环节的设计,例如渣铁处理系统。在设计的同时,广泛参考借鉴前辈的研究数据和国内外同级别炉容的高炉的实际生产经验,从理论和实践并举的角度出发,努力使本设计的高炉在技术操作上实现自动化和机械化,并把对环境的损害降到最低。 关键词:高炉,冶金计算,热风炉,鼓风机,煤气处理,渣铁处理

目录 前言 (1) 第一章高炉炼铁概况 (2) §1.1 高炉炼铁的发展概况 (2) §1.2 高炉及其附属设备 (2) §1.3 高炉炼铁设计的基本原则 (2) 第二章高炉炼铁综合计算 (4) §2.1 原始资料 (4) §2.2 配料计算 (5) §2.3 物料平衡计算 (8) §2.4 热平衡计算 (12) 第三章高炉炼铁车间设计 (17) §3.1 高炉座数及容积设计 (17) 第四章高炉本体设计 (18) §4.1 炉型设计 (18) §4.2 炉衬设计 (20) §4.3 高炉冷却设备 (21) §4.4 高炉冷却系统 (23) §4.5 高炉送风管路 (23) §4.6 高炉钢结构 (23) §4.7 高炉基础 (24) 第五章附属设备系统 (25) §5.1 供料系统 (25) §5.2 炉顶装料系统 (26) §5.3 送风系统 (27) §5.4 煤气处理系统 (30) §5.5 煤粉喷吹系统 (33) §5.6 渣铁处理系统 (34) 第六章高炉炼铁车间平面布置 (37)

高炉炼铁设计原理复习题

第一章~ 第二章 一. 名词解释 1、高炉一代寿命 高炉一代寿命是从点火开炉到停炉大修之间的冶炼时间,或是指高炉相邻两次大修之间的冶炼时间。大型高炉一代寿命为10~15年。 2、高炉休风率 ?休风率是指高炉休风时间占日历时间的百分数。先进高炉休风率小于1%。 3、生铁合格率 ?化学成分符合国家标准的生铁称为合格生铁,合格生铁占总产生铁量的百分数为生铁合格率。它是衡量产品质量的指标。 二. 问答题 1、高炉车间平面布置方式有哪几种?各有什么主要特点? ①在工艺合理、操作安全、满足生产的条件下,应尽量紧凑,并合理地共用一些设备与建筑物,以求少占土地和缩短运输线、管网线的距离。 ?②有足够的运输能力,保证原料及时入厂和产品(副产品)及时运出; ③车间内部铁路、道路布置要畅通。 ?④要考虑扩建的可能性,在可能条件下留一座高炉的位置。在高炉大修、扩建时施工安装作业及材料设备堆放等不得影响其它高炉正常生产。 2、岛式布置有什么特点?有何优点? ?①铁水罐车停放线与车间两侧的调度线成一定交角,一般为11~13o。 ?②岛式布置的铁路线为贯通式,空铁水罐车从一端进入炉旁,装满铁水的铁水罐车从另一端驶出,运输量大。 ?③并且设有专用辅助材料运输线。 缺点: 高炉间距大,管线长;设备不能共用,投资高。半岛式布置有什么特点?有何优点? 3、确定高炉座数的原则是什么? ?保证在一座高炉停产时,铁水和煤气的供应不致间断。一般新建车间2~3座高炉。 三. 论述题 1、高炉车间平面布置方式有哪几种?各有什么主要特点? 一列式布置主要特点是: 高炉与热风炉在同一列线,出铁场也布置在高炉列线上成为一列,并且与车间铁路线平行。 优点: 1.可以共用出铁场和炉前起重机,共用热风炉值班室和烟囱,节省投资; 2.热风炉距高炉近,热损失少。 缺点: ?运输能力低,在高炉数目多,产量高时,运输不方便,特别是在一座高炉检修时车间调度复杂。 并列式布置 主要特点: 高炉与热风炉分设于两条列线上,出铁场布置在高炉列线,车间铁路线与高炉列线平行。 优点: 可以共用一些设备和建筑物,节省投资;高炉间距离近。 缺点: 热风炉距高炉远,热损失大,并且热风炉靠近重力除尘器,劳动条件不好。 岛式布置 主要特点: (1)铁水罐车停放线与车间两侧的调度线成一定交角,一般为11~13o。

