当前位置:文档之家› 高中物理电磁学总复习

高中物理电磁学总复习

高中物理电磁学总复习
高中物理电磁学总复习

高三物理总复习电磁学

复习内容:高二物理(第十三章 电场、第十四章 恒定电流、第十五章 磁场、第十六章 电磁感应、第十七章 变交电流、第十八章 电磁场与电磁波)

复习范围:第十三章~第十八章

电磁学

§.1 第十三章电场

1. (1)电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移给另一个物体或者从物体的一部分转移到另一部分.

(2)应用起电的三种方式:摩擦起电(前提是两种不同的物质发生摩擦)、感应起电(把电荷移近不带电的导体(不接触导体),使导体带电)、接触带电.

注意:①电荷量e 称为元电荷电荷量C 1060.119-?=e ;②电子的电荷量e 和电子的质量m 的比叫做电子的比荷

C/kg 1076.111?=e

m e

. ③两个完全相同的带电金属小球接触时................电荷量分配规律:原带异种电荷的先中和后平分;原带同种电荷的总电荷量平分.

2. 库仑定律.

⑴适用对象:点电荷.

注意:①带电球壳可等效点电荷. 当带电球壳均匀带电时,我们可等效在球心处有一个点电荷;球壳不均匀带电荷时,则等效点电荷就靠近电荷多的一侧.

②库仑力也是电场力,它只是电场力的一种.

⑵公式:2

21r Q Q k F ?=(k 为静电力常量等于229/c m N 109.9??).

3.(1)电场:只要有电荷存在,电荷周围就存在电场(电场是描述自身的物理量...........),电场的基本性质是它对放入其中的电荷有力的作用,这种力叫做电场力. (2)ⅰ. 电场强度(描述自身的物理量........): E = F / q 这个公式适用于一切电场,电场强度E 是矢量,物理学中规定电场中某点的场强方向跟正电荷在该点的电场力的方向相同,即正电荷受的电场力方向,即E 的方向为负电荷受的电场力的方向的反向. 此外F = Eq 与2

21r Q Q k F ?=不同就在于前者适用任何电场,后者只适用于点电荷.

注意:①对检验电荷(可正可负)的要求:一是电荷量应当充分小;二是体积也要小. ②E = F / q 中F 是检验电荷所受电场力,q 为检验电荷的电量

③凡是“描述自身的物理量”统统不能说××正此,××反比(下同).

ⅱ. 点电荷的电场场强2

r kQ E =对象就必须是以点电荷Q 为场源电荷的电量,因此它只适用于点电荷形成的电场.

注意:若两个点电荷相距为r ,将两个点电荷移近至r 趋近于零,由2

r kQ E =知,这时的E 为无穷大.(×)(这时的

两个点电荷不能看作质点了,不符和2

r kQ E =的适用条件)

4. 电场线:电场线上每一点的切线方向与该点的场强方向一致(与电场线的走向方向相同的那一个方向). ①电场线的疏密程度表示场强的大小,电场线越密(疏)场强越大(小). ②电场线的分布情况可用实验来摸拟,而电场线都是假想的线.

相等的平行直线.

附:若电场线平行,但间距不等,则这样的电场不存在.[简证:假设存在,W AB = qES =U AB q ,因为E 不同(由于间距不同造成)且S 相同,所以S E U S E q q U AB AB ?=???=?]

④点电荷的电场线分布是直线型(如图).

⑤电场线不可能相交,也不可能闭合.(不同于磁感线)

⑥电场线不是带电粒子的在电场中的运动轨迹,但可能重合.(例如:匀强电场中粒子沿电场线运动). ⑦电场线从正电荷出来终止于负电荷(包括从正电荷出发终止于无穷远处或来自无穷远终止于负电荷). ⑧等势体永远不会有电场线(如果有电场线,必定有电势降低,这与等势体矛盾).

5. 静电屏敞:导体内的自由电子在外电场的作用下重新分布的现象,叫做静电感应.当导体内的自由电子不再做定向移动时,此时导体处于静电平衡.

注意:处于静电平衡的导体内部场强处处为零,但导体表面的场强不为零,场强方向垂直于外表面(等势面). 6. 电势差、电势、电势能、等势面. (一) 电势差(电势差是标量).

