当前位置:文档之家› 概率论与数理统计主要内容小结

概率论与数理统计主要内容小结

概率论与数理统计主要内容小结
概率论与数理统计主要内容小结

概率论与数理统计主要内容小结

概率部分

1、全概率公式与贝叶斯公式 全概率公式:

)()|()(11B P B A P A P = ++)()|(22B P B A P )()|(n n B P B A P +

其中n B B B ,,,21 是空间S 的一个划分。 贝叶斯公式:∑==

n

j j

j

i i i B A P B P B A P B P A B P 1

)

|()()

|()()|(

其中n B B B ,,,21 是空间S 的一个划分。 2、互不相容与互不相关

B A ,互不相容0)(,==?B A P B A φ

事件B A ,互相独立))(()(B A P B A P =? ; 两者没有必然联系

3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。

),,1(~p b X 即二点分布,则分布律为.1,0,)1(}{1=-==-k p p k x P k k

),,(~p n b X 即二项分布,则分布律为.,...,1,0,)1(}{n k p p C k x P k n k

k n =-==-

),(~λπX 即泊松分布,则分布律为,......1,0,!

}{==

=-k k e k x P k λ

λ

),,(~b a U X 即均匀分布,则概率密度为.,0),(,1

)(???

??∈-=其它

b a x a b x f

),(~θE X 即指数分布,则概率密度为.,00

,1)(??

???>=-其它x e x f x θ

θ

),,(~2σμN X 即正态分布,则则概率密度为+∞<<-∞=

-

x e

x f x ,21)(2

.

连续性随机变量X 分布函数性质:(i )1)(=+∞F ,0)(=-∞F , (ii)分布函数连续 对连续性随机变量X ,已知概率密度)(x f ,则分布函数为?∞

-=x

dt t f x F )()(;

已知分布函数为)(x F ,则概率密度)()(x F x f '=.

对连续性随机变量X ,已知概率密度)(x f , 区间概率?=∈L

dx x f L x P )(}{

4、连续函数随机变量函数的概率密度

设连续随机变量X 的概率密度为)(),(X g Y x f X =也是连续型随机变量,求Y 的概率密度 求法

(i) 利用以下结论计算:如果函数)(x g 处处可导,且恒有0)(>'x g (或0)(<'x g ),则Y 概率密度为:

?

?

?<<'=其他,0|,)(|)]([)(β

αy y h y h f y f X Y 其中,)(y h 是)(x g 的反函数,且有)},(),(min{+∞-∞=g g α)}.(),(max{

+∞-∞=g g β (ii) 利用分布函数计算:先求)(x g y =值域,再在该值域求Y 的分布函数

=≤=≤=})({}{)(y X g P y Y P y F =

∈}{B X P dx x f

B

x X

)(?∈

则有)()(y F y f Y '=. 常用求导公式

)())(()())(()()()()

()

(y y f y y f dx x f y F y f y y Y ααβββα'-'=='=?

5、二维随机变量分布律

对于二维连续性随机变量),(Y X ,其联合概率密度为),,(y x f 其联合分布函数为),,(y x F 则,),(),(??

∞-∞

-=

x y

dvdu v u f y x F

概率密度性质:(i ),0),(≥y x f (ii)

??

+∞∞-+∞

-=1),(dvdu v u f

已知概率密度),,(y x f 求区域概率有,),(}),{(??=∈D

dydx y x f D y x P

边缘分布函数为,),()(??∞-+∞

-=x X dvdu v u f x F ,),()(?

?

∞-+∞

-=y X dudv v u f y F

边缘概率密度为,),()(?

+∞∞

-=

dy y x f x f X .),()(?+∞∞

-=dx y x f y f Y

条件分布函数为,)()

,()|(|?

-=

x

Y Y X du y f y u f y x F ,)

(),()|(|?∞-=y X X Y dv x f v x f x y F

条件概率密度为,)(),()|(|y f y x f y x f Y Y X =

.)

()

,()|(|x f y x f x y f X X Y = 对于离散情形,设联合分布律为ij j i p y Y x X P ===},{ 边缘概率密度为.1

}{i j ij

i p p

x X P ==

=∑∞

=,j i ij j p p y Y P .1

}{===∑∞

=

条件概率密度为.

