当前位置:文档之家› 人教版物理必修二知识点总结修订版

人教版物理必修二知识点总结修订版

人教版物理必修二知识点总结修订版
人教版物理必修二知识点总结修订版

人教版物理必修二知识点总结

曲线运动

一、运动的合成与分解 1.曲线运动

匀变速曲线运动:若做曲线运动的物体受的是恒力,即加速度大小、方向都不变的曲线运动,如平抛运动;

变加速曲线运动:若做曲线运动的物体所受的是变力,加速度改变,如匀速圆周运动。 (1)条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。物体能否做曲线运动要看力的方向,不是看力的大小。 (2)特点:

①曲线运动的速度方向不断变化,故曲线运动一定是变速运动。 ②曲线运动轨迹上某点的切线方向表示该点的速度方向。

③曲线运动的轨迹向合力所指一方弯曲,合力指向轨迹的凹侧。 ④当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小。 2.运动的合成与分解(指位移、速度、加速度三个物理量的合成和分解) (1)合运动和分运动关系:等时性、等效性、独立性、矢量性、相关性 ①等时性:合运动所需时间和对应的每个分运动所需时间相等。 ②等效性:合运动的效果和各分运动的整体效果是相同的,合运动和分运动是等效替代关系,不能并存。

③独立性:每个分运动都是独立的,不受其他运动的影响

④矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则 ⑤相关性:合运动的性质是由分运动性质决定的

(2)从已知的分运动来求合运动,叫做运动的合成;求已知运动的分运动,叫运动的分解。 ①运动的分解要根据力的作用效果(或正交分解) ②物体的实际运动是合运动

③速度、时间、位移、加速度要一一对应

④如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算。如果分运动互成角度,运动合成要遵循平行四边形定则 (3)合运动的性质取决于分运动的情况:

①两个匀速直线运动的合运动仍为匀速直线运动。

②一个匀速运动和一个匀变速运动的合运动是匀变速运动,两者共线时,为匀变速直线运动,两者不共线时,为匀变速曲线运动。

③两个匀变速直线运动的合运动为匀变速运动,当合运动的初速度与合运动的加速度共线时为匀变速直线运动,当合运动的初速度与合运动的加速度不共线时为匀变速曲线运动。 3.小船渡河问题

一条宽度为L 的河流,水流速度为V s ,船在静水中的速度为V c (1)渡河时间最短:

设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V 1=V c sin θ,渡河所需时间为:

θ

sin c V L

t =

当船头与河岸垂直时,渡河时间最短,

c

V L t =

m in (与水速的大小无关)

渡河位移:2

22t

v L s s +=

(2)渡河位移最短:

①当V c >V s 时V s = V c cos θ渡河位移最短L s =min ;渡河时间为θ

sin v L

t

=

船头应指向河的上游,并与河岸成一定的角度θ=arccosV s /V c

②当V c >V s 时以V s 的矢尖为圆心,以V c 为半径画圆,当V 与圆相切时,α角最大,V c =V s cos θ,船头与河岸的夹角为:θ=arccosV c /V s 。 渡河的最小位移:

L

V V L s c

s

==

θcos 船漂的最短距离为:θ

θsin )

cos (m in c c s V L

V V x -=;

渡河时间:

θ

θsin sin m in s c v s v L

t =

=

4.关联速度和绳(杆)端点速度分解

一根轻绳,沿绳的速度、位移、加速度的大小处处相等。

绳(杆)端点速度分解为沿绳的速度和垂直绳的速度。 如图有βαcos cos B A v v =

二、平抛运动::将物体沿水平方向抛出,只在重力作用下的运动为平抛运动

1.运动特点:(1)只受重力;(2)初速度与重力垂直。

2.运动性质:平抛运动是初速度为零的匀变速曲线运动。

3.处理方法:平抛运动分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

4.基本规律:

(1)水平方向:匀速直线运动0v v x = x=v o t (2)竖直方向:自由落体运动gt v y = 22

1

y gt =

(3)合速度:2

2

y

x

v v v

+=

o

x

y v gt v v =

=

θtan (θ为合速度与水平方向的夹角) (4)合位移:22s y x +=

t v g x y o

?==

2tan α(α为合位移与水平方向的夹角)

(5)轨迹:

220

2x v g

y =

平抛物体运动的轨迹是一条抛物线 (6)推论:①tin θ=2tin α②平抛物体任意时刻瞬速度方向的反向延长线交水平位移中点。 (7)特点 :①运动时间由高度决定

g

h

2t =

,与v 0无关

②竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立 ③Δt 时间内速度改变量相等,即△v =g Δt ,ΔV 方向是竖直向下的

5类平抛:当物体所受的合外力恒定且与初速度垂直时,做类平抛运动(处理方式和平抛运动处理方式一样) 三、圆周运动

1.描述述圆周运动物理量:

(1)线速度:做匀速圆周运动的物体所通过的弧长与所用的时间的比值(描述质点沿切线

方向运动的快慢) 大小:t

s v = m/s

方向:某点线速度方向沿圆弧该点切线方向

(2)角速度:做匀速圆周运动的物体,连接物体与圆心的半径转过的圆心角与所用的时间的比值(描述质点绕圆心转动的快慢) 大小:t

θω= 矢量 单位:rad/s

(3)周期和转速 周期(T ):做圆周运动物体一周所用的时间(s ) 转速(n ):做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数(r/s r/min ) (4)V 、ω、T 、n 的关系:

n T

ππω22==,nr T

r ππω2r 2v ===

T 、n 、ω三个量中任一个确定,另两个量就确定了,但v 还和半径r 有关。

2.向心力

(1)作用:产生向心加速度,只改变线速度的方向,不改变速度的大小,向心力对做圆周运动的物体不做功。

(2)大小:向

向ma mv r n m r T

m r m r

v m F ======ωππω2222

)2()2(

(3)方向:总是沿半径指向圆心,时刻在变化,即向心力是个变力.

说明: 向心力是按效果命名的力,不是某种性质的力,向心力可以由某一个力提供,也可以由几个力的合力提供,要根据物体受力的实际情况判定。

非匀速圆周运动(不仅线速度大小、方向时刻在改变,而且加速度的大小、方向也时刻在改变,是变加速曲线运动)合力的处理:

切线方向分力提供切向加速度来改变速度大小; 半径方向分力提供向心加速度来改变速度方向。

注意:区分匀速圆周运动和非匀速圆周运动的力的不同 3.向心加速度(描述线速度方向改变的快慢) (1)大小:ωππωv r n r T

r r v a

=====

22

22)2()2(向

(2)方向:总是指向圆心,方向时刻在变化

(3)注意:若ω相同,a 与r 成正比;若v 相同,a 与r 成反比;若是r 相同,a 与ω2

正比,与v 2

也成正比。 4.匀速圆周运动

(1)特点:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的。.