①Uq W =(电场力做功与路径无关,只和初未位置的电势差有关,q 的“十,一”一同代入计算)

②电势差跟带电量q 无关,只跟电场中的两点之间的位置有关. 这表示电势差是反映电场自身的物理量............... ③电势差单位:V ,1V=1J / c ,电势差的绝对值表示的就是电压. ④Ed U =(只适用于匀强电场,d 为等势面间的距离),E 的方向是电势降低最快的方向.

(二)电势(特殊的电势差,同样是标量“+,—”之分表示的是大小,B A AB U ??-=初电势减去未电势). ①零电势的选取:大地或大地相连的物体或无穷远处.

注:大地不能看作电源,大地可当作导体处理. 例如:

R

A

V

R

A

V

,得A 、V 表读数相同.

②电势与零电势选取有关,电势差与零电势选取无关.

③电势的高低仍然由电场自身来决定→反映电场自身的物理量..........

. ④沿着电场线的方向,电势越来越低.

⑤电势为零是人为选取的.例如电场强度为零的区域电势一定为零(×)(电场强度为零是客观的,它一般是在等势体内)

注意:①电荷只在电场力作用下就一定由高电势向低电势运动.(×)(若初速度不为零,就由低电势向高电势运动)

②带电粒子是在电场力作用下,可以做匀速圆周运动.

③初速度为零的正、负电荷一定朝着电势能低的地方运动.(因为初速度为零,所以电荷的运动是电场力的方向,如图. 若不知初速度是否为零,则正、负电荷不一定朝着电势能低的地方运动,可能向电势能高的地方运动)

④在正点电荷形成的电场中任意一点,电势总是大于零的(选了无穷远为零电势)同理在负点电荷形成的电场中任意一点,电势总是小于零的→往往就使负电荷在这个电场中的电势能大于正电荷的电势能.

⑤一带电粒子在电场中只受电场力作用时,可能出现的运动状态是匀速圆周运动或是匀变速曲线运动或匀加或匀减速直线运动.

(三)电势能.

①q ?=?εq U ?=?ε(q 的“+,—”一同代入计算,它表大小)

注:q ε?=,J 10εA =和J 10εB -=,则A ε>B ε,这与重力势能类似.

②电势能由电荷性质与电势差共同决定................

. ③电场力做正功,电势能减小;电场力做负功,电势能增大.

④电势能与机械能守恒的形式是:未未末初初初??q mgh mv q mgh mv ++=++2

22

121(条件是:只受电场力和重力)

注意:放在电场中某一定点的正电荷,其电量越多,只有电势能不一定越多.例如:把电荷放在零电势上. (四)等势面.

①电场线与等势面垂直(由 900cos =?=??=θθs f w 得)并且电场线由高电势的等势面指向低电势的等势面.

②任意两个等势面不可能相交.

③初未位置在同一等势面的电荷所受的电场力对电荷不做功.

空间上则是一个球.

⑤发生静电平衡的导体是等势体,等势体无电场线.

⑥等差等势面间的距离越小的地方,场强越大(如图)

.

常用判断方法:赋值法

等差等势面的分布

[附]:常见的等势面分布.

Ⅰ. 等量的异种电荷的等势面.

l 线是等势线,且选无穷远处为零电势,则l 的电势为零. 电场强度E 是向两边递减. 电场线分布(越稀疏),放在O 点E 合为最大(与L 线上的E 合相比较,若与L '线上E 相比较,0点的电势是最小的)

Ⅱ. 等量的同种电荷的等势面.

l 线是电场线,l 线上的电势自O

. 在O 点E 合=0. 电场强度是自O 点向两边是先增后减, 当3

3arccos =α时,E 合为最大.

(同为负电荷,则亦一样)

注:在L 线上放上负电荷,则负电荷是往负运动的;在L '线上放上正电荷,则正电荷是往负运动的.

简证:令3

3cos (cos 1cos 2)3

2(

212

)cos 1)(cos

1(cos 2sin cos

2232

2222=

-=??≤--=?=αααααααα当y y Ⅲ. 匀强电场的等势面. 7. 电容:描述电容器容纳电荷本领的物理量.

①i. 使电容器的两个极板带上等量的异种电荷的过程叫做充电,这可以用灵敏电流计观察到短暂电流充电稳定后,电路中就无电流了,但两极板的电势差就等于电源的电动势.其它形势的能转化为电场能.

ii. 把充电后的极板接通电荷互相中和(电荷没有消失,只是失去了电量而已),电容器就不再带电,这个过程是放电,这可形成短暂的放电电流,电场能转化为其它形式的能.共同判断方法可简记为充电时,电流从电源正极流向电容器正极板(负极同理). 放电时,则电流从电源正极流向电容器负极板(负极同理).