}|{i ij i j p p x X y Y P ===,j

ij j i p p y Y x X P .}|{=

==

6、二维随机变量函数的分布

设二维随机变量),(Y X 概率密度为),(y x f ,分布函数为),(y x F (i) Z=X+Y, 则Z 的概率密度为

?+∞

-=

-=dy y y z f z f Z ),()(?

+∞

--dx x z x f ),(

当Y X ,相互独立时,?

+∞

-=-=

dy y f y z f z f Y X Z )()()(?+∞

∞--dx x z f x f Y X )()(

(ii) M=max{X,Y}与N=min{X,Y}

当Y X ,相互独立时,)()()(z F z F z F Y X M =,))(1))((1(1)(z F z F z F Y X N ---= 7、数学期望

(i) 求法:连续随机变量X 概率密度为)(x f ,则?

+∞

-=

dx x xf X E )()(;若)(X g Y =, 则

?+∞

-=dx x f x g Y E )()()(.

离散随机变量分布律为k k p x x P ==}{,则∑∞

==

1

)(k k k

p x

X E ;若)(X g Y =, 则

k k k p x g X E )()(1

∑∞

==.

若有二维的随机变量),(Y X ,其联合概率密度为),(y x f ,若),(Y X g Y =, 则

?

?

+∞∞-+∞

-=dydx y x f y x g Y E ),(),()(.

(ii) 性质:)()()(),()(,)(Y E X E Y X E X CE CX E C C E +=+==

)()()()(22112211n n n n X E k X E k X E k X k X k X k E +++=+++

Y X ,相互独立,则有).()()(Y E X E XY E =

8、方差

定义:2)]([)(X E X E X D -=,标准差(均方差):)(X D . 计算:22)]([)()(X E X E X D -=

性质:).()(),()(,0)(2X D C CX D X D C X D C D ==+=

)].)([(2)()()(EY Y EX X E Y D X D Y X D --±+=±

常见分布的数学期望和方差:两点分布:).1()(,)(p p X D p X E -==

),,(~p n b X 即二项分布,则).1()(,)(p np X D np X E -== ),(~λπX 即泊松分布,则.)(,)(λλ==X D X E

),,(~b a U X 即均匀分布,则.12)()(,2)(2

a b X D b a X E -=+= ),(~θE X 即指数分布,则.)(,)(2θθ==X D X E

),,(~2σμN X 即正态分布,则.)(,)(2σμ==X D X E

9、协方差与相关系数

定义:协方差: ).()()()]}()][({[),(Y E X E XY E Y E Y X E X E Y X Cov -=--= 相关系数:.)

()(),(Y D X D Y X Cov XY =

ρ则有)()(),(Y D X D Y X Cov XY ρ=.

性质:0),(),(),(),,(),(===a X Cov X D X X Cov X Y Cov Y X Cov

),(),(),(),,(),(2121Y X Cov Y X Cov Y X X Cov Y X abCov bY aX Cov +=+=

),(2)()()(Y X Cov Y D X D Y X D ±+=±

如果Y X ,相互独立,则有)()()(Y D X D Y X D +=±

,1||≤XY ρ且1||=XY ρ1}{,,=+=??bX a Y P b a 使.

10、独立与不相关关系

Y X XY ,0?=ρ不相关)()(),(0),(Y E X E Y X E Y X Cov =?=?

Y X ,相互独立)()(),()()()()(),(Y E X E Y X E y f x f y F x F y x F =?==?

F 为分布函数,而f 为概率密度

一般情况下,Y X ,相互独立Y X ,?不相关,但反之不成立;

特殊情况,当);,;,(~),(2

22121ρσσμμN Y X 时,Y X ,相互独立Y X ,?不相关

并且此时21222121),(,;)(,)(;)(,)(σρσρρσσμμ======Y X Cov Y D X D Y E X E XY .

11、切比雪夫(Chebyshev)不等式:设随机变量X 的期望与方差为2)(,)(σμ==X D X E ,则对任意正数0>ε,有

2

)

(}|)({|εεX D X E X P ≤

≥-, 即22

}|{|ε

σεμ≤≥-X P .