高炉炼铁工艺流程(经典)教学教材

高炉炼铁工艺流程(经 典)

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直接 还原法、熔融还原法等,其原理 是矿石在特定的气氛中(还原物 质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要方 法,钢铁生产中的重要环节。这 种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,

炼铁工艺设计原则

1?炼铁工艺设计原则:先进性经济性可靠性; 2?有效容积利用系数n v (t/m3 ? d):每立方米高炉有效容积每天生产的合格生铁量。 3?焦比K (Kg/t铁):冶炼每吨合格生铁所消耗的焦碳量,一般焦比400~600Kg/t,大炉取小值,小炉取大值。 4?冶炼强度I (t/m3 ? d):每立方米高炉有效容积每天燃烧的燃料量 一、车间规模的确定: 由全厂金属平衡决定,并考虑与原燃料资源条件相适应 1、高炉座数的确定:金属平衡和煤气平衡(一般以2~4座为宜)太少:检修时影响全厂铁 水和煤气供应 太多:运输紧张,生产率低 2、、高炉有效容积(Vu )的确定: 钟式高炉:大钟开启时大钟下沿距铁水中心线这段距离所对应的容积 无钟高炉:溜槽垂直位置下沿距铁水中心线这段距离所对应的容积 3、平面布置应遵循的原则:安全,方便 只有一个出铁场,中、小高炉:一列式、并列式 多铁口的大、中型高炉:岛式、半岛式 二、高炉本体设计 1、高炉炉型五段式炉型:炉喉、炉身、炉腰、炉腹、炉缸。适应了高炉内炉料流和煤气流的运动规律。 2、炉缸、炉底工作环境:高温、渣铁化学侵蚀、气一固一液一粉多相冲击。高炉长寿的关键 3、炉底、炉缸作用:储存渣铁、保证燃烧空间 4、死铁层作用:减少铁水环流速度(隔绝铁水流动对炉底的冲刷侵蚀)、(其相对固定 的热容)有利于炉底温度的均匀稳定 5、矮胖型的优点: a:有利于改善料柱的透气性,稳定炉料和煤气流的合理分布,并减轻炉料和煤气流对炉身和炉胶的冲刷。 b:炉缸容积较大,死铁层较深,可减少渣铁环流对炉底炉缸砖衬的冲刷。 c:风口数目增加有利于高沪的强化冶炼。 6、炉衬是由耐火砖、耐火材料组成的衬里高炉炉衬的作用: 减少高炉的热损失;构成高炉的工作空间;保护炉壳和其它金属结构免受热应力 和化学侵蚀; 炉衬材质: 1、陶瓷质耐材(主要由AI203组成) 特点:此类耐材具有耐磨,抗渣铁浸蚀能力强,但耐急冷急热性(热震)差,易剥落 的特点。 2、C质耐材:抗热震能力强,导热性高,抗渣铁能力强,但易氧化的特点,所以风口附近不能用。 高炉内衬设计: 1、炉底、炉缸的工作环境及破损原因:a:热应力破损和铁的渗透; b :高温渣铁环流破损;c:碱金属,重金属的沉积;d:操作和原料成分的波动 在以上破坏机理中,热应力破损和铁的渗透是最主要的破坏方式 考虑主要的破坏机理,设计时考虑: a加快热传递,降低温差△ t (美国“ VCAR ”为代表的热压小C砖结构) b?降低铁水渗透侵蚀(法国“ SAVOIC ”为代表的陶瓷杯结构) 2炉腹、炉腰及炉身中下部:

高炉炼铁炼钢工艺

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中 还原出来的过程。 炼铁方法主要有高炉法、直 接还原法、熔融还原法等,其原 理是矿石在特定的气氛中(还原 物质CO、H2、C;适宜温度等) 通过物化反应获取还原后的生 铁。生铁除了少部分用于铸造外, 绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要