②kd S C U Q U Q C πε4,?=??==(k 为静电力常量,ε为介电常数空气的介电常数最小,S 为正对面积)电容是电容器本身........的性质...,这与电势差、场强是相同道理. 例如:C-U 图像应为图1,而不是U

Q C ??=得图2 注:在一个电容器充电稳定后,若突然使极板间距离减小,则极板电势大于 电动势(C↓U 不变→Q↓→电荷返回电源→必有电势差→?极板>?电动势). ③电容是标量,单位是法拉简称法符号F. pF 10μF 101F 126==

④静电计是检验电势差的,电势差越大,静电计的偏角越大,那么电容就越小(假设Q 不变). 验电器是检验物体是否带电,原理是库仑定律.

⑤ⅰ. 容器保持与电源连接,则U 不变.

U kd

S

CU Q πε4=

=→d 增加,Q 减小(减小的Q 返回电源);d 减小,Q 增加(继续充电).

注:插入原为L 且与极板同面积的金属板A (如图). 由于静电平衡A 极内场强为零→相当于平行板电容器两极板缩短L 距离,故C 是增加(ε是空气为最小,故也是增加的)同时d

U E =同样E 是增加的.

ⅱ. 电容器充电后与电源断开,则Q 不变d

U

E =

→d 增加,E 减小;d 减小,E 增大. S

kdQ d U E ?==

επ4→无论d 怎样变化,E 恒定不变. 注:仅插入原为L 且与两极板面积相同的金属板A ,则同样是d 减小c 增大,U 减小,E 同样不变. ⑥电容器的击穿电压和工作电压:击穿电压是电容器的极限电压.额定电压是电容器最大工作电压.

α

E

E

E

+

+

d d

E 合COS αsin kQ

d 2α

=2

8.带电粒子在电场中的运动.

(一)加速电场(设q 的初速为零).

m

qU U qU mv 2212

=?=

注:不考虑重力的有电子,质子H 11,β粒子,α粒子(He 42);考虑重力的有宏观带电粒子(如带电小球,带电液滴). (二)偏转电场(既使粒子发生偏转同时也被加速). 偏转量d

mv qUL y 02

2=

偏转角L y

mdv qUL 2tan 20

==

θ

推论:①荷质比相同的粒子以相同的初速度,以相同的方式进入同一电场,则偏转量和偏转角相同

②动能相同的带电粒子,电量相同时,以相同方式进入同一电场,偏转量偏转角相同(荷质比相同) ③动量相同的粒子,电量与质量乘积相同时,以相同方式进入同一电场偏转量偏转角相同(荷质比相同) (三)加速电场与偏转电场综合.

①d

U L

U y 12

24=(由dm q U m Eq a m

qU L

t at y 212,2,2

1===

=得),则d U L U y 12

24=叫示波器的灵敏度. ②带同种电荷,但电荷量不同的n 个带电粒子由静止先经过加速电场,然后经过偏转电场,则这n 个粒子的轨迹

是一样的(简证:d

U L U qU m L md qU y m

qU v 12212

2114221,2=??==与电荷量无关).

§.2 第十四章 恒定电流

1. (一)电源、电流、电阻.

电荷的定向移动形成电流,正电荷定向移动的方向为电流方向(电流强度是标量)电源的正极电势高,负极的电势低.因此电源的电压叫做电动势.电动势E (标量)是由电源本身性质决定........的,表示电源把其它形式的能转化电能本领大小的物理量.若是理想电源即内阻为零E=U 内+U 路.

①在外电路中电流是从高电势流向低电势.

②在内电路中,电流是从低电势(负极)流向高电势(正极)

③t

q

I =

(与通过导体横截面积的大小无关),I=nqSv (S 横截面积,v 定向移动速率,n 单位体积的自由电荷个数) 注: 1自由电子定向移动的速率<自由电子热运动的平均速率<电流速率.

2如果正、负两种电荷往相反方向定向通过横截面积而形成电流,这时对应q 为两种电荷的电荷量之和(负电荷等效反方向过来的正电荷)若是同种电荷,则是电荷量之差

④欧姆定律:R

U I =适用对象:金属,电解质溶液(对气态导体和半导体不适用)或者是伏安特性曲是直线即纯电阻.