进一步有:,)

(1}|)({|2

εεX D X E X P -≥<-即.1}|{|22

ε

σεμ-≥<-X P

12、两个中心极限定理

定理1(独立同分布的中心极限定理)设随机变量 ,,,,21n X X X 相互独立,服从同一分布,有相同的数学期望和方差: ,2,1,0)(,)(2=>==k X D X E k k σμ,则

当n 充分大时,)1,0()

()

(~~~~~~~~

1

1

1

1N n n X

X D X E X

Y n

i k

n

k k n

k n

k k k

n 近似σ

μ

∑∑∑∑====-=

-=

.

定理2(棣莫弗-拉普拉斯定理)设随机变量 2,1,=n n η服从参数为)10(,<

)1,0()

1(~~~~~~~~

N p np np

n 近似--η

统计部分

1、常用统计量

设X 为总体,n X X X ,,21是来自总体X 的样本,定义

样本平均值:∑==n

i i X n X 1

1,

样本方差:2

12

)(11X X n S n i i --=∑= )(1121

2X n X n n

i i --=∑=,

样本标准差(均方差):∑=--=

n

i i X X n S 1

2)(11 样本k 阶矩: ,2,1,11

==∑=k X n A n i k

i k

2、常用正态总体相关的统计量 (1)2χ分布

定义:设n i N X i ,2,1),1,0(~=,则)(~2122

n X n

i i χχ∑==,特别)1(~22χi X . 性质 (i) 可加性:设),(~),(~

2212n Y n X χχ则)(~212n n Y X ++χ.

(ii) 设),(~n X χ则n X D n EX 2)(,==. (iii) 特例:设),,(~2

σμN X i 则).(~)(1

21

2

n X

n

i i

χμσ-∑=

(2) t 分布

定义:设)(~),1,0(~n Y N X χ, 且Y X ,相互独立,则统计量).(~/n t n

Y X t =

性质

(i) 概率密度为偶函数,关于y 轴对称;当n 趋于无穷大,该统计量趋于标准的正态分布; (ii) 对于分位点有:)()(1n t n t αα-=-. (3) F 分布 定义:设)(~),(~

21n V n U χχ, 且V U ,相互独立,则统计量).,(~212

1

n n F n V n U F =

性质 (i) 对于分位点有:.)

,(1

),(12211n n F n n F αα=-

3、正态总体样本均值与样本方差分布

单个总体情形:设X 为总体,且服从),,(~2

σμN X n X X X ,,21是来自总体X 的样本,2

,S X 分别是样本均值与样本方差,有以下结论:

(i) ,)()(,)()(,)()(222

σσμ======X D S E n

n X D X D X E X E 而且有

),(~21

21

1

i n

i i i n i i i

n

i i C C N X

C σμ∑∑∑===.

(ii) ),

(~2

n

N X σμ, 即

)1,0(~/N n

X σμ

-;且

=

-∑=2

1

2

)(1

X X

n

i i

σ)1(~)1(22

2

--n S n χσ

两个正态总体情形:设1,,21n X X X 是来自),(~211σμN X 的样本,2,,21n Y Y Y 是来

自),(~222σμN Y 的样本, 且两样本相互独立,Y X ,为两样本均值,2

2

21,S S 为两样本方差,则有

(i) ),

(~2

2

2

1

2

121n n N Y X σσμμ+

±±.

(ii) 当22

221σσσ==时,

)2(~1

1)(212

121-++---n n t n n S Y X w

μμ,

2)1()1(212

2

2211-+-+-=

n n S n S n S w (iii) )1,1(~//212

2

212

2

21--n n F S S σσ 4. 点估计 (1) 矩估计法

设概率密度),,;(21k x f θθθ 或分布律),,;(}{21k x p x X P θθθ ==中含

k θθθ ,,21个参数需要估计。

(i) 求总体前k 阶矩

??

????

?======)

,,()()

,,,()(),,,()(212122

22111k k k k

k k X E X E X E θθθμμθθθμμθθθμμ (ii) 由以上方程解得

??????

