当前位置:文档之家› 聚醚环酰胺固体推进剂用键合剂的合成及使用性能

聚醚环酰胺固体推进剂用键合剂的合成及使用性能

聚醚环酰胺固体推进剂用键合剂的合成及使用性能
聚醚环酰胺固体推进剂用键合剂的合成及使用性能

Nature:肽键生成新途径

Nature:肽键生成新途径 来自中国科技大学的最新报道,美国范德堡大学(Vanderbilt University)的科研人员发现了一种生成肽键的新方法。该方法使用溴化硝基烷烃与碘活化的胺反应产生酰胺。该反应可以和不对称的aza-Henry反应连用,提供了生产非天然氨基酸酰胺和多肽的新途径。 肽键作为天然肽和蛋白的骨干普遍存在。氨基酸借肽键联结成蛋白质,肽键如同关节一样构建了蛋白质的骨架。同时肽键也广泛存在于很多药物小分子中,例如人们常用的消炎药青霉素和阿莫西林。化学家们常用的生成肽键方法是羧酸和胺的脱水缩合反应。其中羧酸为亲电试剂,胺为亲核试剂。而在《自然》(Nature)新报道的这一方法中,作者发现可以使用溴化硝基烷烃作为羧酸的替代物,与碘活化的胺反应。反应物的极性与经典的脱水缩合反应相反(umpolung)。溴化硝基烷烃的使用提供了生成肽键的一种全新的理念。 当反应分子体积增大、位阻或立体化学复杂程度增强的时候,常用的脱水缩合反应有时就难以达到要求。比如芳香基甘氨酸的肽键生成中就常会伴随一定程度的消旋(导致纯度降低)。而新报道的这一方法可以和不对称的aza-Henry反应连用,成功避免了芳香基甘氨酸的酰胺产生过程中的消旋。此方法将会对酰胺和多肽的合成产生广泛和深远的影响。 《自然》杂志为此刊发了编者按,同时还在“新闻和观点”栏目中配发了一篇署名文章来重点推荐新报道的这一方法。文章称赞这一新方法“简便,通用,激动人心。这不仅仅是一项令人满意的智力成果,还有更深远的应用价值。药物化学家可以很快地应用这一方法来合成含有肽键的具有生物活性的分子,而它们中的一些某一天也许会被用来治疗疾病。”从某种意义上来说,这一新方法无异于化学领域内的新发掘的一座金矿。 文章的第一作者沈博2003年毕业于中国科技大学,在范德堡大学获得化学博士学位后,现在在麻省理工学院(MIT)从事博士后研究。 原文出处推荐: Nature 465, 1027–1032 (24 June 2010) doi:10.1038/nature09125 Umpolung reactivity in amide and peptide synthesis Bo Shen, Dawn M. Makley & Jeffrey N. Johnston The amide bond is one of nature’s most common functional and structural elements, as the backbones of all natural peptides and proteins are composed of amide bonds. Amides are also present in many therapeutic small molecules. The construction of amide bonds using available methods relies principally on dehydrative approaches, although oxidative and radical-based methods are representative alternatives. In nearly every example, carbon and nitrogen bear electrophilic and nucleophilic character, respectively, during the carbon-nitrogen bond-forming step. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source can lead directly to amide products. Preliminary observations support a mechanism in which the polarities of the two reactants are reversed (German, umpolung) during carbon-nitrogen bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents

固体火箭推进剂

21世纪初固体推进剂技术展望 摘要::从高能、低特征信号、能量管理型及含硼富燃料推进剂等主要方面综述了各国近年来在固体推进剂技术方面的最新进展, 分析展望了固体推进剂技术21世纪初发展的趋势及主要技术方向, 并提出了预测性的看法。 关键词:固体推进剂; 高能推进剂; 低特征信号推进剂; 能量管理型推进剂; 含硼富燃料推进剂; 高能量密度材料; 述评 1 引言 在化学推进剂领域的一些观念上, HMX等一些高能炸药在推进剂中的广泛应用, 已经模糊了火药与炸药的界限; Klager K博士于20世纪80年代提出的“高能交联推进剂”的新概念, 促进了双基(均质) 与复合推进剂的结合, 推出了NEPE等新一代高能推进剂; 膏状推进剂(或凝胶推进剂) 的出现,则可能进一步打破固体与液体推进剂的现状分界,推出一个全新的品种。21世纪初固体推进剂发展方向, 是各国专家们预测的一个热点。从80年代以来, 先后有Klager K,Quentin D , Davenas A等中外学者在总结了固体推进剂发展历程、现有水平的基础上, 预测了未来的发展趋势。现依据近年来一些最新研制动态及进展, 作进一步的分析、阐述与展望。 2 高能推进剂 提高能量始终是固体推进剂研制发展的主要目标。在高能化的进程中, 从单一着眼能量到注重以能量为主的综合性能指标; 从单一着眼比冲()Is到注重密度比冲()ρ?Is, 都标志 着高能化技术的日趋成熟与提高。 2. 1 进展 (1) 为了提高能量, HTPB 推进剂固体含量提高到90 % , 加入硝胺炸药HMX , 在俄国还把HTPB +ADN推进剂用于地下井发射的白杨2M战略导弹第三级; NEPE推进剂, 在美国已先后用于MX、三叉戟Ⅱ、侏儒等战略导弹及某些战术导弹。为了提高能量, 还在进行提高固体含量、提高比冲效率等方面的研究; GAP推进剂为目前作为高能、低特征信号、钝感推进剂的最佳品种, 而倍受关注。美国拟于2001年将GAP推进剂用于高性能低特征信号的空对空导弹、洁净助推器装药及113级微烟推进剂中。 (2) 近年来高能量密度材料(HEDM) 推进剂成为各国研究的热点。美国科学家1987 年首先合成出来的CL220 (六硝基六氮杂异伍兹烷、HNIW) 等高能化合物先后披露出来, 引起各国同行们的注意,并先后进行了合成及在推进剂中使用性能的研究。据报道, 美已建立了每批200 kg的中试装置, 法国也能以每批20 kg~25 kg 规模合成。美、法等国主要将CL220用于高能低特征信号推进剂、枪炮推进剂和高能炸药。据美国国防部1997 年关键技 术计划要求, 近期(1~2年) CL220 推进剂比冲达到 2 430 kg N?, 中期(3~5年) 比冲 s/ 达到2 665 kg N?。 s/ (3) 20多年前, 由前苏联泽林斯基有机化学研究所首先合成出来的ADN (二硝酰胺铵) 较晚才披露于世。俄致力于ADN的研制与使用, ADN推进剂已用于部份空对空导弹及SS 224、SS 227TOPOL2M (白杨2M) 机动型洲际导弹第三级等型号。使用40 %的ADN , 可将比冲提高约100 kg N?。ADN 用于低特征信号推进剂, 可将比冲提高7 %; 用于含铝推s/

多肽合成中肽键形成的基本原理

多肽合成中肽键形成的基本原理 一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水. 在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B).如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。 因此,多肽合成-即每一个肽键的形成,包括三个步聚。 第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在; 第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。 第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继续肽合成,选择性脱除保护基也是必需的。 由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一的例外),存在发生的消旋的潜在危险. 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思