⑤电阻定律:S

L R ?=ρ,R .是反映自身的物理量.........

,ρ是反映材料导电性能的物理量,称为材料电阻率.纯金属的电阻率小,而合金的电阻率大.各种材料的电阻率都是随温度变化,有的随温度增高而增大.有的随温度增高而减小,而有的随温度增高而不变化. 例如:在灯泡(“220,100W”)工作时电阻为484Ω,则不工作时的电阻是小于484Ω(随工作而升高的温度使R 变大).

附:①半导体材料的导电性受温度、光照、掺入微量杂质影响.

②大多数金属在温度降到某一数值时,都会出现电阻突然为的现象,这个现象叫做超导,共温度称为超导转变温度(或临界温度)零.

③r

R E I +=

(只适用于纯电阻电路) ④EI= U 路I+ U 内I,,U 路I 叫做外电路的消耗功率或者电源输出功率, U 内I 叫做内电路的发热功率.

U 路=E —Ir (适用于一切电路),EI 叫做电源功率或者电路总功率.

注:①当电源两端短路时,R 外=0,此时路端电压为零. ②路端电压与电流的图象: (二)电功和电功率.

d A

L +

+++

+

(短路电流)

闭合电路的欧姆定律图象

部分欧姆定律图象

电功率单位:瓦特w, 电功单位:J 常用单位:kwh 千瓦时又称“度“1kwh = 3.6×610J ①W=UIt(适用于一切电路) t R

U Rt I W 2

2==(适用于纯电阻电路)

②UI t

W P ==(适用于一切电路) R

U R I P 2

2==(只适用于纯电阻电路)

③焦耳定律:Rt I Q 2=(适用于一切电路) W 总=Rt I t R

U Rt I 22

2==(只适用于纯电阻电路电功等于电热)

W 总=W 机+W 热=UIt=+Rt I 2W 机=UIt (适用于非纯电阻电路)

④热功率P=R I 2(适用于一切电路) P=UI=P 热+P 机=R I 2+P 机(适用于非纯电阻电路) 注:①电动机在正常工作的情况下,W 总=W 机+W 热 而在电动机被卡住的情况下,W 总= W 热等效于纯电阻电路,电动机在因电压不足而不能转时,也同样可等效纯电阻电路,亦可用欧姆定律.

②在纯电路电路中,电路上消耗的总功率等于各个电阻上消耗的功率之和(无论是串联,还是并联).

③电源输出功率曲线: 1当R 外= r 时,此时电源输出功率为最大.

简证:P 输=?+'+=

'+R

R r E

I ),R (R I 2P 输

2r R

R r R R E )R (R R)R (r E 2

2

2

2

++'+

+'=

'++'+=

有最大值,则R '+R = r .

2滑动变阻器的最大功率的条件同样是R+r =R '时,这时采用R 与r 等效为一个新的电源内阻.

简证:P 滑=22r)(2R E 2r 2R R r)

(R R E R )r

R R E

(

R I 2

2222?+≤++'++'=

'++'='?(当r R R +='时取等) ④关于并联电路的最大电阻电路问题.

推导:2

2111212

12

1

R R R R R R R R

≤?≥+=当R 1 = R 2, R 有最大值.

⑤处于开路的用电器相当于一根导线(如图). (R 1相当于一根导线)

⑥串联,并联,混联特点是:其中任何一个阻值增大,则总电阻增大.

2.(一)电流表的改装. ①电流表G 改装电压表V. ②电流表G 改装电流表A.

(“量程”指通过电流表、电压表的满偏电流、满偏电压、电流表、电压表本身就是用电器) (二)伏安法测电阻.

①伏安法测电阻原理:部份电路的欧姆定律. ②伏安法测电阻的两种接法.

电流表外接法:在电压表的内阻远远大于R 时,使用(此时I 0≈0). 电流表内接法:在电流表的内阻远远小于R 时,使用(此时V 0≈0).

附:如果不知道Rx ,Rv ,RA 的阻值,可用试触法,即通过不同的电表连接方式的电路,看电压表电流变化情况.如果电流表变化明显,说明电压表内阻对电路影响大,应选用电流表内接法同理,若电压表变化明显选用电流表外接法(简记为电流内接,→电流表变化大.电压外接→电压表变化大).→用百分比来判断变化大小. 例如:用内接法,A 表为1mA,V 为2V ;用外接法,A 表为2mA ,V 表为3V ,则A ?=(2-1)/2>V ?=(3-2)/3,故A 表变化大,选内接法.