方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

高炉炼铁简介

高炉炼铁简介 高炉炉前出铁 高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中不还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。简史和近况早期高炉使用木炭或煤作燃料,18世纪改用焦炭,19世纪中叶改冷风为热风(见冶金史)。20世纪初高炉使用煤气内燃机式和蒸汽涡轮式鼓风机后,高炉炼铁得到迅速发展。20世纪初美国的大型高炉日产生铁量达450吨,焦比1000公斤/吨生铁左右。70年代初,日本建成4197立方米高炉,日产生铁超过1万吨,燃料比低于500公斤/吨生铁。中国在清朝末年开始发展现代钢铁工业。1890年开始筹建汉阳铁厂,1号高炉(248米,日产铁100吨)于1894年5月投产。1908年组成包括大冶铁矿和萍乡煤矿的汉冶萍公司。1980年,中国高炉总容积约8万米,其中1000米以上的26座。1980年全国产铁3802万吨,居世界第四位。 高炉炼铁面临淘汰中国钢铁业急需升级换代 高炉炼铁技术,适合于那些工业化初步发展的国家,生产大路货、初级钢材,但在发达国家,高炉技术正面临淘汰。电炉技术炼钢是当今世界趋势。电炉炼铁可以提升钢材质量和特殊性能,减少原材料和电力等的浪费。在订单经济时代,生产要根据市场需求变化,但高炉炼铁技术周期长,生产产品低级,且生产的产品还需要一道甚至更长的加工链条。电炉炼钢则可缩短钢材冶炼周期,可根据订单安排生产,原材料和动力资源浪费少,不再如高炉炼铁那样存在大量的产品积压情况。当今社会进入材料时代后,市场需要的钢材不再是传统的材料,高炉炼铁生存空间更大为缩小,且附加值很低,以中国钢铁业为例,全国钢铁产业利润还不如开采铁矿的赚钱,原因就是因为高炉炼铁技术低级落后,不能生产高附加值产品。我们固然赞美中国钢铁业对国家的贡献,但不能躺在功劳薄上睡大觉,高炉炼铁技术已经进入死胡同。作为世界上第一钢铁生产大国,世界铁矿第一进口大国,世界钢铁业初级钢材第一出口大国,世界钢铁第一进口大国,世界钢铁产业人数最多的国家,世界钢铁厂最多的国家,中国必须认真思考中国钢铁业的下一步发展战略。不能以推动就业为借口,把钢铁业的发展寄托在国家的巨型投资拉动钢铁业的繁荣,而要认真的思考减少污染,提高产品附加值和适应市场的实际需求,实现钢铁业的产业升级,效益升级。 编辑本段主要产铁国家产量和技术经济指标

一座年产炼钢生铁250万吨的高炉炼铁车间

摘要 设计题目:设计一座年产炼钢生铁250万吨的高炉炼铁车间 摘要 高炉炼铁是获得生铁的主要手段,是钢铁冶金过程中最重要的环节之一,在国民经济建设中起着举足轻重的作用。高炉是炼铁的主要设备,本着优质、高产、低耗和对环境污染小的方针,设计建造一座年产生铁485万吨的高炉炼铁车间,本设计说明书详细的对其进行了高炉设计,其中包括绪论、工艺计算(包括配料计算、物料平衡和热平衡)、高炉炉型设计、高炉各部位炉衬的选择、炉体冷却设备的选择、风口及出铁场的设计、原料系统、送风系统、炉顶设备、煤气处理系统、渣铁处理系统、高炉喷吹系统和炼铁车间的布置等。设计的同时还结合国内外相同炉容高炉的一些先进的生产操作经验和相关的数据,力争使该设计的高炉做到高度机械化、自动化和大型化,以期达到最佳的生产效益。 关键词: 高炉炼铁设计;喷吹;送风;煤气处理;渣铁处理