?===)

,,(),,,()

,,,(2121222111k k k k

k μμμθθμμμθθμμμθθ

(iii) 以样本i 阶矩i A 代替n i i ,,2,1, =μ 即得估计量),,(21k i i A A A

θθ=. (2) 最大似然估计

定义:给定一组样本观测值),,(21n x x x ,使该观测值概率取最大的参数值为所求参数估计值。

两种求法:I 直接用最大似然法估计计算

(i) 写出似然函数 连续情形:);()(1

θθi n

i x f L =∏=,离散情形:);()(1

θθi n

i x p L =∏=

(ii) 求使似然函数取最大值的参数θ

两种方法:取对数,求导数,令导数为0解出θ估计值;若求导不行,则用直接分析法 (iii) 由上写出估计值,再表示出估计量 II 利用不变性计算

若求函数)(θu u =的最大似然估计,其中u 是单调函数,可先求θ最大似然估计θ

,然后利用不变性知)(θ

u 是)(θu 的最大似然估计。 5. 估计量评价标准

无偏性:θ 是θ的估计量,如果θθ=)(

E , 则θ 是θ的无偏估计量;

有效性:21?,θθ

是θ的无偏估计量,如果)?()(21θθD D ≤ ,则1θ

较2?θ更有效; 一致性:θ 是θ的估计量,当样本容量趋于无穷大,θ

依概率收敛于θ.

6. 置信区间 基本的重要概念:

置信水平:是参数θ落在置信区间),(θθ-

的概率,即αθθθ-=<<-

1)(P ,θθ,-

两统计量

分别为双则置信下限与置信上限,α-1为置信水平。例如置信水平为95%,则.95.01=-α

置信区间几种情形: 单个总体情形

当2

σ已知,μ的置信区间,枢轴量)1,0(~/N n

X Z σμ

-=

双侧置信区间:)(2

ασ

Z n

X ±

,双则置信上、下限:,2

ασ

Z n

X +

.2

ασ

Z n

X -

单侧置信区间:),(+∞-

ασ

Z n

X ,),(ασ

Z n

X +

-∞

单侧置信上、下限:,ασ

Z n

X +

.ασ

Z n

X -

当2

σ未知,μ的置信区间,枢轴量)1(~/--=

n t n

S X t μ

双侧置信区间:))1((2

n t n

S X α,

双则置信上、下限:),1(2

-+

n t n

S X α).1(2

--

n t n

S X α

单侧置信区间:)),1((+∞--

n t n

S X α,))1(,(-+-∞n t n

S X α

单侧置信上、下限:)1(-+

n t n

S X α,)1(--n t n

S X α

当μ未知,2σ的置信区间,枢轴量)1(~)1(22

2

2

--=

n S n χσχ

双侧置信区间:))1()1(,)1()1((2

122

2-----n S n n S n ααχχ,双则置信上、下限:)

1()1(,

)1()1(2

2

2

12-----n S n n S n ααχχ 单侧置信区间:))1()1(,0(12---n S n αχ,),)1()1((2

+∞--n S n αχ

单侧置信上、下限:)

1()1(,

)1()1(2

12-----n S n n S n ααχχ. 两个总体情形:

当21,μμ未知,22

21/σσ的置信区间,枢轴量)1,1(~//212

2

212

2

21--=n n F S S F σσ 双侧置信区间:))

1,1(1

,)1,1(1

(212

12

221212

2121-----

n n F

S S n n F S S αα,

双则置信上、下限:,)1,1(1212

12

22

1---

n n F

S S α,)

1,1(1212

2221--n n F S S α

单侧置信区间:),)1,1(1,0(2112221---n n F S S α).,)1,1(1

(2

12221+∞--n n F S S α

单侧置信上、下限:,)1,1(12112221---n n F S S α.)