§.3 第十五章 磁场

1. 磁场、磁感线.

(1)磁场的产生. 磁极磁场磁极; 磁极磁场电流;电流磁场电流.

(2)磁场的作用:①磁场法对放入其中的磁极有力的作用(同各磁极互相排斥,异各磁极互相吸引). ②磁场对放入其中的通电导线亦有力的作用,相向电流,相互吸引,异向电流互相排斥. (3)磁场的方向性,在磁场中的任一点,小磁针北极受力的方向.......,亦即小磁针静止时北极所指的方向..........,就是那一点的磁场方向(两处有着重点符号文字等价).

(4)磁感线:假想的一族曲线,在磁体外部从北极出发同到南极在内部从南极到北极→闭合的曲线(电场线是非

R

1

I II 与I 相同

R 1,另一部份电阻处于短路状态

闭合曲线,其相同点都是不相交的曲线). 但是磁感线从磁体N 极出发,终止于磁体S 极是错误的,那是因为磁感线是回到S 极. 此外,通电螺线管内部的磁场是匀强磁场. 注:①磁感线走势的方向上的切线方向为磁场方向. 特别的,在磁场内部(如图) 则不能等效小磁针了.

②磁感线虽然是假想的线但可用实验摸拟. ③磁感线的疏密表磁场或磁感应强度的大小.

(5)地磁场:地球本身就是一个磁场,是地球北极是地磁场的南极,地球南极是地磁场的北极,两极的磁感线是垂直地球两极. 在赤道,磁感线是与地球表面平行的. 2. 安培力、洛伦磁力.

(1)①安培力:通电导线在磁场中受到磁场对它的安培力.

②F 安=IBL (L 为有效长度,如图有效长度,L 平行于B 时,F 安为0,L 垂直于B 时,F 安为最大). 注:用B = F/IL 来测量B=F 安/IL,非匀强磁场时需要L 足够短. ③B 叫磁感应强度,是描述磁场自身的物理量..........

T. ④磁感应强度的方向某点磁场的方向为该点磁感应强度的方向(B 为矢量).

⑤安培力的方向总是垂直于磁感线和通电导线所在的平面.

注:一小段通电导体放在磁场中A 处受磁场力比放在B 处大,则A 处磁感应强度比B 处磁感应强度大.(×)

[不知放入方式,即F 安=BIL 中L 是有效长度不知. 又如同一通电导体在a 、b 受力情 况,不能判断]

(2)①洛伦磁力:磁场对运动电荷....

能够有洛伦磁力. ②F 洛 = qvB(v 为有效速度,如图有效速度,v 0平行于B 时,F 洛 = 0

,v 0垂直于 B 时,

F 洛

为最大) ③F 洛与v 有瞬时对应关系,即v 瞬对应瞬时洛伦磁力.

④洛伦磁力对运动电荷不做功(f 洛垂直于v 与

B 确定的平面,故f⊥v 由微元法知W f =0) ⑤安培力不同于洛伦磁力,安培力可以做功. (若电荷沿等势面移动,安培力不做功) 注: F 洛 = qVB 可由F 安 = (nqSv)LB 是nLS 个运动电荷所受的合力.

3.⑴电荷在洛伦磁力作用下的圆周运动:qVB = mv 2

/ r Bq

mv r =→,而qB

2r v

2r T ππ=

=.由此可见,荷质比相同的粒子以

相同速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同,荷质比相同的粒子,进入同一磁场,其周期相同.

注:①电场或磁场都会使运动带电粒子发生偏转.

②利用质谱仪对某种元素进行测量,可以准确测出各种同位素的原子量.

⑵带电粒子的初速度v 0与B 成θ角进入磁场:粒子做螺旋运动,将粒子的速度v 0分解为两个方向,一个与B 垂直分量0v v =⊥θsin ,另一个与B 平行的分量θcos 011v v =,粒子由于v 0而做匀速圆周运动,其轨道半径为θsin 0

Bq

mv R =

另一方面,v 11在其方向上做匀速直线运动,这样的合运动就叫做螺旋运动,其螺距(粒子运转一周前进的距离)θπcos 20Bq

mv S =.