(2)性质:匀速圆周运动是速度大小不变而速度方向时刻改变,加速度大小不变、方向时刻改变的变加速曲线运动。

(3)加速度和向心力:由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力。

(4)质点做匀速圆周运动的条件:合外力大小不变,方向始终与速度方向垂直且指向圆心. 5.关联速度

①同轴转动的物体:各点角速度ω相等,而线速度v =ωr 与半径r 成正比 ②链条传动、齿轮传动、皮带传动(不打滑):两轮边缘的各点线速度大小相等,而角速度ω=v/r 与半径r 成反比。 6.向心运动和离心运动

提供的向心力等于所需要的向心力时物体做匀速圆周运动 提供的向心力大于所需要的向心力时物体做向心运动 提供的向心力小于所需要的向心力时物体做离心运动 7.典型模型

(1)火车转弯:

如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供

r

v m

mg 2tan =α

αtan gr v =

v 增加,外轨挤压,如果v 减小,内轨挤压

(飞机转弯的向心力由升力和重力提供)

(2)圆锥问题

θ

ωωθωθθtan tan cos sin 2

2r g r

g

r m N mg

N =

?=

?==

(3)竖直面内圆周运动(非匀速圆周运动)

①无支撑物情况:绳栓小球和小球在圆内轨运动(弹力只能指向圆心)

小球机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。

最低点:

R

mv F mg 2

m =-弹

最高点:R

mv mg F 2

m in =+弹

过最高点临界条件:R

mv mg 2

临= gr v =

gR v ≥是过最高点条件

②有支撑物情况:杆栓小球和小球在圆双轨运动(弹力既能指向圆心又能背离圆心)

最低点:

R

mv F mg 2

m =-弹

最高点:R

mv mg F 2

m in =+弹

过最高点临界条件:mg F =弹

0=临v 0≥v 是过最高点条件:

当gR v >

时物体受到的弹力必然是向下的

当gR v <时物体受到的弹力必然是向上的 当gR v =时物体受到的弹力恰好为零。

当弹力大小Fmg 时,向心力只有一解:F +mg ; 当弹力F=mg 时,向心力等于零。 ③等效竖直面内圆周运动

恒力的合力指向圆心位置等效为最高点(无支撑物):临界速度满足R

mv F 2

恒合

=

恒力的合力背离圆心位置等效为最低点:速度最大 (4)汽车过拱桥(弹力只能背离圆心) 径向:r

v m

F mg N 2cos =-θ 切向:mgsin θ-f=ma

最高点:r

v m

F mg

N 2m in

=-(汽车不平衡)

注:若最高点r

v m mg 2

=即gr

v =

时物体恰好做平抛运

动。

(5)汽车过凹路(弹力只能指向圆心)

径向:r

v m F mg N 2

cos =-θ 切向:mgsin θ-f=ma

最低点:r

v m mg F m N 2

=-(汽车不平衡)

万有引力定律 人造卫星

一、地心说和日心说

1.地心说的内容:地球是宇宙中心,其他星球围绕地球做匀速圆周运动,地球不动。

2.日心说的内容:太阳是宇宙的中心,其他行星围绕地球匀速圆周运动,太阳不动。日心说是波兰科学家天文学家哥白尼创立的。

3.开普勒三定律

德国科学家开普勒在研究麦天文学家第谷资料时得出开普勒三定律

(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)任何一个行星与太阳的连线在相等的时间内扫过的面积相等。

(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。即R 3/T 2

=k 二、万有引力定律

1.内容:自然界任何两个物体之间都存在着相互作用的引力,两物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 表达式:F =G2

21r m m

引力常量G =6.67×10-11N·m2/kg 2

(英)卡文迪许扭秤测得“能称出地球质量的人” 2.适用条件:①公式适用于质点间的相互作用②当两个物体间的距离远大于物体本身的大小时,物体可视为质点③均匀球体可视为质点,r

3.万有引力遵守牛顿第三定律,即它们之间的引力总是大小相等、方向相反.

4.推导:

5. 万有引力和重力

重力是万有引力的一个分力,万有引力的另一个分力提供物体随地球自转时需要的向心力, 2ωmr F =向物体跟地球自转的向心力随维度增大而减小,故物体的重力随纬度的变大而变

大,即重力加速度g 随纬度变大而变大。

2

)(m h R GMm

g +=

物体的重力随高度的变高而减小,即重力加速度g 随高度的变高而减小。

不计地球自转时g R GMm m 2

=得黄金代换式GM gR =2

6.用万有引力定律分析天体的运动

(1)基本方法:①把天体运动近似看作匀速圆周运动②万有引力提供向心力 即r g ma T

mr mr r

v m r

GMm m )2(222

2

=====向πω

(2)

① “T 、 r ”法:

由G 2

r

Mm =mr

T

2

2

得:M=2

3

2

4Gt

r π

即只要测出环绕星体M 运转的一颗卫星运转的半径和周期,就可以计算出中心天体的质量。

V M =ρ,334R V π=得:3

2

3

3R GT r

πρ=。R

当r=R时,即卫星是近地面卫星时,2

3GT

πρ=,由此可以测量天体的密度.

②“g 、R ”法

由得G

gR M 2

=

由V M

=

ρ,g R GMm m 2

=33

4

R V π=得GR

πρ

4g

3=

三、人造卫星

1.卫星的绕行速度、角速度、周期与半径的关系 (1)由

r

v m r

Mm G 2

2

=得:r

GM v

=

(2)由

r

m r

Mm

G 22

ω=得:3

r GM =

ω即轨道半径越大,绕行角速

(3)由ma

r

GMm

=2

得:2

r GM a

=即轨道半径越大,绕行加速度越小

(4)由22

)2(T mr r GMm π=得:GM

R T 3

24π=

即轨道半径越大,绕行周期越大 2.三种宇宙速度

(1)第一宇宙速度:v 1=7.9km/s 是人造地球卫星的最小发射速度,最大绕行速度。 推导:

方法一:地球对卫星的万有引力提供卫星做圆周运动的向心力 由()

()

h R v m

h R mM

G

+=+22

得9km /s

.7=+=h

R GM

v

方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力 由R

v m mg 2

=得9km/s .7==

gR v

(2)第二宇宙速度:v 2=11.2km/s 是物体挣脱地球的引力束缚需要的最小发射速度。

(3)第三宇宙速度:v 3=16.7km/s 是物体挣脱太阳的引力束缚需要的最小发射速度。 3.近地卫星特点

(1)近地卫星的轨道半径r 可以近似地认为等于地球半径R (2)近地卫星的线速度大小为v 1=7.9km/s

(3)近地卫星的周期为T =5.06×103

s=84min ,是人造卫星中周期最小的。 4.地球同步卫星(通信卫星)