1,1(1

212221--n n F S S α

在求解置信区间时,先分清总体属于那种情况,然后写出置信区间,再代数值。 7. 假设检验

假设检验的基本原理:小概率事件在一次观测实验中几乎不可能发生

显著性水平α:小概率事件发生的概率,也是拒绝域对应事件概率,显著性水平越大,拒绝域越大。

两类错误:对原假设0H ,备择假设1H ,第一类错误1H 不真,接受1H ,第二类错误0H 不真,接受0H ,为减少两类错误,需增加样本容量。

假设检验的基本步骤:(i)提出假设;(ii)选取检验统计量;(iii) 确定拒绝域;(iv)计算观测值(v) 并作出拒绝与接收原假设判断

P 值检验:计算p 值,与显著性水平α比较,p 值小于α拒绝原假设,否则就接收原假设;p 值计算方法是将观测值作为拒绝域临界点,代入拒绝域事件计算其概率。 假设检验的情形:

见书中164表,请复印下来,以便记忆,重点是1、2、3、7种情形,其余的也最好熟记。 特别要注意,对假设检验问题,首先只看总体,是单个总体,还是两个总体,是对均值检验还是方差(精度)检验,若是均值检验,要看总体方差是已知还是未知,总之要分清情形;另外若是单侧检验,要写对原假设与备择假设,一般问有没显著改变,就是双侧检验,有没有显著提高就是右单侧检验,有没有显著降低就是左单侧检验;同时,把不含等于的情形作为备择假设,含有等于的作为原假设,如不超过多少,就是小于等于,这种含有等于,作为原假设。在双侧检验中,要写全拒绝域,然后看观测值是否满足不等式,以作推断。 考试重点:全概率公式,独立性与不相关性等,一维,二维随机变量函数的概率密度求法,随机变量函数的概率密度求法,边缘概率,条件概率,期望,方差,协方差,点估计及其评价标准,假设检验。

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考 试试题及解答 Prepared on 24 November 2020

一、填空题(每小题3分,共15分) 1.设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案: 解: 即 所以 9.0)(1)()(=-==AB P AB P B A P . 2.设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则 ==)3(X P ______. 答案: 解答: 由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故 3.设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间) 4,0(内的概率密度为=)(y f Y _________. 答案: 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故 另解 在(0,2)上函数2y x = 严格单调,反函数为()h y =所以 4.设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________. 答案:2λ=,-4{min(,)1}1e P X Y ≤=- 解答: 2(1)1(1)P X P X e e λ-->=-≤==,故 2λ= 41e -=-. 5.设总体X 的概率密度为 ?????<<+=其它, 0, 10,)1()(x x x f θ θ 1->θ. n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________. 答案: 解答: 似然函数为 解似然方程得θ的极大似然估计为

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计概率历史的介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论与数理统计必考大题解题索引

概率论与数理统计必考大题解题索引 编制:王健 审核: 题型一:古典概型:全概率公式和贝叶斯公式的应用。 【相关公式】 全概率公式: ()()()()()() n 1122S P()=|()||()() (|)() =()(|)()(|). i n n E S A E B A P A B P B P A B P B P A B P B P AB P B A P A P A P A B P B P A B P B +++= =+12设实验的样本空间为,为的事件,B ,B ,……,B 为的划分,且>0,则有: P ?…其中有:。特别地:当n 2时,有: 贝叶斯公式: ()()i 1 00(1,2,,),()(|)() (|)()(|)() =()(|)() (|)()(|)()(|)() i i i i n i i j E S A E A P B i n P B A P A B P B P B A P A P A B P B P AB P A B P B P B A P A P A B P B P A B P B =>>===== +∑12n 设实验的样本空间为。为的事件,B ,B ,……,B 为S 的一个划分,且P ,……则有:特别地: 当n 2时,有: 【相关例题】 1.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。现从出厂的产品中任取一件,求: (1)恰好取到不合格品的概率; (2)若已知取到的是不合格品,它是第二家工厂生产的概率。 解:设事件 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工 厂生产的”(i =123,,)。 则Ω== 3 1i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得 (1)∑=?=3 1 )|()()(i i i A A P A P A P 1000/37100 210035100410025100510040=?+?+?=

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计知识点总结详细

概率论与数理统计知识 点总结详细 Document number:PBGCG-0857-BTDO-0089-PTT1998

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

相关主题
文本预览
相关文档 最新文档