国外研制的几种钝感固体推进剂

推进技术 本文2004-03-15收到,作者分别系中国兵器工业第二零四研究所工程师、助理工程师 国外研制的几种钝感固体推进剂 莫红军 白 娟 摘 要 综述了国外研制的几 种钝感固体火箭推进剂,主要包括其研制单位、配方体系、性能水平以及应用等方面的内容,另外还总结了改善固体推进剂钝感弹药响应特性的技术途径和具体措施。 主题词 固体推进剂 钝感 特性 安全性 引言 在弹药储存、运输和使用过程中,曾发生过许多因受到意外刺激而引发的灾难性事故,因此弹药的安全问题尤其受到军方的强烈关注。基于对一系列事故的深刻认识,外军首先提出了钝感弹药(IM)的概念和评估标准[1] 。北约对钝感弹药的最新定义是[2]:一方面必须能按要求可靠地满足其使用、战略和操作要求;另一方面当遭受意外刺激时,要求尽可能降低其意外引爆的可能性和随后对武器平台后勤系统及人员的附带伤害。更简单地说就是当弹药受到快速或慢速加热、子弹或破片撞击、空心装药射流冲击和其它弹药爆轰作用冲击时,只燃烧不爆轰。出于对安全问题的强烈关注,弹药使用方对钝感弹药有迫切需求,弹药钝感特性在国外已开始逐步成为一项新的产品技术指标,其测试 评估体系也趋于完善 [3] 。固体火箭发动机作为重要的弹药组成部分,也必须满足IM 测试的要求。为了使固体火箭发动机完全达到IM 测试的技术要求,国外的结论是必须使用复合材料发动机壳体和钝感固体推进剂[4]。目前国外的钝感固体推进剂主要有美国研制的H TPE 推进剂、钝感NEPE 推进剂和法国国营火药与炸药公司研制的钝感低特征信号XLDB 推进剂,其性能已与在战术导弹中大量应用HTPB/AP 推进剂、常规NEPE 和XLDB 推进剂相当,并且在钝感特性方面有很大的改善;另外一系列采用了含能粘合剂、含能增塑剂及新型氧化剂等新型含能材料组分的推进剂配方,也表现出了较好的钝感弹药应用潜力,但这些配方仍处于开发之中。1 HTPE 推进剂 HTPE 推进剂是美国20世纪90年代新研制一类的以端羟基聚醚预聚物(H TPE )为粘合剂、以改善HT PB 复合推进剂钝感弹药特性为目的的战术导弹用固体推进剂,随着研制工作的深入和发展,已由最初的基础型配方发展到了最新的低成本配方。 1.1 基础型HTPE 推进剂 [5-6] H TPE 推进剂的基础配方最初是由美国ATK 公司根据美国 海军空战中心(NAWC)武器分部的合同研制开发的,主要包括少烟型和含铝型,其主要目的是取代当今大多数战术导弹火箭发动机中大量使用的HT PB/AP 类推进剂,以提高发动机的快速和慢速烤燃响应特性。后来HT PE 推进剂的制造技术被转给挪威的NAMM O Raufoss AS 公司,以用于改进型海麻雀导弹(ESSM )火箭发动机的联合开发项目。NAMM O Raufoss AS 公司生产的H TPE 推进剂在能量、力学性能、特征信号和使用寿命等方面已可以满足战术导弹的应用要求,其性能(如比冲、燃速、形变能力和浇铸加工适用期等)在满足战术发动机关键设计参数方面已与HT PB 推进剂相当,甚至某些性能有进一步的提高。在过去的十年中,采用这种推进剂进行了各种尺寸发动机的钝感弹药性能测试及演示。在采用不同装药结构的各种缩比和全尺寸模型发动机钝感弹药实验中,HTPE 推进剂都具有良好的钝感特性,尤其是采用石墨复合发动机壳体时,装填该推进剂的发动机完全

合成酰胺键的方法

合成酰胺键的方法 在这里我们简单介绍一下多肽化学合成的方法以及常用的多肽缩合试剂。 1、酰卤法 最常用的是酰氯,一般的操作方法是将羧酸与SOCl2或者(COCl)2反应生成酰氯,然后与游离的氨基反应生成酰胺键。催化量的DMF可以促进酰氯的生成,而DMAP可以促进酰氯和氨基的反应。该方法的优点是活性高,可以与大位阻的氨基反应;缺点是在酸性条件下形成酰氯,很多对酸敏感的基团承受不了,还有就是产物比较容易消旋。为了克服第一个缺点,人们发展了用氰脲酰氯(2, 4, 6-三氯-1, 3, 5-三嗪)/TEA或者PPh3/CCl4条件形成酰氯,第二个缺点可用酰氟代替酰氯加以克服。 2、混合酸酐法 氯甲酸乙酯或氯甲酸异丁酯是最常用的生成混酐的试剂。它是利用羧酸羰基的亲电性高于碳酸羰基,从而使氨基选择性的进攻羧酸羰基形成酰胺键。混酐法具有反应速度快,产物纯度较高等优点,但由于混酐的活性很高,极不稳定,要求反应在低温无水条件下进行,产品也容易出现消旋现象。 3、活化酯法 常见的活化酯有硝基苯酯,2, 4, 6-三氯苯酯,五氯苯酯,五氟苯酯(PfOH),N-羟基琥珀酰亚胺(HOSu)酯和N-羟基苯并三唑酯(HOBt)等。一般的操作步骤是先制备并分离得到活化酯,再与氨基反应生成酰胺键。由于活化酯活性较酰氯和酸酐低,可以极大地抑制消旋现象,并能在加热的条件下反应。 4、酰基迭氮法 一般是用酰肼与亚硝酸钠反应制成酰基迭氮,然后与氨基反应形成酰胺键。优点是迭氮法引起的消旋程度较小,比活化酯法效率更高,但是,酰基迭氮中间体不稳定,产生的迭氮酸有毒,而且制备步骤繁琐。Shioiri等人发展的DPPA可以与羧酸现场生成酰基迭氮,很好地解决了酰基迭氮制备的问题,得到广泛的运用。 5、缩合试剂法 该方法是目前应用最广的形成酰胺键的方法,同时也广泛地应用于酯键、大环内酰胺和内酯的构建。这种方法通常是将羧基组份和氨基组份混合,在缩合试剂作