所谓地球同步卫星是指相对于地面静止的人造卫星。 特点:

(1)只能定点在赤道正上方

(2)同步卫星的角速度、周期与地球自转的角速度、周期相同 (3)同步卫星距地面高度一定 由

)h (4

)(2

2

2+=+R T

m h R Mm G π得m R GMT k 106.34h 43

2

2

?=-=π

(4)同步卫星的线速度一定v=3.08km/s 5.变轨问题

卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面

如图所示,在轨道A 点,r

v m r

Mm G 2

2

>,卫星做离心运动,但是随着卫星远离地球,

万有引力做负功,速度减小,虽然随半径增大万有引力减小,但r

v m 2

减小的多,所以到远

地点B 时r

v m r

Mm G 2

2

<,卫星做向心运动所以卫星轨道是椭圆。若在B 点增大速度,让速

度增大到r

v m r

Mm G 2

2

=(由卫星自带的推进器完成),卫星将在该轨道做匀速圆周运动。

①低轨变高轨,需要加速离心 ②高轨变低轨,需要减速向心 5.双星问题

两颗星角速度、周期相等,向心力均由两者间万有引力提供。

1

21221m r m r m G

ω= 2222

21m r m r m G ω= 21r r r +=

(注:万有引力定律公式2

2

1r m m G

F

=中的r 指的是两个物体间的距离,r F 2

m ω=中的

r ,对于椭圆轨道指的是曲率半径,对于圆轨道指的是圆半径。)

2

1

21m m a a = 2

11

2m m r r = 1

22

1m m v v =

6.星球瓦解问题

对于赤道上的某一个物体,r

v m mg R GMm 2

2

+=,当速度增加时,重力减小,向

心力增加,当mg=0即当速度R

v m R

GMm 2

2

=,R

GM v =

(即第一宇宙速度)时,星球处

于瓦解的临界状态 7.卫星的超重和失重

(1)人造卫星中在发射阶段,尚未进入预定轨道的加速阶段,具有竖直向上的加速度,卫星内的所有物体处于超重状态,卫星与物体具有相同的加速度 (2)卫星进入轨道后正常运转时,卫星与物体处于完全失重

机械能

一、功

1.功:功等于力和沿该力方向上的位移的乘积。

(1)做功的两个必要因素:力和物体在力的方向上的位移。

(2)公式:W =FScos θ(θ为F 与s 的夹角)适用恒力做功求解。单位:焦耳1J =1N ·m 。 (3)功是过程量,是力对空间的积累效应,和位移、时间相对应。求功必须指明是“哪个力”“在哪个过程中”做的功。

(4)功是标量,没有方向,但有正负。正功表示动力做功,负功表示阻力做功,功的正负表示能的转移方向。

(5)由公式W=Fs cos θ求解两种处理办法:

①W 等于力F 乘以物体在力F 方向上的分位移scos θ,即将物体的位移分解为沿F 方向上和垂直F 方向上的两个分位移s 1和s 2,则F 做的功W =Fs 1=Fscos θ。 ②W 等于力F 在位移s 方向上的分力Fcos θ乘以物体的位移s ,即将力F 分解为沿s 方向和垂直s 方向的两个分力F 1和F 2,则F 做功W=F 1s =Fscos θ。

(6)功的物理含义:功是能量转化的量度,即:做功的过程是能量的一个转化过程,这个过程做了多少功,就有多少能量发生了转化.对物体做正功,物体的能量增加;对物体做负功,也称物体克服阻力做功,物体的能量减少。 2.功的正负

(1)当0≤θ<900

时W >0,力对物体做正功,动力

(2)当θ=900

时W =0,力对物体不做功

(3)当900<θ≤1800

时W <0,力对物体做负功或说成物体克服这个力做正功,阻力 3.合力功的计算

(1)用平行四边形定则求出合外力,再根据w =F 合scos θ计算功.注意θ应是合外力与位移s 间的夹角,且合力为恒力。

(2)分别求各个外力的功,再求各个外力功的代数和。 4.变力做功问题

(1)将变力转化为恒力,再用W =Fscos θ计算

(2)滑动摩擦力、空气阻力等,在曲线运动或往返运动时,若变力F 大小不变,功等于力和路程的乘积

(3)当变力F 是位移s 的线性函数时,求出变力F 对位移的平均力2

2

1F F F +=

,W=F s (4)作出变力F 随位移变化的图象,图象与位移轴所围均“面积”即为变力做的功 (5)机车启动中若功率恒定,则可用W=Pt 求解

(6)根据动能定理或能量转化和守恒定律求变力做的功 5.摩擦力的做功

(1)静摩擦力做功的特点

①静摩擦力可以做正功,可以做负功,也可以不做功。

②在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。

③相互摩擦的系统内,一对静摩擦力所做功的代数和总为零。 (2)滑动摩擦力做功的特点

①滑摩擦力可以做正功,可以做负功,也可以不做功。 ②一对滑动摩擦力做功的过程中,能量的转化有两个方面:一是相互摩擦的物体之间机械能的转移;二是机械能转化为内能。 ③相互摩擦的系统内,一对滑摩擦力所做功的代数和不为零,转化为内能值等于滑动摩擦力与相对位移的乘积相对s F Q f =。

推导:滑动摩擦力对木块所做功为W 木块=-f (d +S )

滑动摩擦力对木板所做功为W 木板=fs W 木块+W 木板=-fd

6.一对作用力和反作用力做功的特点

(1)一对作用力和反作用力在同一段时间内,可以都做正功、或者都做负功,或者一个做正功、一个做负功,或者都不做功。

(2)一对作用力和反作用力在同一段时间内做总功可能为正、可能为负、可能为零。 (3)一对作用力反作用力的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。

二、功率:功跟完成这些功所用时间的比值叫做功率。功率是描述做功快慢的物理量。 (1)功率的定义式:t

W P =,所求出的功率是时间t 内的平均功率。

(2)功率的计算式:P=Fvcos θ,其中θ是力与速度间的夹角。 该公式有两种用法:①求某一时刻的瞬时功率。这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;②当v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率。 (3)单位:瓦(w ),千瓦(kw )

(4)额定功率:机器长时间正常运行时的最大输出功率。实际功率小于或等于额定功率。 (5)汽车的启动问题:当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是P=Fv 和F-f=ma ①以恒定功率启动

由公式P=Fv 和F-f=ma 知,由于P 恒定,随着v 的增大,F 必将减小,a 也必将减小,汽车做加速度不断减小的加速运动,直到F=f ,a=0,这时v 达到最大值f P F P v m m m ==。可见恒