附:推导Bq

m v S πθ2cos =

附:(1)推导qBd P =?由f=qBV 得∑∑==?=?n

i i i n

i t qvB t f 1

1

∑∑==?==?=??n

i n

i i i P qBd P t f 1

1

注意:①P ?与d 必须垂直.②在P ?方向除有络伦磁力(或络伦磁力分力)外不能在有其他力或者其它力的合力为零. (2)应用举例.

如图所示,一质量为m ,带电量为q 的带电粒子(重力不能忽略),以速度V 0从上竖直进入一宽度为d 的匀强磁场区域中,磁感应强度为B ,试求粒子飞出磁场的方向?很明显,在X 方向除洛仑磁力外无其他力的作用,所以

θcos mv P x =?qBd =,而粒子在下落过程中只有重力作功,所以有20

2

0222

121v gd v mgd mv mv +=?=-代入上式则得有效长度B B

S

20

2cos v

gd m qBd +=

θ.

⑷电荷在电场和磁场中运动—速度选择器.

→=

?=B

E v qE B qv 00即满足V 0的粒子到达右端,值得一提的是,若粒子从右端射入,由于V 的方向与从左端射入v 的方向发生了变化,则还需将电压变化.

§4.第十六章 电磁感应 1. 磁通量、电磁感应、感应电流. (1)磁通量:Φ= BS (B 为匀强磁场,S 为有效面积) ①Φ是标量,但有正负(不表大小)“+”表示给定的一个平面来讲,是穿入(穿出)比如穿过某面的磁通量是Φ,将面转过180°穿过该面的磁通量为Φ-

②磁通量单位是韦,单位Wb.

③初未Φ-Φ=?Φ特别地当磁感应强度反向时:Φ-=Φ-Φ-=?Φ2. ④产生感应电流图象:(互余关系)

(2)感应电流.

产生感应电流的条件是:一是电路闭合,二是穿过闭合电路的磁通量有变化.

(3)法拉第电磁感应定律:E = n t

??Φ或E=BLv (L 为有效长度—垂直于磁场的长度,v

为有效速度—垂直于磁场的

切割速度→可归纳为“三垂线”- B 、L 、v 三者相互垂直)

附:ⅰ两种常见的有效长度. ⅱ回路构造法:可将A 、B 两端用直线相连,构成闭合回路,该闭合回路没有感生电流,说明直线AB 上的感应电

动势与弧B A 上的感应电动势大小相等,方向相反而抵消,所以弧B A

上的感应电动势就等于AB 线上的感应电动势,AB

线长就是B A

弧长的等效长度,所以对这样一类非直线导体,它的等效长度可用“回路构造”法,与安培力中等效长度用“回路构造法”类似.

①对于上式,常用E = n

t

??Φ

,计算一般时间E 感的平均值,而E=BLV 常.

②产生感应电动势不同于感应电流,其电路是否闭合对是否产生感应电动势没有影响. ③两种切割公式:(一)平动切割B

LV E 感=.

(二)转动切割中v B L w L 2

1

B L E ?=??=.

SL S 2

1

=扇?Φ=22121BL B L L BS ?=???=?θθ

中v BL L 2

1

BL E θ

Δt ?=??=?

=ωω

④R

Q ?Φ=适用于电流没有反向的前提下.

⑤若线框在磁场中运动,由于Φ没有变化,则不产生感应电动势,也无电流,但是当视AD 、BC 为导体做切割磁感

线运动,则有A ?>D ?,B ?>C ?只是加起来就为零而已.

(4)楞次定律:感应电流产生的磁场总是要阻碍引起感应应电流的磁通量的变化,可归纳为Φ是增加的,B 感与B 原反向;Φ是减小的,B 感与B 原同向.

注意:①当闭合回路的部分导体做切割磁感线的运动时,一定产生感应电流.(×)

[例如:线框上下平动,总之,磁通量是否发生变化是判断是否产生感应电流的充要条件]

②I 感的方向是内电路的方向→常用判断感应电动势的正负极,但要得注意的是电源内部的电势高低,是由低电势(负极)流向高电势(正极).

O

A

AB 为弧AB的有效长度

AB 为弧AB的有效长度

+v 0

③整个闭合回路在磁场中出来时,闭合电路中一定产生电磁感应电流.(×)[线框在磁场中与磁感线平行时] 2. 自感.