Abstract Blast furnace iron-making is a main means to obtain pig iron, and one of the most important links in the metallurgical course of steel, play a role in holding the balance in national economic construction. The blast furnace is the main equipment of iron-making, in line with the high quality , high yield , low consumption and environmental pollution policy, design and build a blast furnace iron-making workshop producing 4.85million t irons every year in advance, this design instruction designs the blast furnace detailedly, including introduction, the craft calculating (Including the batching is calculated, supplies balance and thermal balance), the furnace type of the blast furnace is designed, choice of furnace liner of the blast furnace, the furnace body cools the equipment, the tyueres and design the tap iron field, raw materials system , blow system , furnace roof equipment , coal gas disposal system ,slag iron disposal system ,ejection system, iron-smelting of workshop etc.. Combine domestic and international the same furnace volume some advanced production operation experience and relevant data of blast furnace also while the design, strive blast furnace should designed to make accomplish highly mechanized , automation and maximizing, in the hope of reaching the best productivity effect. Keywords: BF iron-making design,ejection,blowing,coal gas disposal,slag iron dispos

高炉炼铁工艺流程(经典)

本文是我根据我的上传的上一个文库资料继续修改的, 以前那个因自己也没有吃透,没有条理性,现在这个是我在 基本掌握高炉冶炼的知识之后再次整理的, 比上次更具有系 统性。同时也增加了一些图片,增加大家的感性认识。希望 本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、 高炉炼铁原理 三、 高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 料舛调控阀 炉喉 ?-50012 炉身外壳 炉身< 耐火硅层 ,炉体支杂 炉 /热风管 -140012 环炉热风管 炉腹 -180012 其风咀 一出查口

、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示: --- ----- _ _ _ _ _ ---------------------------------------------------- 皆被机 炼钢 煤气清洗 -------- *废水沉淀分隅 早. J I ____ n ___ _□ i 煤气管网 ■ 注*凸策段诊均户咬哽R }jr rp : / / y^j Hyj j 1 9 u 12 LbJ D 小 5□ ;返矿畋带机] 粉1、 阳t ___________ 〔揪尘等) 制煤粉设番 卜一札收带机 十?尘〔乱料系统} 炉顶彼压站、沏滑站 炉顶高压操作设备 均排压设施 炉顶检修设俯 矿石中间漏斗 I ------- 1 I 豉虬机1* 热说炉 泥地、升口机 ttfttaa 机、炉前脱时 摆动涂嘲、炉甫胃生 高炉冷却没备、炉 换炉、燃烧控制 装置各种阀门. 缠水糟耳、余焦 回收装胃 他冥域车 戡水城车 除尘暴 冲渣 |、财法 消水分用 水沧在 热水泉房 土冷却修