定功率的加速一定不是匀加速。这种加速过程发动机做的功只能用W=Pt 计算,不能用W=Fs

计算(因为F 为变力)。

加速度减小的加速运动:①f

P F

P v m m m

==②2

2

1t m mv fs P =-

②以恒定加速度启动

由公式P=Fv 和F-f=ma 知,由于F 恒定,所以a 恒定,汽车做匀加速运动,而随着v 的增大,P 也将不断增大,直到P 达到额定功率P m ,功率不能再增大了。这时匀加速运动结束,其最

大速度为m m m m v f P F P v =<=',这一加速过程发动机做的功只能用W=F ?s 计算,不能用W=P ?t 计算(因为P 为变功率)。此后汽车功率恒定,随着v 的继续增大,F 必将减小,a 也必将减

小,汽车做加速度不断减小的加速运动,直到F=f ,a=0,这时v 达到最大值f P F P v m m m ==

匀加速直线运动:①F-f=ma ②F

P v m m ='③a v t m '=1④21

111a 2

12t s t v s m ='=或 加速度减小的加速运动:⑤f

P v m m =⑥m

m v m mv fs P '-=-2121t 222 启动总时间:21t t t +=;加速总位移:21s s s +=

注意:两种加速运动过程的最大速度是相同的,但是恒定功率启动快,但是对牵引力有

最大值限制的情况不适用。 三、动能、势能、动能定理 1.动能

(1)动能:物体由于运动而具有的能量叫动能。

表达式为:22

1mv E k

=。

(2)对动能的理解

①v 是瞬时速度。动能是一个状态量,它与物体的运动状态对应。

②动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值。 ③动能是相对的,它与参照物的选取密切相关。高中研究动能时只能选地面为参考系。 2.重力势能(E p ):物体由于受到重力的作用,而具有的与其相对位置有关的能量叫做重力势能。

(2)表达式:E p =mgh (h 是重心相对于零势能面的高度)

(3)相对性 ① 需要选取零势能面,一般选大地或整个过程的最低点为零势能面。 ②势能的正负和大小是相对于零势能面的,高速低于零势能面,重力势能为负值,高于零势能面,重力势能为正值,正负表示大小。

(4)系统性:重力势能是物体和地球共有的,一般说物体的重力势能。 (5)重力做功特点:①重力做功与路径无关,与初末位置的高度差有关。

②重力做正功,重力势能减小,重力做负功,重力势能增大,重力做的功等于重力势能变化量的负值即21p p p G E E E W -=?-=

3.弹性势能(E p ):发生形变的物体,在恢复原状时能够对外做功,因而具有能量,叫弹性势能,跟物体形变和材料有关。

(1)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大劲度系数越大弹簧的弹性势能越大。2p k 2

1x E =

(2)相对性:弹性势能一般取形变量x =0处为零势能点

(3)系统性:弹性势能属于系统所有,即由弹簧各部分组成的系统所共有,而与外界物体无关。

(4)弹力做功特点:①弹力做功与路径无关。

②弹力做正功,弹性势能减小,弹力做负功,弹性势能增大,弹力做的功等于弹性势能变化量的负值即p E W ?-=弹

4.动能定理

(1)内容:所有外力对物体做的总功(也叫合外力的功)等于物体动能的变化量.

(2)表达式:21

2212k 2

12

1mv mv E E W k -=-=合 推导:物体只在一个恒力作用下做直线运动,根据牛顿第二定律F=ma ,根据运动学公式2as=v t 2一v 02

带入w =FS =m a ×a

V V 22122-

即 21

22

2

12

1mv mv W -= (3)理解:

① “增量”是末动能减初动能.ΔE K >0表示动能增加,ΔE K <0表示动能减小. ②动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理,原因是系统内所有内力做的总功不一定是零。

③各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和. ④动能定理是标量式.功和动能都是标量,不能在某一个方向上应用动能定理。 ⑤动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的。但动能定理适用于恒力、变力;适用于直线运动和曲线运动;适用于瞬间过程和时间长的过程。 ⑥对动能定理中的位移与速度必须相对同一参照系,以地面为参考系。

⑦动能定理用来求初末速度、初末动能、合力、分力、功、合位移、分位移,但是除机车恒定功率启动情况一般不用动能定理求时间和加速度。 (4)应用动能定理解题的步骤

①确定研究对象和研究过程。动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。 ②对研究对象受力分析。(研究对象以外的物体施于研究对象的力都要分析,含重力)。 ③写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。

④写出物体的初、末动能。按照动能定理列式求解。 四、机械能守恒定律

1.内容:在只有重力(和系统内弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变。

2.条件:

(1)对某一物体,若只有重力(或系统内弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.

(2)对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒。 注:①竖直方向匀速直线运动和竖直方向匀速圆周运动机械能不守恒。

②对绳子突然绷紧,物体间非弹性碰撞等除题目特别说明,必定有机械能损失,碰撞后两物体粘在一起的过程中一定有机械能损失。 3. 机械能守恒定律的各种表达形式

(1)21E E = 2211p k p k E E E E +=+需要选择重力势能的零势能面 (2)k p E E ?-=? 增减k p E E ?=? (3)B A E E ?-=? 增减B A E E ?=?

4.应用机械能守恒定律解题的基本步骤: (1)根据题意选取研究对象(物体或系统)。.

(2)明确研究对象的运动过程,分析对象在过程中的受力情况,弄清各力做功的情况,判断机械能是否守恒。

(3)恰当地选取零势面,确定研究对象在过程中的始态和末态的机械能。

(4)根据机械能守恒定律的不同表达式列式方程,若选用了增(减)量表达式。 五、能量转化和守恒定律 能量既不能凭空产生,也不能凭空消失,它只能从一种形式的能转化为另一种形式的能,或者从一个物体转移到另一个物体,能的总量保持不变。

(1)某种形式的能的减少量,一定等于其他形式能的增加量. (2)某物体能量的减少量,一定等于其他物体能量的增加量. 六、功能关系

功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与某一时刻(某一位置)相对应。两者的单位是相同的(都是J ),但不能说功就是能,也不能说“功变成了能”。 做功的过程是能量转化的过程,功是能量转化的量度。 1.物体动能的增量由外力做的总功来量度:W 外=ΔE k ,这就是动能定理。 2.物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。 3.物体机械能的增量由重力以外的其他力做的功来量度:W 其它=ΔE 机,(W 其它表示除重力以外的其它力做的功),这就是机械能守恒定律。 4.弹性势能的改变由弹力做功来完成

5.一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。相对s F Q f =(s 为这两个物体间相对移动的位移)。