新型固体推进剂在未来国防中的作用及其发展趋势

新型固体推进剂 在未来国防中的作用及其发展趋势 严启龙 (中国兵器工业集团公司第204研究所)  摘 要:通过介绍各国在高能固体推进剂技术方面的研究现状及今后的研究方向,说明了高能固体推进剂在国防科技领域得到了高度的重视和广泛的关注。并依据高能固体推进剂在现代武器装备中的重要地位和作用,以及未来高技术战争对武器的要求,阐明了高能固体推进剂有待发展的关键技术和研究方向,发展的内涵在于重视知识创新、加强技术创新和推进管理创新。  关键词:固体推进剂 导弹 武器装备 国防 含能材料 20世纪80年代末,世界局势发生了深刻变化,随着苏联解体及冷战结束,世界出现了多元化格局,和平与发展已成为世界主题。因而,导致各国在武器装备研究上着重于性能精良、使用安全、可靠性高、成本低等方面,同时充分利用军事技术进行和平利用。历史表明,固体推进剂技术的发展多半靠的是“需求牵引”,当需求增加时,固体推进剂技术得到迅速发展,而在相对和平的年代,则发展较为缓慢。当然专业技术的基础研究工作也起到重要的推动作用。在和平年代,除了极特殊的用途外,固体推进剂今后强调的主要问题将是成本,这意味着研究方法会发生重大变革,将要引入价值分析方法和计算机辅助设计等手段,来降低其制造成本,提高其性价比。20世纪90年代以来,各国都在加速研制高能固体推进剂,以适应导弹武器发展的变化。从当今固体推进剂的应用状况来看,未来固体推进剂的发展趋势是在高性能、高可靠性的基础上进一步降低成本,减少对环境的污染,开发和研制低特征信号推进剂、钝感推进剂和用于可变能量的推进剂[1]。 1.主要发达国家固体推进剂研究计划 国外高性能、钝感和低特征信号推进剂的研制首先是从双基推进剂入手,随着对能量和综合性能的进一步要求,又着手研制改性双基、NEPE等低特征信号推进剂,为进一步减少特征信号,达到高能、钝感的目标,目前正在研制含有GAP、CL-20和ADN等高性能固体推进剂配方。研制低特征信号推进剂,双基系推进剂要比复合推进剂有利得多,尤其是浇注改性双基推进剂更有其有利的条件。改性双基推进剂实现低特征信号并提高性能的主要技术途径有采用新型含能材料(含能粘合剂、氧化剂、增塑剂)组成新配方;选择适当的燃烧催化剂和燃速调节剂改善燃烧性能;合成新型、实用的键合剂提高力学性能;用新的工艺技术(双螺杆压伸技术)解决高固体含量带来的工艺问题。 (1)德国发展计划[2] ①提供新型含能材料,如NENA、ADN、DNDA、叠氮化合物等; ②借助新工艺制备新型材料并制定自己的技术标准,提供具有稳定、成熟的工艺条件的工业生产方式; ③通过改变参数,如粒子尺寸、粒子形状、密度和分子形状,调节已制备的材料的性能; ④运用现代化的检测手段和特殊的分析方法确定组份和配方的性能。ICT计划在近期内进一

固体推进剂能量计算方法

固体推进剂能量计算方法 一 固体推进剂能量计算原理 1,基本假设 在火箭发动机工作时,固体推进剂的化学潜能转换为燃气的动能,经历了推进剂燃烧和燃烧产物膨胀两个过程。发动机的实际工作过程是非常复杂的。其复杂性在于:由于存在热损失,难以保证燃烧过程是等压绝热的;燃烧产物在燃烧室内分布是不均匀的;对于含铝、含镁、含硼推进剂或含有某些金属化合物的性能添加剂的推进剂,存在凝聚相产物,这些凝相产物在喷管膨胀过程中导致两相流损失;喷管流动难以保证等熵条件等等。为了反映固体推进剂能量转换过程的本质,抓住主要矛盾,在进行其理论性能预估时,进行了一些基本假设。 (1) 在燃烧室中,推进剂的燃烧反应达到化学平衡,且燃烧过程为等压绝热过程,即热力学中的等焓过程;而且燃烧产物的分布是均匀的。 (2) 燃气为理想气体,凝相产物的体积忽略不计。 (3) 喷管中燃气的流动过程为绝热可逆过程,即为等熵过程;燃气在喷管中的流动为一维定常流,即在喷管的任一截面上,燃气的组成及各性能参数的分布是均匀的。 (4) 不考虑凝聚相燃烧产物的两相流损失。 2, 基本方程 (1) 质量守恒方程 常见的固体推进剂是由C 、H 、O 、N 、Cl 、Al 等元素构成的某些化学物质的混合物。对于这样一个复杂的系统,假设固体推进剂的燃烧产物共有n 种,而固体推进剂所含有的元素共l 种。对j 元素的质量守恒方程可表达成: ()1 1,2,,n ij i j i a x b j l ===???∑ (1) 式中,ij a 为混合物系中第i 种产物含j 种元素的原子摩尔数,它由i 燃烧产物的分子式得到; i x 为单位质量燃烧产物中第i 种产物的摩尔数; j b 为单位质量推进剂中含第j 种元素的原子摩尔数,它由推进剂的假想化学式得到。 (2) 能量守恒方程 根据假设(1),燃烧室内燃烧为等焓过程,则有 p c H H = (2) 式中,p H 为单位质量推进剂在初温0T 时的总焓(通常取0298T K =); c H 为单位质量推进剂燃烧产物在平衡火焰温度c T 下的总焓。 实际上,在燃烧室热力计算中,等焓方程式(2)是作为判据使用的。即根据式(2)来