(1)自感现象属于电磁感应现象,它是由于通电线圈中自身电流变化而引起的电磁感应现象. (2)作用:阻碍原电流的增加,起延迟时间的作用

(3)I 自的方向:原I 是增加的,自I 的方向与原I 相反;原I 是减小的,自I 的方向与原I 方向相同

(4)Δt

ΔI L Δt

ΔΦn E 原自?=?=(L 为自感系数,描述线圈产生自感电动势大小本领的物理量其单位为享,用H 表示

μH 10mH 101H 63==,它的大小是由线圈本身决定.......

) 注:决定自感系数的因数-线圈的自感系数是由线圈本身决定的,与通不通电流,电流的大小无关.线圈的横截面

积越大,线圈越长,匝数越密,它的自感系数就越大.实际上它与线圈上单位长度的匝数n 成正比,与线圈的体积成正比.除此外,线圈内有无铁芯起相当大的作用,有铁芯比没有铁芯,自感系数要大得多.

附:至于灯泡中的电流是突然变大还是变小(也就是说灯泡是否突然变得更亮一下),就取决于2I 与1I 谁大谁小,

也就是取决于R 和r 谁大谁小的问题:

如果R >r ,灯泡会先更亮一下才熄灭;

如果R = r ,灯泡会由原亮度渐渐熄灭;

如果R <r ,灯泡会先立即暗一些,然后渐渐熄灭.

〈当R >r ,则I 1<I 2 当S 断开,则灯泡的电流为I 2R

I R I P 2

122 ?=变亮;当R = r ,则I 1=I 2,当S 断开,则灯泡电流为I 1,保持原亮;当R <r ,则I 1>I 2,当S 断开,则灯泡电流为I 2,变暗.〉

可见灯泡的这种瞬间变化,取决于灯泡电阻R 与线圈直流电阻r ,而不是线圈的自感系数,线圈的自感系数决定了这种缓慢熄灭持续的时间,L 越大,持续的时间越长.自感总是阻碍原电流的变化,即尽可能的维持原电流的大小,但是最后灯泡还是要熄灭.

(5)线圈L 的3种等效状态

1°通电瞬间相当于一个无穷大的电阻 2°通电稳定时,相当于一根导线

3°断电时,相当于一个电源

(6)自感的防止:用双线绕法——产生反向电流,使磁场相互抵消. 3. 日光灯. (1)电路图.

(2)起动器和镇流器作用:

①起动器实际上就是一个自动开关,一通一断,使通过镇流器的电流急剧变化,如果一直接通,则不能使水银导电. ②镇流器在日光灯起动时提供瞬时高压,而在日光灯正常工作时起降压限流的作用. §5.第十七章 交变电流 1. 直流电,交流电 (1)直流电(DC ):电流方向不随时间变化的电流. (2)交流电(AC ):电流方向随时间变化的电流.

2. 发电机原理:电磁感应原理E = nBS ωSin ωt (从与中性面垂直的时刻开始计时)若是从与中性面垂直位置开始计时,则t nB S ωB SωE ω=.

附:1°中性面(B⊥S 的位置)有Φ为max 等于BS ;E=0V ;每经过一次中性面,电流改变一次,对于一个周期,则电流改变两次.

2°S 与中性面垂直有0=Φ,E=BS ω,t

??Φ为max. (→=Φt BS ωωcos 不乘以→=t nBS E n ωωsin ,乘以n )

3. 表征交变电流的物理量:最大值、有效值、平均值—根据电流热效应的定义,相同电阻,相等时间,产生相等的热量;I 、V 表就是该交流电的有效值,铭牌A 、V 表读数都是有效值,一般来说,最大值E=NBS ω;而平均值,则是

= n

t

??Φ

,当计算通过导体的电量时,用平均值. 注:对于正弦或余弦交流电有如下关系:2Imax I 有效=,2Umax/U 有效=.

4. 变压器、改变交流电压的设备.

原线圈

副线圈

输出

输入

(1)原理:电磁感应中的互感现象.

(2)匝数与电压的关系:2

2221

111Δt ΔΦn ,E Δt ΔΦn E ?=?=由于21?Φ=?Φ21t t ?=?;得2

121n n E E =(绝大部份磁通量通过铁芯)

注意:2

12

1n n U U =在多级线圈中也是成立的.

(3)匝数与电流的关系:1221/n n /I I =[由21P P =(由2

P 决定1P )得2211I U I U =?] 注意:①对于多级线圈则332211I n I n I n +=?(同理是由321P P P +=推得)

②变压器的高压线圈匝数多而通过的电流小,可用较细的导线绕制(考通常较长导线,虑经济因素),低压线圈匝

数少,而通过电流大,应用较粗的导线绕制(通常较短,考虑电压损失的问题).