来源:https://www.doczj.com/doc/529437168.html,/view/b3aa0488e53a580216fcfec4.html

修改:黄启煜

物理必修二 知识点归纳

2017—2018学年度下学期高一物理组 主备教师:夏春青 第五章曲线运动 一、教学目标 使学生在理解曲线运动的基础上,进一步学习曲线运动中的两种特殊运动,抛体运动以及圆周运动,进而学习向心加速度并在牛顿第二定律的基础上推导出向心力,结合生活中的实际问题对曲线运动进一步加深理解。 二、教学内容 1.曲线运动及速度的方向; 2.合运动、分运动的概念; 3.知道合运动和分运动是同时发生的,并且互不影响; 4.运动的合成和分解; 5.理解运动的合成和分解遵循平行四边形定则; 6.知道平抛运动的特点,理解平抛运动是匀变速运动,会用平抛运动的规律解答有关问题; 7.知道什么是匀速圆周运动; 8.理解什么是线速度、角速度和周期; 9.理解各参量之间的关系;10.能够用匀速圆周运动的有关公式分析和解决有关问题;11.知道匀速圆周运动是变速运动,存在加速度。12.理解匀速圆周运动的加速度指向圆心,所以叫做向心加速度;13.知道向心加速度和线速度、角速度的关系;14.能够运用向心加速度公式求解有关问题;15.理解向心力的概念,知道向心力大小与哪些因素有关.理解公式的确切含义,并能用来计算;会根据向心力和牛顿第二定律的知识分析和讨论与圆周运动相关的物理现象; 16.培养学生的分析能力、综合能力和推理能力,明确解决实际问题的思路和方法。 三、知识要点

涉及的公式: §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合可以分解成水平和竖直的两个力。 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动 与分运动的关系: 等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

必修二物理知识点总结人教版精编43603

船v d t =m in ,必修二 物理知识点 第五章 平抛运动 §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合 4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动与分运动的关系:等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是 匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初 速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为 曲线运动。 三、有关“曲线运动”的两大题型 (一)小船过河问题 模型一:过河时间t 最短: 模型二:直接位移x 间接位移x 最短: (二)绳杆问题(连带运动问题) 1、实质:合运动的识别与合运动的分解。 2、关键:①物体的实际运动是合速度,分速度的方向要按实际运动效果确定;②沿绳(或杆)方向的分 当v 水v 船时, L v v d x 船 水==θcos min

大学物理知识点总结汇总

大学物理知识点总结汇总 大学物理知识点总结汇总 大学物理知识点总结都有哪些内容呢?我们不妨一起来看看吧!以下是小编为大家搜集整理提供到的大学物理知识点总结,希望对您有所帮助。欢迎阅读参考学习! 一、物体的内能 1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小. 温度是物体分子热运动的平均动能的标志. 2.分子势能 由分子间的相互作用和相对位置决定的能量叫分子势能. 分子力做正功,分子势能减少, 分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系. 3.物体的内能

(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能. (2)分子平均动能与温度的关系 由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的`平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。 (3)分子势能与体积的关系 分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。这就在分子势能与物体体积间建立起某种联系。因此分子势能分子势能跟体积有关系, 由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加; 体积变化时,分子势能发生变化,因而物体的内能发生变化. 此外, 物体的内能还跟物体的质量和物态有关。 二.改变物体内能的两种方式 1.做功可以改变物体的内能.

人教版初中物理知识点总结归纳(特详细)知识分享

初中物理知识点聚会 第一章 声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:vt 2 1 S 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz ~20000Hz 之间的声波:超声波:频率高于20000Hz 的声波;次声波:频率低于20Hz 的声波。 8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B 超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。

第二章光现象知识归纳 1. 光源:自身能够发光的物体叫光源。 2. 太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。 3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。 4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌。 1. 光的直线传播:光在均匀介质中是沿直线传播。 2.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。 3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。 4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的)5.漫反射和镜面反射一样遵循光的反射定律。 6.平面镜成像特点:(1) 平面镜成的是虚像;(2) 像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。 7.平面镜应用:(1)成像;(2)改变光路。 8.平面镜在生活中使用不当会造成光污染。 球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。 光的折射:光从一种介质斜射入另一种介质时,传播方向一般发生变化的现象。 光的折射规律:光从空气斜射入水或其他介质,折射光线与入射光线、法线在同一平面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不改变。(折射光路也是可逆的)

人教版高中物理必修二知识点及题型总结

第五章曲线运动 一、知识点 (一)曲线运动的条件:合外力与运动方向不在一条直线上 (二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则) (三)曲线运动的分类:合力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动) (四)匀速圆周运动 1受力分析,所受合力的特点:向心力大小、方向 2向心加速度、线速度、角速度的定义(文字、定义式) 3向心力的公式(多角度的:线速度、角速度、周期、频率、转)(五)平抛运动 1受力分析,只受重力 2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式 3速度与水平方向的夹角、位移与水平方向的夹角 (五)离心运动的定义、条件 二、考察内容、要求及方式 1曲线运动性质的判断:明确曲线运动的条件、牛二定律(选择题)2匀速圆周运动中的动态变化:熟练掌握匀速圆周运动各物理量之间的关系式(选择、填空) 3匀速圆周运动中物理量的计算:受力分析、向心加速度的几种表

示方式、合力提供向心力(计算题) 3运动的合成与分解:分运动与和运动的等时性、等效性(选择、填空) 4平抛运动相关:平抛运动中速度、位移、夹角的计算,分运动与和运动的等时性、等效性(选择、填空、计算) 5离心运动:临界条件、最大静摩擦力、匀速圆周运动相关计算(选择、计算) 第六章万有引力与航天 一、知识点 (一)行星的运动 1地心说、日心说:内容区别、正误判断 2开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律 1万有引力定律:内容、表达式、适用范围 2万有引力定律的科学成就 (1)计算中心天体质量 (2)发现未知天体(海王星、冥王星) (三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、最大环绕速度;脱离地球引力绕太阳运动;脱离太阳系)

必修二物理知识点总结(人教版)精编

必修二物理知识点总结(人教版)精编 物理知识点第五章平抛运动5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1、定义:物体运动轨迹是曲线的运动。 2、条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3、特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F合≠0,一定有加速度a。 ④F合方向一定指向曲线凹侧。P蜡块的位置vvxvy涉及的公式:θ ⑤F合可以分解成水平和竖直的两个力。 4、运动描述蜡块运动 二、运动的合成与分解 1、合运动与分运动的关系:等时性、独立性、等效性、矢量性。 2、互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。

②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。 三、有关“曲线运动”的两大题型(1)小船过河问题vv水v船θ,ddvv水v船θ当v水v船时,,,θv船d(2)绳杆问题(连带运动问题) 1、实质:合运动的识别与合运动的分解。 2、关键:①物体的实际运动是合速度,分速度的方向要按实际运动效果确定;②沿绳(或杆)方向的分速度大小相等。模型四:如图甲,绳子一头连着物体B,一头拉小船A,这时船的运动方向不沿绳子。B OOAvAθv1v2vA甲乙甲乙处理方法:如图乙,把小船的速度vA沿绳方向和垂直于绳的方向分解为v1和v2,v1

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即 1 2r r r -=?