多肽合成方法

多肽合成中肽键形成的基本原理一个肽键的形成(生成一个二肽),从表面上看是一个简单的化学过程,它指两个氨基酸组分通过肽键(酰胺键)连接,同时脱去水。在温和反应条件下,肽键的形成是通过活化一个氨基酸(A)的羧基部分,第二个氨基酸(B)则亲核进攻活化的羧基部分而形成二肽(A-B)。如果羧基组分(A)的氨基未保护,肽键的形成则不可控制,可能开有成线性肽和环肽等副产物,与目标化合物A-B混在一起。所以,在多肽合成过程中,对不参与肽键形成的所有官能团必须以暂时可逆的方式加以保护。因此,多肽合成-即每一个肽键的形成,包括三个步聚:第一步,需要制备部分保护的氨基酸,氨基酸的两性离子结构不再存在;第二步,为形成肽键的两步反应,N-保护氨基酸的羧基必须先活化为活性中间体,随后形成肽键。这一耦合反应既可作为一步反应进行,也可作为两个连续的反应进行。第三步,对保护基进行选择性脱除或全脱除。尽管全部脱除要等到肽链全部组装完成后才能进行,但为了继??? 续肽合成,选择性脱除保护基也是必需的。由于10个氨基酸(Ser、Thr、Tyr、Asp、Glu、Lys、Arg、His、Sec和Cys)含有需要选择性保护的侧链官能团,使肽合成变得更加复杂。因为对选择性的要求不同,所以必须区分临时性和半永久性保护基。临时性保护基用于下一步要反应氨基酸的氨基或羧基官能团的暂时保护,在不干扰已经形成的肽键或氨基酸侧链的半永久性保护基才脱除,有时也在合成过程中脱除。 在理想状态下,羧基组分的活化和随后的肽键形成(耦合反应)应为快速反应,没 有消旋或副产物形成,并应用等摩尔反应物以获得高产率。但遗憾的是,还没有一 种能满足这些要求的化学耦合方法相比,适用于实际合成的方法很少。 在肽合成过程中,参与多种反应的官能团常常与一个手性中心相连(甘氨酸是唯一 的例外),存在发生的消旋的潜在危险。 多肽合成循环的最后一步,保护基要全部脱除。除了在二肽的合成中需要全脱保护 以外,选择性脱除保护基对于肽链延长具有非常重要的意义。合成策略要深思熟虑 地规划,依战略选择,可以选择性脱除 N α -氨基保护基或羧基保护基。“战略” 一词这里是指单个氨基酸的缩合反应顺序。一般来说,在逐步合成和片段缩合之间 是有区别的。在溶液中进行肽合成(也指“常规合成”),对困难序列,多数情况 下,用肽链逐步延长法只能合成较短的片段。要合成更长的肽时,目标分子必须分 割成合适的片段,并确定在片段缩合过程中,它们能使能 C 端差向异构化程度最 小。在单个片段逐步组装完成后,再连接产生目标化合物。肽合成战术包括选择最 恰当的保护基组合和最佳的片段偶联方法。 最初的固相多肽合成( SPPS )只是肽和蛋白质逐步合成法的一种变化,其概念是将 增长的肽链连接到一个不溶性的聚合物载体上,由 Robert Bruce Merrifield