河北联合大学轻工学院高炉炼铁设计原理试题

高炉一代寿命 高炉休风率 生铁合格率 高炉炼铁设计应遵循的基本原则是什么? 钢铁联合企业的优点 1)运输费用低廉。2)在生产中可以采用热装,因而可以节约燃料、提高产量。 3)能充分利用本企业的副产品。4)联合企业设有许多辅助设施,如发电站、水站及各种加工厂等,可以充分保证本企业生产的正常进行,不受外界因素的影响。 1. 高炉年工作日一般取日历时间的 95% 确定高炉座数应该保证在一座高炉停产时,铁水和煤气的供应不间断。 1. 岛式布置有什么特点?有何优点? (1)铁水罐车停放线与车间两侧的调度线成一定交角,一般为11~13o。 (2)岛式布置的铁路线为贯通式,空铁水罐车从一端进入炉旁,装满铁水的铁水罐车从另一端驶出,运输量大。 (3)并且设有专用辅助材料运输线 2. 半岛式布置有什么特点?有何优点? (1)高炉和热风炉列线与车间调度线间交角可以大到45o,因此高炉距离近;(2)在高炉两侧各有三条独立的有尽头的铁水罐车停放线,和一条辅助材料运输线; (3)出铁场和铁水罐车停放线垂直,缩短了出铁场长度; (4)设有摆动流嘴,出一次铁可放置几个铁水罐车。 高炉车间平面布置方式有哪几种? 一列式,并列式,岛式,半岛式 五段式高炉炉型有炉喉,炉身,炉腰,炉腹,炉缸组成。 2.炉底的破损有两个阶段,初期是铁水渗透形成锅底形成深坑; 第二个阶段是熔结层形成后的化学侵蚀。 3.高炉常用的耐火材料主要有陶瓷质耐火材料和炭质耐火材料两大类。 4.高炉常用砖型有直形砖和楔形砖两种,砖的长度有1:1.5两种使砌砖时错缝方便 5.炉腰的结构型式有厚壁,薄壁和过渡式三种。 6.高炉冷却常用的冷却介质有水,空气和汽水混合物三种。 7.提高冷却水水温差的方法通常有两种,一是增加冷却设备串联个数;二是降低水流速 8.确定冷却水压力的原则是冷却水压力大于炉内静压 9.冷却器的清洗方法有两种,一是热酸循环清洗,二是高压水或蒸汽清洗 10.高炉汽化冷却按循环方式可分为自然循环汽化冷却和强制循环汽化冷却两种 11.高炉基础的作用是①高炉基础应把高炉全部荷载均匀地传给地基,不允许发生沉陷和不均匀的沉陷。②具有一定的耐热能力。 1. 高炉有效高度高炉大钟下降位置的下缘到铁口中心线间的距离称为高炉有效高度(Hu),对于无钟炉顶为旋转溜槽最低位置的下缘到铁口中心线之间的距离。 2.高炉有效容积在有效高度范围内,炉型所包括的容积称为高炉有效容积(Vu)。 1 / 7

高炉炼铁设备教学大纲

《高炉炼铁设备》教学大纲 赵金泉 课程名称:高炉炼铁设备 课程类型:专业课 学时:36学时 适用专业:冶金专业学生 先修课程:冶金原理,冶金传输原理,机械制图及机械设计基础一、本课程的性质、目的与任务 本课程是冶金工程专业的限选课,是一门讲述关于炼铁设计原理的课程,它主要介绍炼铁车间及主要设备的工艺设计原理以及基本的工艺设计方法和计算。 通过本课程的教学,培养学生具有初步的炼铁工艺设计的基本技能。掌握炼铁车间工艺设计的基本原理和方法,掌握炼铁车间主要设备的工艺设计原理,主要工艺参数选择与计算方法,为毕业后从事冶金工程设计打下扎实的理论基础。 二、课程的内容(包括理论教学和实践教学) 教学环节课时安排 1. 钢铁联合企业设计概述(建议学时数:2学时) 目的要求:通过本章的学习,掌握钢铁厂设计遵循的基本原则,高炉炼铁生产工艺流程,高炉生产主要技术经济指标。 教学内容:本部分首先从钢铁厂设计遵循的基本原则入手,介绍选择厂址的原则,讲述高炉炼铁生产工艺流程、高炉生产主要技

术经济指标、高炉车间设计的程序和内容。 重点难点:钢铁厂设计遵循的基本原则,高炉炼铁生产工艺流程、高炉生产主要技术经济指标。 2. 高炉车间设计(建议学时数:2学时) 目的要求:通过本章的学习,掌握如何确定高炉座数及高炉容积,高炉车间平面布置的几种方式及其优缺点。 教学内容:本部分主要讲述如何确定高炉座数及高炉容积,高炉车间平面布置的几种平面布置方式及其优缺点。 重点难点:掌握确定高炉座数的原则及高炉容积的确定、四种高炉车间平面布置的优缺点。 3. 高炉本体设计(建议学时数:12学时) 目的要求:通过本章的学习,掌握高炉炉型的设计、高炉炉衬的侵蚀机理,高炉冷却设备的几种形式及使用部位。 教学内容:该部分基本内容包括: 高炉炉型:炉型的发展过程。炉型各部分的比例关系。确定炉型的方法——类比法与计算法。 高炉炉衬:炉衬用耐火材料。各部位炉衬的工作条件及破损机理。炉衬砌筑方法及砖量计算。 高炉冷却:冷却方式及冷却设备的设计,冷却器的工作制度。高炉给排水系统。 高炉钢结构及基础:高炉钢结构的类型及其优缺点。基础承受的荷载及对基础的要求。