位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === 在直角坐标系中 k v j v i v k dt dz j dt dy i dt dx v z y x ++=++= 式中dt dz v dt dy v dt dx v z y x = == ,, ,分别称为速度在x 轴,y 轴,z 轴的分量。

最新人教版初中物理知识点总结归纳(特详细)

初中物理知识点 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz 的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章光现象知识归纳 1. 光源:自身能够发光的物体叫光源。 2. 太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。 3.光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。 4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显着的性质是能使荧光物质发光,另外还可以灭菌。 1. 光的直线传播:光在均匀介质中是沿直线传播。 2.光在真空中传播速度最大,是3×108米/秒,而在空气中传播速度也认为是3×108米/秒。 3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。 4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的)5.漫反射和镜面反射一样遵循光的反射定律。 6.平面镜成像特点:(1) 平面镜成的是虚像;(2) 像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。 7.平面镜应用:(1)成像;(2)改变光路。 8.平面镜在生活中使用不当会造成光污染。 球面镜包括凸面镜(凸镜)和凹面镜(凹镜),它们都能成像。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。 光的折射:光从一种介质斜射入另一种介质时,传播方向一般发生变化的

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

人教版初中物理知识点总结

初中物理知识点总结 声现象知识归纳 1 .声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340m/s 。声音在固体传播比液体快,而在液体传播又比空气体快。真空不能传声。 4. 声波在传播过程中,碰到大的反射面(如建筑物的墙壁等)在界面将发生反射,人们把能够与原声区分开的反射声波叫做回声。人耳能区分原声和回声的时间间隔是0.1s 。利用回声可测距离:S=vt/2 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系,频率越高,音调越高。(2)响度:是指声音的大小,跟发声体的振幅、距离发声体的远近有关系,振幅越大,响度越大,距离发声体越近,响度越大。(3)音色:由发声体自身结构、材料等决定。 6.减弱噪声的途径:(1)在声源处减弱(防止噪声产生);(2)在传播过程中减弱(阻断噪声传播);(3)在人耳处减弱(防止噪声进入人耳)。 7.可闻声(人耳的听觉频率范围):频率在20Hz ~20000Hz 之间的声波:超声波:频率高于20000Hz 的声波;次声波:频率低于20Hz 的声波。 8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B 超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 光现象知识归纳 1. 光源:自身能够发光的物体叫光源。可分为:1.自然光源:自然界中存在的自然能发光的物体。2人造光源:人类发明制造的光源。 2.太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。 3.色光的三原色是:红、绿、蓝;颜料的三原色是:红、黄、蓝。 4.不可见光包括有:红外线和紫外线。特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的)运用于红外线遥控,红外线遥感(探测);紫外线最显著的性质是能使荧光物质发光,另外还可以消毒灭菌 。 1. 光的直线传播:光在均匀介质中是沿直线传播。影子、日食、月食的形成都是由于光的直线传播引起的现象。 2.光在真空中传播速度最大,是3×108m/s ,而在空气中传播速度也认为是3×108m/s 。 3.我们能看到不发光的物体是因为这些物体反射的光射入了我们的眼睛。 4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。(注:光路是可逆的) 5.漫反射和镜面反射一样遵循光的反射定律。 6.平面镜成像特点:(1) 平面镜成的是虚像;(2) 像与物体大小相等;(3)像与物体到镜面的距离相等;(4)像与物体的连线与镜面垂直。另外,平面镜里成的像与物体左右倒置。 7.平面镜成像的原因:光的反射:平面镜应用:(1)成像;(2)改变光路。 8.平面镜在生活中使用不当会造成光污染。 球面镜包括1.凸面镜(凸镜):用球面的外侧作反射面的球面镜叫做凸面镜,平行光线投射到凸面镜上,反射的光线将成为散开光线,如果顺着反射光线的相反方向延伸到凸面镜镜面的后面,可会聚并相交于一点,这一点就是凸面镜的主焦点(F ),属虚焦点。具体应用有:车辆的后视镜、商场中的反光镜是凸面镜;2.凹面镜(凹镜):用球面的内侧作反射面的球面镜叫做凹面镜,凹面镜对光线有会聚作用手电筒的反光罩、太阳灶、医术戴在眼睛上的反光镜是凹面镜。 当一束平行的入射光线射到表面时,表面会把光线向着方反射,这种反射叫漫反射。行光射到光滑表面上,反射行的,这种反射叫做镜面反射

高中物理必修2知识点归纳重点

新课标高中物理必修Ⅱ知识点总结 在学习物理的过程中,希望你能养成解题的好习惯,这一点很重要。 1、看题目的时候,很容易会看着头晕转向,这是心理问题,是自己逃避的 表现。因此再看题目的过程中,要手拿笔,画出重要的解题关键点。比 如:物体的开始与结束的状态、平衡状态等等;(这是一个积累过程,习 惯了就会事半功倍,不要不要在乎纸的清洁。); 2、画图;物理解题应该是想象思维、图形结合,再到推理的过程。画图真 的是必不可少的,不能懒而省了这一步。一定要画图,而且要整洁,不 可马虎; 3、辅导书是第二个老师;你若自学辅导书的每一章节前面的是总结梳理, 认真的记忆梳理,你课都可以不听了(不骗人,前提是你真的用功了)。 自习的时候,不要直接做辅导书的题那么快,认真看前面的知识点和例 题,消化好了,绝对受益匪浅。(任何一门理科都可以这么学的) 第一模块:曲线运动、运动的合成和分解 <一> 曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上。 3、曲线运动的性质:曲线运动一定是变速运动。(选择题) 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。(选择题) 4、物体做曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。(选择题) 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。 <二> 运动的合成与分解(小船渡河是重点) 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。(做题依据) 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性⑵等时性⑶独立性⑷运动的矢量性 4、运动的性质和轨迹