合成酰胺键的方法

合成酰胺键的方法 1、酰卤法 最常用的是酰氯,一般的操作方法是将羧酸与SOCl2或者(COCl)2反应生成酰氯,然后与游离的氨基反应生成酰胺键。催化量的DMF可以促进酰氯的生成,而DMAP可以促进酰氯和氨基的反应。该方法的优点是活性高,可以与大位阻的氨基反应;缺点是在酸性条件下形成酰氯,很多对酸敏感的基团承受不了,还有就是产物比较容易消旋。为了克服第一个缺点,人们发展了用氰脲酰氯(2, 4, 6-三氯-1, 3, 5-三嗪)/TEA或者PPh3/CCl4条件形成酰氯,第二个缺点可用酰氟代替酰氯加以克服。 2、混合酸酐法 氯甲酸乙酯或氯甲酸异丁酯是最常用的生成混酐的试剂。它是利用羧酸羰基的亲电性高于碳酸羰基,从而使氨基选择性的进攻羧酸羰基形成酰胺键。混酐法具有反应速度快,产物纯度较高等优点,但由于混酐的活性很高,极不稳定,要求反应在低温无水条件下进行,产品也容易出现消旋现象。 3、活化酯法 常见的活化酯有硝基苯酯,2, 4, 6-三氯苯酯,五氯苯酯,五氟苯酯(PfOH),N-羟基琥珀酰亚胺(HOSu)酯和N-羟基苯并三唑酯(HOBt)等。一般的操作步骤是先制备并分离得到活化酯,再与氨基反应生成酰胺键。由于活化酯活性较酰氯和酸酐低,可以极大地抑制消旋现象,并能在加热的条件下反应。 4、酰基迭氮法 一般是用酰肼与亚硝酸钠反应制成酰基迭氮,然后与氨基反应形成酰胺键。优点是迭氮法引起的消旋程度较小,比活化酯法效率更高,但是,酰基迭氮中间体不稳定,产生的迭氮酸有毒,而且制备步骤繁琐。Shioiri等人发展的DPPA可以与羧酸现场生成酰基迭氮,很好地解决了酰基迭氮制备的问题,得到广泛的运用。 5、缩合试剂法 该方法是目前应用最广的形成酰胺键的方法,同时也广泛地应用于酯键、大环内酰胺和内酯的构建。这种方法通常是将羧基组份和氨基组份混合,在缩合试剂作用下,中间体不经分离直接进行反应形成酰胺键。这样就无需预先制备酰卤、酸酐和活化酯等羧基被活化的中间体,不仅简捷高效,而且可以有效地避免在活化中间体分离提纯以及存放过程中产生的一些副反应。目前已报道的多肽缩合试剂非常繁多,从分子结构的角度上主要分为碳化二亚胺类型、磷正离子或磷酸酯类型和脲正离子类型。 发展最早和最常用的碳化二亚胺类缩合试剂是DCC。但由于反应生成的二环已基脲(DCU)在大多数有机溶剂中溶解度很小,难以除去,人们对DCC的结构进行了改进,发展了副产物的脂溶性很好的DIPCDI和BDDC等和副产物水溶性很好的EDCI(Figure 1.7)。