年产120万吨炼铁车间设计_毕业设计

目录 重庆科技学院毕业设计(论文) 年产130万吨生铁的炼铁厂设计 院(系)冶金与材料工程学院学院 专业班级冶金技术2007级2班

重庆科技学院毕业设计 重庆科技学院 毕业设计(论文)题目年产130万吨生铁的炼铁厂设计 院(系)冶金与材料工程学院 专业班级冶金技术2007级2班 学生姓名学号 指导教师职称教授 评阅教师___ _ 职称___ 2010年 6 月 10 日

目录 行距偏小 目录 中文摘要 ........................................................................................................................... I ABSTRACT ..................................................................................................................... II 1 绪论 (1) 1.1我国高炉炼铁技术的进步 (1) 1.1.1高炉炉体结构技术的进步 (1) 1.1.2高炉无料钟炉顶设备技术创新 (1) 1.1.3高炉煤气全干式布袋除尘技术 (1) 1.1.4研究开发助燃空气高温预热技术 (1) 1.2我国高炉炼铁技术的发展趋势 (2) 1.2.1高炉炉容、技术装备大型化 (2) 1.2.2高风、温低燃料比 (2) 1.2.3精料技术的提高 (2) 1.2.4开发非高炉炼铁技术装备,促进炼铁技术的发展 (2) 2 高炉配料计算 (3) 2.1配料计算的目的 (3) 2.2配料计算时需要确定的已知条件 (3) 2.2.1原始资料的收集整理 (3) 2.2.2选配矿石 (4) 2.2.3确定需要的冶炼条件 (4) 2.2.4 配料计算的内容 (6) 2.3计算方法与过程 (6) 2.3.1计算方法 (6) 2.3.2确定生铁成分 (7) 2.3.3计算所配矿石比例 (7) 2.3.4计算冶炼每吨生铁炉料的实际用量 (8) 2.3.5终渣成分及渣量计算 (8) 2.3.6生铁成分校核 (9) 3 高炉物料平衡计算 (10) 3.1高炉物料平衡计算的意义 (10) 3.2高炉物料平衡计算的内容 (10) 3.2.1 根据碳平衡计算风量 (10) 3.2.2 煤气成分及数量计算 (11) 3.2.3 编制物料平衡表 (13)

炼铁工艺与操作讲述

学习领域(课程)标准 学习领域18:炼铁工艺与操作 适用专业:冶金专业 学习领域代码:02043 学时:60 学分:4 制订人: 审核:

《炼铁工艺与操作》学习领域(课程)标准 一、学习领域(课程)综述 (一)学习领域定位 “炼铁工艺与操作”学习领域由施工员岗位及岗位群的“炼铁工艺学”行动领域转化而来,是构成冶金技术专业框架教学计划的专业学习领域之一,其定位见表一: 理》、《机械基础》等学习领域基础上,该学习领域的实践性很强,是学生就业的主要工作领域,对学生毕业后工作具有重要的作用。 (二)设计思路 本学习领域立足于职业能力的培养,从学习领域内容的选择及排序两个方面重构知识和技能。 在学习领域内容的选择上,根据炼铁工岗位及其岗位群“高炉炼铁、设备维护及设计工艺方案”这一典型工作任务对知识和技能的需要,以从业中实际应用的经验和策略的习得为主、以适度够用的概念和原理的理解为辅。以行动为导向,基于工作过程的系统化,构建理论与实践一体化的学习领域内容。以工作任务为载体设计学习情境,每一学习情境都设计为完成一个分部炼铁工作任务,体现一个系统化的完整的工作过程。 在学习领域内容的排序上,遵循认知规律,由易到难地设计学习情境,同时兼顾工作过程的先后顺序。 (三)学习领域(课程)目标 1. 方法能力目标: 培养学生谦虚、好学的能力;