人教版高一物理必修二知识点总结

曲线运动 一、曲线运动 (1)条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 ①匀变速曲线运动:若做曲线运动的物体受的是恒力,即加速度大小、方向都不变的曲线运动,如平抛运动; ②变加速曲线运动:若做曲线运动的物体所受的是变力,加速度改变,如匀速圆周运动。 (2)特点: ①曲线运动的速度方向不断变化,故曲线运动一定是变速运动。 ②曲线运动轨迹上某点的切线方向表示该点的速度方向。 ③曲线运动的轨迹向合力所指一方弯曲,合力指向轨迹的凹侧。 ④当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力的方向与速度方向的夹角为90度时,物体做曲线运动速率将不变。 2.运动的合成与分解(指位移、速度、加速度三个物理量的合成和分解) (1)合运动和分运动关系:等时性、等效性、独立性、矢量性、相关性 ①等时性:合运动所需时间和对应的每个分运动所需时间相等。 ②等效性:合运动的效果和各分运动的整体效果是相同的,合运动和分运动是等效替代关系,不能并存。 ③独立性:每个分运动都是独立的,不受其他运动的影响 ④矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则 ⑤相关性:合运动的性质是由分运动性质决定的 (2)从已知的分运动来求合运动,叫做运动的合成;求已知运动的分运动,叫运动的分解。 ①物体的实际运动是合运动 ②速度、时间、位移、加速度要一一对应 ③如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算。如果分运动互成角度,运动合成要遵循平行四边形定则 3.小船渡河问题 一条宽度为L 的河流,水流速度为V s ,船在静水中的速度为V c (1)渡河时间最短: 设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V 1=V c sin θ,渡河所需时间为:θsin c V L t = , sin90=1当船头与河岸垂直时,渡河时间最短,c V L t = m in (与水 速的大小无关) 渡河位移:222t v L s s += (2)渡河位移最短: ①当V c >V s 时V s = V c cos θ渡河位移最短L s =min ;渡河时间为θ sin v L t = 船头应指向河的上游,并与河岸成一定的角度θ=arccosV s /V c ②当V c >V s 时以V s 的矢尖为圆心,以V c 为半径画圆,当V 与圆相切时,α角最大,V c =V s cos θ,船头与河岸的夹角为:θ=arccosV c /V s 。 渡河的最小位移:L V V L s c s ==θcos

必修二物理知识点总结人教版精编

涉及的公式: 船 v d t =m in ,θsin d x = 必修二 物理知识点 第五章 平抛运动 §5-1 曲线运动 & 运动的合成与分解 一、曲线运动 1.定义:物体运动轨迹是曲线的运动。 2.条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。 3.特点:①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。 ②运动类型:变速运动(速度方向不断变化)。 ③F 合≠0,一定有加速度a 。 ④F 合方向一定指向曲线凹侧。 ⑤F 合4.运动描述——蜡块运动 二、运动的合成与分解 1.合运动与分运动的关系:等时性、独立性、等效性、矢量性。 2.互成角度的两个分运动的合运动的判断: ①两个匀速直线运动的合运动仍然是匀速直线运动。 ②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是 匀变速曲线运动,a 合为分运动的加速度。 ③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。 ④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。当两个分运动的初 速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为 曲线运动。 三、有关“曲线运动”的两大题型 (一)小船过河问题 模型一:过河时间t 最短: 模型二:直接位移x 最短: 2效果确定;②沿绳(或杆)方向的分 速度大小相等。 模型四:如图甲,绳子一头连着物体B ,一头拉小船A ,这时船的运动方向不沿绳子。 当v 水v 船时,L v v d x 船水==θcos min , θd 水船v v =

大学物理物理知识点总结!!!!!!

y 第一章质点运动学主要容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动程 ()r r t =r r 运动程的分量形式() ()x x t y y t =???=?? 位移 是描述质点的位置变化的物理量 △t 时间由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和向的物理量) 平均速度 x y r x y i j i j t t t u u u D D ==+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度向是曲线切线向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动

高中物理必修二知识点总结

高中物理必修 2 知识点期末总复习 考试重点内容:曲线运动、动量、功和能、机械振动 (一)曲线运动、万有引力 知识结构 1. 曲线运动一定是变速运动!速度沿轨迹切线方向(fangxiang) ,加速度方向(fangxiang) 沿合外力方向——指向轨道内侧。物体做曲线运动的条件是合外力与速度不在一条直线上。 2. 曲线运动的研究方法:矢量合成与分解法,切线方向的分力艺Ft只改变质 点的运动速率大小;法线方向的分力艺Fn只改变质点运动的方向。 3. 运动的合成和分解:速度、位移、加速度等都是矢量,都可以根据需要和实际情况,用平行四边形定则合成和分解。两个匀速直线运动的合成,两个初速度为 0 的匀变速运动的合成一定是直线运动。两个直线运动的合成不一定是直线运动。 4. 平抛运动:加速度:a= g,方向竖直向下,与质量无关,与初速度大小无关;速度: vx = v0, vy = gt , vt =( v02+vy2) 1/2,方向与水平方向成0 角,tg 9 =gt/v0 ; 位移:x = v0t,y =gt2/2,s = (x2+y2) 1/2,方向与水平方向成a角,tg a=/x. 轨迹方程:y= gx2/2v02 为抛物线。 在空中飞行时间:t =( 2h/g ) 1/2 ,与质量和初速度大小无关,只由高度决定。 水平最大射程:x=v0t = v0(2h/g ) 1/2 由初速度和高度决定,与质量无关。曲线运动的位移、速度、加速度都不在同一方向上。 5. 匀速圆周运动: 1) 周期T、质点运动一周所用的时间。是描述质点转动快慢的物理量。 2) 线速度v、质点通过的弧长厶s与所用时间△ t之比为一定值,该比值是匀速圆周运动的速率v=A s/ △ t,数值上等于质点在单位时间内通过的弧长。线速度的方向在圆周的切线方向上。线速度是描述质点转动快慢和方向的物理量。 3) 角速度3、连接质点与圆心的半径转过的角度△?与所用时间厶t之比为一 定值,该比值是匀速圆周运动的角速度w = A^ /△ t,数值上等于在单位时间内半 径转过的角度。单位是弧度/秒( rad/s ),角速度也是描述质点转动快慢的物理量周期、线速度、角速度之间有的关系: 质点转一周弧长s = 2n r,时间为T,则v = 2n r/T 角度为2 n 3 = 2 n /T 由上两公式有v=3 r ,3= v/r 圆周运动是曲线运动,它的速度方向时刻在变化着,匀速圆周运动一定是变速运动,“匀速”仅是速率不变的意思。 4) 匀速圆周运动的加速度a、加速度的方向指向圆心一一向心加速度,其方向时时刻刻指向圆心,即方向时时刻刻在变化着,所以匀速圆周运动是变加速运动。向心加速度的大小:an = v2/r =3 2r 。 5) 向心力F= ma=mv2/r ,或F= ma= m32r ,方向总指向圆心。向心力是根据力的作用效果命名的。 6. 万有引力与天体、卫星的轨道运动万有引力定律:宇宙间任何两个有质量的物体间都 是相互吸引的,引力大小与 两物体的质量的乘积成正比,与它们的距离的平方成反比。 设物体质量分别为ml m2,物体之间距离为r,则F= Gm1m2/r2 万有引力定律在天文学上的应用——天体质量及运动分析,宇宙速度与卫星轨道运动问题分析依据:万有引力定律、牛顿运动定律、F= mv2/r 、匀速圆周运动规 律;常用近似条件:将有关轨道运动看作匀速圆周运动,引力 F = mg= mv2/r (g随 高度、纬度等因素变化而变化) 。 7. 宇宙速度: (1)线速度:设卫星到地心的距离为r,r 就是卫星轨道半径,环绕线速度为 v ,卫星质量为m设地球质量为M,地球半径为R. 根据万有引力定律和牛顿运动定律有 GMm/r2=mv2/r 由此得到环绕速度v=( GM/r) 1/2 对所有地球卫星,环绕速度由轨道半径决定,与卫星质量,性能因素无关。r =R+h, h为卫星距地面的高度,r (h)越大,环绕速度越小。 ( 2)角速度:由3= v/r 有3=( GM/r3) 1/2 (3)周期:由3= 2n /T 得T= 2n( r3/ GM ) 1/2 角速度和周期均由轨道半径决定,半径越大,角速度越小,周期越长。 宇宙速度:第一宇宙速度:由环绕速度公式v=( GM/r)1/2 r = R+h,当高度h远远小于地球半径时,即卫星在地面附近绕地球做匀速圆周运动。近似有v=( GM/R) 1/2 这是地球卫星的最大环绕速度。又在地球表面附近,地球对卫星的引力近似等于重力mg mg= mv2/R 可得 v=( gR) 1/2 把g= 9.8 X 10—3km/s2 和R= 6.4x103km 代入上公式,得到v = 7.9km/s,这是地球卫星在地面附近绕地球做匀速圆周运动的环绕速度,是最大的环绕速度,也是使一个物体成为人造地球卫星所必须的最小发射速度. 我们称之为第一宇宙速度。 VI=7.9km/s 第二宇宙速度:当发射速度小于第一宇宙速度时,物体将落回地面;当发射速 度大于v= 7.9km/s ,卫星将在不同圆轨道或椭圆轨道运动。当发生速度大于等于11.2km/s 时,物体将挣脱地球引力束缚,成为人造行星或飞向其它行星。所以 11.2km/s 为第二宇宙速度。 VII = 11.2km/s 第三宇宙速度:当物体的速度达到16.7km/s 时,物体将挣脱太阳引力的束缚飞向太阳系以外的宇宙空间,16.7km/s 为第三宇宙速度。 VIII = 16.7km/s (二)动量与动量守恒 知识结构 1. 力的冲量定义:力与力作用时间的乘积——冲量I=Ft 矢量:方向——当力的方向不 变时,冲量的方向就是力的方向。过程量:力在时间上的累积作用,与力作用的一段时间相关单位:牛秒、N?s 2. 动量定义:物体的质量与其运动速度的乘积——动量p=mv 矢量:方向——速度的 方向 状态量:物体在某位置、某时刻的动量单位:千克米每秒、kgm/s 3. 动量定理艺Ft = mvt—mv0 动量定理研究对象是一个质点,研究质点在合外力作用 下、在一段时间内的一 个运动过程。定理表示合外力的冲量是物体动量变化的原因,合外力的冲量决定并量度了物体动量变化的大小和方向。 矢量性:公式中每一项均为矢量,公式本身为一矢量式,在同一条直线上处理