合成酰胺键的一般方法

合成酰胺键的一般方法 刚才浏览帖子,看到有人问如何合成酰胺键。由于本人博士论文是做多肽合成的,所以有一些经验。现将我的博士论文关于如何合成酰胺键的一段贴过来,希望能对即将从事多肽合成的人有些用。本帖原创,转载请注明出处。 在这里我们简单介绍一下多肽化学合成的方法以及常用的多肽缩合试剂。 1、酰卤法 最常用的是酰氯,一般的操作方法是将羧酸与SOCl2或者(COCl)2反应生成酰氯,然后与游离的氨基反应生成酰胺键。催化量的DMF可以促进酰氯的生成,而DMAP可以促进酰氯和氨基的反应。该方法的优点是活性高,可以与大位阻的氨基反应;缺点是在酸性条件下形成酰氯,很多对酸敏感的基团承受不了,还有就是产物比较容易消旋。为了克服第一个缺点,人们发展了用氰脲酰氯(2, 4, 6-三氯-1, 3, 5-三嗪)/TEA或者PPh3/CCl4条件形成酰氯,第二个缺点可用酰氟代替酰氯加以克服。 2、混合酸酐法 氯甲酸乙酯或氯甲酸异丁酯是最常用的生成混酐的试剂。它是利用羧酸羰基的亲电性高于碳酸羰基,从而使氨基选择性的进攻羧酸羰基形成酰胺键。混酐法具有反应速度快,产物纯度较高等优点,但由于混酐的活性很高,极不稳定,要求反应在低温无水条件下进行,产品也容易出现消旋现象。 3、活化酯法 常见的活化酯有硝基苯酯,2, 4, 6-三氯苯酯,五氯苯酯,五氟苯酯(PfOH),N-羟基琥珀酰亚胺(HOSu)酯和N-羟基苯并三唑酯(HOBt)等。一般的操作步骤是先制备并分离得到活化酯,再与氨基反应生成酰胺键。由于活化酯活性较酰氯和酸酐低,可以极大地抑制消旋现象,并能在加热的条件下反应。 4、酰基迭氮法 一般是用酰肼与亚硝酸钠反应制成酰基迭氮,然后与氨基反应形成酰胺键。优点是迭氮法引起的消旋程度较小,比活化酯法效率更高,但是,酰基迭氮中间体不稳定,产生的迭氮酸有毒,而且制备步骤繁琐。Shioiri 等人发展的DPPA可以与羧酸现场生成酰基迭氮,很好地解决了酰基迭氮制备的问题,得到广泛的运用。 5、缩合试剂法 该方法是目前应用最广的形成酰胺键的方法,同时也广泛地应用于酯键、大环内酰胺和内酯的构建。这种方法通常是将羧基组份和氨基组份混合,在缩合试剂作用下,中间体不经分离直接进行反应形成酰胺键。这样就无需预先制备酰卤、酸酐和活化酯等羧基被活化的中间体,不仅简捷高效,而且可以有效地避免在活化中间体分离提纯以及存放过程中产生的一些副反应。目前已报道的多肽缩合试剂非常繁多,从分子结构的角度上主要分为碳化二亚胺类型、磷正离子或磷酸酯类型和脲正离子类型。 发展最早和最常用的碳化二亚胺类缩合试剂是DCC。但由于反应生成的二环已基脲(DCU)在大多数有机溶剂中溶解度很小,难以除去,人们对DCC的结构进行了改进,发展了副产物的脂溶性很好的DIPCDI 和BDDC等和副产物水溶性很好的EDCI(Figure 1.7)。 由于这类缩合试剂活性很高,往往会导致产物有较大程度的消旋,为此通常要加入HOSu,HOBt,HOAt 或HOOBt等添加剂一起使用来抑制产物消旋,同时也可有效地抑制N-酰基脲等副产物的生成。[attach]5892[/attach]

固体推进剂火箭发动机的基本问题

固体推进剂火箭发动机的基本问题(下册) 国防工业出版社F.A .威廉斯N.C.黄M.巴雷尔著 京固群译 章节 固体推进剂药柱的机械性能和应力分析 综述 固体推进剂药柱是粘弹物质制成的。推进剂要住的很多结构问题可通过采用无限小线性弹性范围的方法而得到解决,并有足够的精度。然而许多问题,例如与药柱下沉、加强的药柱、药柱流动(蠕变)及有限变形的药柱等有关的问题,其中粘弹概念是主要的。对几何形状复杂的药柱的应力分析,越来越多的数值计算方法正在开始采用粘弹方程,而当要求做精确的应力分析是,则必须考虑粘弹性。 粘弹物质应力分析方法,能在分析中利用实际测得的松弛或蠕变数据,可以避免因采用弹簧-阻尼器模型所伴随的误差而改善了精确度。然而,关于具有复杂几何形状的真实药柱的结构分析,还有很多别的方法。这些方法包括:不少经过很好验证的数值有限差法;几种成熟的有限元素法(将药柱或者分成三角形或者分成四边形单元);还有一些基础不是那么扎实的方法(例如“多余力法”,其中药柱是假定用杆、板和接头组成的)。 粘弹性 实验结果表明,当应力值低于某一极限值(此极限值与所研究的物质有关)时,粘弹性态是近似线性的。在理论中采用这一假说,便大大简化了应力分析步骤。就线粘弹固体而言,在给定时间内由于阶跃函数应力所导致的应变是与应力值成正比的。这种粘弹响应的线性特征是布拉茨(Blatz)在固体推进剂的蠕变实验中观测得来的。 实验结果图见p326 上册 章节 固体推进剂性能 引言 有关固体推进剂性能的计算,是发展这一学科的一个重要的环节。对固体推进剂性能计算应比其他推进剂要精确些,因为其比冲只有300秒左右。比冲增大几秒便是可观的改进,这将影响到推进剂的选择。 混合比 固体推进剂可分为两类:(a)均质固体推进剂,这种推进剂不含有其尺寸大于分子尺寸的异质组分。均质推进剂通常在同一分子内即包括燃烧机和氧化剂。属于这种类型的纯物质成为推进剂的“基”。最普遍的均质推进机的基为硝化甘油和硝化棉。所谓单基推进剂的一个基(例如硝化棉),而绝大多数均质推进剂为双基的,即:含有硝化棉和硝化甘油。(b)异质固体推进剂为含有其尺寸大于大分子尺寸的异质组分的推进剂。我们本节所要研究的异质推进剂是复合推进剂,在称为粘结剂的塑性燃烧剂的基体中含有大的(大于大分子的)氧化剂(例如过氯酸铵)颗粒。