树立学生勤于思考、做事认真的良好作风和良好的职业道德。 熟练掌握高炉炼铁生产工艺,掌握炼铁原料及评价, 掌握高炉炼铁的原理 熟练掌握高炉强化冶炼的途径、方法及途径。 2. 社会能力目标: 培养学生的沟通能力及团队协作精神; 培养学生分析问题、解决问题的能力; 培养学生勇于创新、敬业乐业的工作作风; 培养学生的质量意识、安全意识; 培养学生语言表达能力。 3. 专业(职业)能力目标: 掌握高炉原料及其要求,能够识别、运用原料,具备原料的准备和处理能力; 熟悉高炉冶炼产品及其标准; 掌握高炉冶炼原理,能够选择合理操作制度,进行高炉生产; 掌握炼铁工艺计算和高炉现场操作工艺计算; 根据完成的工作进行资料收集、整理和存档等技术资料整理能力; 通过强化训练,可以考取炼铁工职业资格证书。 二、学习领域(课程)描述 学习领域描述包括学习领域名称、学期、参考学时、学习任务和学习领域目标等,见表二: 表二学习领域的描述

高炉炉体设计说明书

学校代码: 10128 学号: 2 课程设计说明书 题目:年产炼钢生铁550万吨的高 炉车间的高炉炉体设计 学生姓名:王卫卫 学院:材料科学与工程 班级:冶金11—2 指导教师:代书华 2014年12 月29日

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工程课程设计学院:材料科学与工程班级:冶金11-2 学生姓名:王卫卫学号: 2 指导教师:代书华

摘要 本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。

目录 第一章文献综述 (1) 1.1国内外高炉发展现状 (1) 1.2我国高炉发展现状 (1) 1.3 高炉发展史 (2) 1.4五段式高炉炉型 (4) 第二章高炉炉衬耐火材料 (5) 2.1高炉耐火材料性能评价方法的进步 (5) 2.2高炉炉衬用耐火材料质量水平分析 (5) 2.3陶瓷杯用砖 (7) 2.4炉腹、炉身和炉腰用砖 (7) 第三章高炉炉衬 (8) 3.1炉衬破坏机理 (8) 3.2高炉炉底和各段炉衬的耐火材料选择和设计 (9) 第四章高炉各部位冷却设备的选择 (11) 4.1冷却设备的作用 (11) 4.2炉缸和炉底部位冷却设备选择 (11) 4.3炉腹、炉腰和炉身冷却设备选择 (11) 第五章高炉炉型设计 (13) 5.1炉型设计要求 (13) 5.2炉型设计方法 (13) 5.3主要技术经济指标 (14) 5.4设计与计算 (14) 5.5校核炉容 (16) 参考文献 (17)

高炉炼铁生产工艺流程简介

高炉炼铁生产工艺流程简介 [导读]:高炉炼铁生产是冶金(钢铁)工业最主要的环节。高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中,定期从铁口、渣口放出。高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。本专题将详细介绍高炉炼铁生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 高炉冶炼目的:将矿石中的铁元素提取出来,生产出来的主要产品为铁水。付产品有:水渣、矿渣棉和高炉煤气等。 高炉冶炼原理简介: 高炉生产是连续进行的。一代高炉(从开炉到大修停炉为一代)能连续生产几年到十几年。生产时,从炉顶(一般炉顶是由料种与料斗组成,现代化高炉是钟阀炉顶和无料钟炉顶)不断地装入铁矿石、焦炭、熔剂,从高炉下部的风口吹进热风(1000~1300摄氏度),喷入油、煤或天然气等燃料。装入高炉中的铁矿石,主要是铁和氧的化合物。在高温下,焦炭中和喷吹物中的碳及碳燃烧生成的一氧化碳将铁矿石中的氧夺取出来,得到铁,这个过程叫做还原。铁矿石通过还原反应炼出生铁,铁水从出铁口放出。铁矿石中的脉石、焦炭及喷吹物中的灰分与加入炉内的石灰石等熔剂结合生成炉渣,从出铁口和出渣口分别排出。煤气从炉顶导出,经除尘后,作为工业用煤气。现代化高炉还可以利用炉顶的高压,用导出的部分煤气发电。 高炉冶炼工艺流程简图: [高炉工艺]高炉冶炼过程: 高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。矿石料在下降过程中逐步被还原、熔化成铁和渣,聚集在炉缸中, 定期从铁口、渣口放出。 高炉冶炼工艺--炉前操作