高一物理必修二知识点总结

高一物理必修二知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物理必修二知识点总结(公式编辑可直接用) 第五章曲线运动: 一 曲线运动特点: 1.在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。 2.物体做直线或曲线运动的条件: (已知当物体受到合外力F 作用下,在F 方向上便产生加速度a ) (1)若F (或a )的方向与物体速度v 的方向相同,则物体做直线运动; (2)若F (或a )的方向与物体速度v 的方向不同,则物体做曲线运动。 3.物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。 二 平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。 分运动: (1)在水平方向上由于不受力,将做匀速直线运动; (2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。 5.以抛点为坐标原点,水平方向为x 轴(正方向和初速度的方向相同),竖直方向为y 轴,正方向向下. 6公式: 水平方向速度x V = Vo .竖直方向速度y V =gt ③.水平方向位移X= V o t ④.竖直方向位移Y=22 1gt ⑤.运动时间t=g Y 2 ⑥.合速度V=22y v v x ⑦合速度方向与水平夹角β: tgβ=x y v v , 注:(1)平抛运动是匀变速曲线运动,加速度为g ,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。 (2)运动时间由下落高度h 决定与水平抛出速度无关。 (3)在平抛运动中时间t 是解题关键。 (4)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。 三 匀速圆周运动 质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

大学物理下册知识点总结材料(期末)

大学物理下册 学院: : 班级: 第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 第一部分:气体动理论与热力学基础 第二部分:静电场 第三部分:稳恒磁场 第四部分:电磁感应 第五部分:常见简单公式总结与量子物理基础

中心位置:3(平动自由度) 直线方位:2(转动自由度) 共5个 3. 气体分子的自由度 单原子分子 (如氦、氖分子)3i =;刚性双原子分子5i =;刚性多原子分子6i = 4. 能均分原理:在温度为T 的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 12 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为:2 k i kT ε= 五. 理想气体的能(所有分子热运动动能之和) 1.1mol 理想气体2 i E RT = 5. 一定量理想气体()2i m E RT M νν' == 九、气体分子速率分布律(函数) 速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。即 十、三个统计速率: a. 平均速率 M RT M RT m kT dv v vf N vdN v 60.188)(0 === == ??∞ ∞ ππ b. 方均根速率 M RT M k T v dv v f v N dN v v 73.13)(20 2 2 2 == ? = = ??∞ C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间的分子数占气体总分子数的百分比最大。 M RT M RT m kT v p 41.1220=== 三种速率的比较: 各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数 十一、分子的平均碰撞次数及平均自由程: 一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。表示为 λ 平均碰撞次数 Z 的导出: 热力学基础主要容 一、能 分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。能是状态的单值函数。 对于理想气体,忽略分子间的作用 ,则 平衡态下气体能: 二、热量 系统与外界(有温差时)传递热运动能量的一种量度。热量是过程量。 )(12T T mc Q -=)(12T T Mc M m -=) (12T T C M m K -= 摩尔热容量:( Ck =Mc ) 1mol 物质温度升高1K 所吸收(或放出)的热量。 Ck 与过程有关。 系统在某一过程吸收(放出)的热量为: )(12T T C M m Q K k -= 系统吸热或放热会使系统的能发生变化。若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。 准静态过程中功的计算: 元功: 41 .1:60.1:73.1::2=p v v v Z v = λn v d Z 2 2π=p d kT 22πλ= n d Z v 221πλ= = kT mv e v kT m v f 22232 )2(4)(-=ππ?∞ ?=0 )(dv v f v v ? ∞ ?= 22)(dv v f v v ∑∑+i pi i ki E E E =内) (T E E E k =理 =RT i M m E 2 =PdV PSdl l d F dA ==?=

相关主题
文本预览
相关文档 最新文档