多肽合成详细解说

多肽合成详细解说 1.多肽化学合成概述: 1963年,R.B.Merrifield[1]创立了将氨基酸的C末端固定在不溶性树脂上,然后在此树脂上依次缩合氨基酸,延长肽链、合成蛋白质的固相合成法,在固相法中,每步反应后只需简单地洗涤树脂,便可达到纯化目的.克服了经典液相合成法中的每一步产物都需纯化的困难,为自动化合成肽奠定了基础.为此,Merrifield获得1984年诺贝尔化学奖. 今天,固相法得到了很大发展.除了Merrifield所建立的Boc法(Boc:叔丁氧羰基)之外,又发展了Fmoc固相法(Fmoc:9-芴甲氧羰基).以这两种方法为基础的各种肽自动合成仪也相继出现和发展,并仍在不断得到改造和完善. Merrifield所建立的Boc合成法[2]是采用TFA(三氟乙酸)可脱除的Boc为α-氨基保护基,侧链保护采用苄醇类.合成时将一个Boc-氨基酸衍生物共价交联到树脂上,用TFA 脱除Boc,用三乙胺中和游离的氨基末端,然后通过Dcc活化、耦联下一个氨基酸,最终脱保护多采用HF法或TFMSA(三氟甲磺酸)法.用Boc法已成功地合成了许多生物大分子,如活性酶、生长因子、人工蛋白等. 多肽是涉及生物体内各种细胞功能的生物活性物质。它是分子结构介于氨基酸和蛋白质之间的一类化合物,由多种氨基酸按照一定的排列顺序通过肽键结合而成。到现在,人们已发现和分离出一百多种存在于人体的肽,对于多肽的研究和利用,出现了一个空前的繁荣景象。多肽的全合成不仅具有很重要的理论意义,而且具有重要的应用价值。通过多肽全合成可以验证一个新的多肽的结构;设计新的多肽,用于研究结构与功能的关系;为多肽生物合成反应机制提供重要信息;建立模型酶以及合成新的多肽药物等。 多肽的化学合成技术无论是液相法还是固相法都已成熟。近几十年来,固相法合成多肽更以其省时、省力、省料、便于计算机控制、便于普及推广的突出优势而成为肽合成的常规方法并扩展到核苷酸合成等其它有机物领域。本文概述了固相合成的基本原理、实验过程,对其现状进行分析并展望了今后的发展趋势。 从1963年Merrifield发展成功了固相多肽合成方法以来,经过不断的改进和完善,到今天固相法已成为多肽和蛋白质合成中的一个常用技术,表现出了经典液相合成法无法比拟的优点。其基本原理是:先将所要合成肽链的羟末端氨基酸的羟基以共价键的结构同一个不溶性的高分子树脂相连,然后以此结合在固相载体上的氨基酸作为氨基组份经过脱去氨基保护基并同过量的活化羧基组分反应,接长肽链。重复(缩合→洗涤→去保护→中和及洗涤→下一轮缩合)操作,达到所要合成的肽链长度,最后将肽链从树脂上裂解下来,经过纯化等处理,即得所要的多肽。其中α-氨基用BOC(叔丁氧羰基)保护的称为BOC固相合成法,α-氨基用FMOC(9-芴甲氧羰基)保护的称为FMOC固相合成法, 2.固相合成的基本原理 多肽合成是一个重复添加氨基酸的过程,固相合成顺序一般从C端(羧基端)向N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。现在多采用固相合成法,从而大大的减轻了每步产品提纯的难度。为了防止副反应的发生,参加反应的氨基酸的侧链都是保护的。羧基端是游离的,并且在反应之前必须活化。化学合成方法有两种,即Fmoc 和tBoc。由于Fmoc比tBoc存在很多优势,现在大多采用Fmoc法合成,如图:

相关主题
文本预览
相关文档 最新文档