详细到哭 高炉炼铁工艺的系统组成 大系统让你更了解高炉

详细到哭!高炉炼铁工艺的系统组成!10大系统让你更了解 高炉! 高炉炼铁工艺的系统组成:原料系统、上料系统、炉顶系统、炉体系统、粗煤气及煤气清洗系统、风口平台及出铁场系统、渣处理系统、热风炉系统、煤粉制备及喷吹系统、辅助系统(铸铁机室及铁水罐修理库和碾泥机室)。高炉炼铁主要工艺流程如图1-1所示。 一.原料系统 (1)原料系统的主要任务。负责高炉冶炼所需的各种矿石及焦炭的贮存、配料、筛分、称量,并把矿石和焦炭送至料车和主皮带。原料系统主要分矿槽、焦槽两大部分。矿槽的作用是贮存各种矿石,主要包括烧结矿、块矿、球团矿、熔剂等,其矿槽槽数及大小应根据各矿种配比及贮存时间确定,一般烧结矿贮存时间不小于10h,块矿、球团矿、熔剂等贮存时间相对更长一些。贮焦槽的作用是贮存焦炭,其槽数及大小根据焦比和贮存时间确定,一般焦炭贮存时间在8?12h。(2)矿槽和焦槽的形状及结构。一般上部为正方体或长方体钢筋混凝土结构,下部为平截锥体钢筋混凝土结构或钢结构。也有的厂矿槽和焦槽为全钢结构。焦矿槽一般设有耐磨衬板,主要有铸铁衬板、铸钢衬板、合金衬板、陶瓷橡胶衬板、铸石衬板等。其中,铸石衬板采用的最为广泛。(3)原料来源及

槽上运输方式。烧结矿、球团矿、焦炭分别来自烧结厂、球团厂、焦化厂,块矿、熔剂等来自原料厂,运输方式有胶带运输机、汽车、火车和吊车等,后两者已很少见了,用胶带运输机的高炉最多。(4)原料系统的工艺流程。焦炭、烧结矿等原料应根据高炉炉料的配比及贮存时间的要求由皮带机 等输送到焦、矿槽,焦、矿槽槽下根据高炉料批按程序组织供料,供料时,槽下给料机将炉料输送至振动筛进行筛分,合格粒度的炉料进入称量漏斗称量,返矿、返焦,由皮带或小车输送到返矿槽或返焦槽,再由皮带机或汽车运至烧结厂或焦化厂。炉料在称量斗按料批大小进行称量后,由主供矿、供焦皮带输送至料车或主皮带,再输送至炉内。为了节约焦炭资源,返焦一般还进行二次筛分,将5mm以上的焦丁回收利用,随烧结矿一起进入炉内,代替部分焦炭。(5)焦、矿槽的布置形式。焦、矿槽的布置形式多种多样,采用斜桥料车上料的高炉其焦槽与矿槽一般采用一列式布置,也可以是并列式布置。采用皮带上料的高炉,其焦槽、矿槽之间一般采用并列式布置,各自形成独立系统。就焦槽、矿槽本身而言,可以是一列式,也可以是共柱并列式,实际情况以一列式布置为主。(6)现代高炉焦矿槽的技术特点:1)完善的筛分设施,槽下设置高效的筛分系统,不但焦炭、烧结矿槽下设置振动筛,许多高炉甚至在球团和块矿槽下也设置有振动筛,尽量减少粉矿、粉焦进入炉内给高炉带来不利影响。2)

相关主题
文本预览
相关文档 最新文档