(4)电能输送示意图.

①线2

线线R I P ?=

2

1

原线n n I I =

,故增大2n 即减小的线P ,所以采用升压,再降压的方法来远程输电. ②增加负载指输出功率增大,R 总是减小的.

§6. 第十八章 电磁场与电磁波(基本不列入考试范围)

1. 电磁振荡—LC 振荡电路(产生振荡电流的电路,也是理想电路,不考虑电流发热等) ① 结构

② 图像

③ 周期:LC 2πT =(从电容器开始放电作计时起点)

注:振荡电路是正弦式交流电

2. 电磁场:变化的磁场产生电场,变化的电场产生磁场. ① 均匀变化的电场(磁场)产生稳定的磁场(电场). ② 非均匀变化的电场(磁场)产生变化的磁场(电场).

③ 周期性变化的电场(磁场)产生周期性变化的磁场(电场). 3. 电磁波:电磁振荡由近及远传播形成电磁波

(1)特点有:①横波 ②传播不需要介质 ③任何频率的电磁波在真空中传播速度等于光速。④波的一切特性(反射,衍射等) ⑤λf c λf,v ==

(2)形成电磁波的条件:①足够高的振荡频率 ②振荡电路中电场和磁场必须分散到可能大的空间,才能有效地把电磁场的能量传播出去.

(3)电磁波的产生:变化电场和变化磁场由近及远向周围空间传播开去,电磁场这样由近及远地传播,就形成电磁波.

发电机

用户

线R 升压

降压

L

C

高二物理电磁学综合试题

高二物理电磁学综合试题 第Ⅰ卷选择题 一.选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有的小题只有一个 选项正确,有的小题有多个选项正确,全对得3分,漏选得1分,错选、不选得0分) 1、下列说法不符合 ...物理史事的是() A、赫兹首先发现电流能够产生磁场,证实了电和磁存在着相互联系 B、安培提出的分子电流假说,揭示了磁现象的电本质 C、法拉第在前人的启发下,经过十年不懈的努力,终于发现电磁感应现象 D、19世纪60年代,麦克斯韦建立了完整的电磁场理论,并预言了电磁波的存在 2、图1中带箭头的直线是某电场中的一条电场线,在这条直线上有a、b两点,若用 E a、E b表示a、b两点的场强大小,则() A、a、b两点的场强方向相同 B、电场线是从a指向b,所以有E a>E b C、若一负电荷从b点逆电场线方向移到a点,则电场力对该电荷做负功 D、若此电场是由一负点电荷所产生的,则有E a<E b 3、质量均为m、带电量均为+q的A、B小球,用等长的绝缘细线悬在天花板上的同一点,平衡后两线张角为2θ,如图2所示,若A、B小球可视为点电荷,则A小球所在处的场强大小等于() A、mgsinθ/q B、mgcosθ/q C、mgtgθ/q D、mgctgθ/q 4、如图3所示为某一LC振荡电路在某时刻的振荡情况,则由此可知,此刻()A、电容器正在充电 B、线圈中的磁场能正在增加 C、线圈中的电流正在增加 D、线圈中自感电动势正在阻碍电流增大 是() A、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 002s D、电压的瞬时表达式是u=311 sin314t v 图3 -311 311 u/v 0 1 2 t/10-2s 图4 ab 图1 B 图2 A θθ q q

高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:221r q q k F = (适用条件:真空中点电荷) k = ×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电 =?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量:

20 2 2022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y ==θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变 (二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2121R R U U =,U R R R U 2 111+= 功率分配 2121R R P P =,P R R R P 2 111+= 4、并联电路总电阻: 3 211111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 1221I R I R =,I 1=I R R R 2 12+ S l R ρ =

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

高中物理电学实验专题(经典)

电学实验(经典) 实验设计的基本思路 (一)电学实验中所用到的基本知识 电学实验中,电阻的测量(包括变形如电表内阻的测量)、测电源的电动势与内电阻是考查频率较高的实验。它们所用到的原理公式为: Ir U E I U R +== ,。 可见,对于电路中电压U 及电流I 的测量是实验的关键所在,但这两个量的直接测量和间接测量的方法却多种多样,在此往往也是高考试题的着力点之处。 1.电路设计原则:正确地选择仪器和设计电路的问题,解决时应掌握和遵循一些基本的原则,即“安全性”、“方便性”、“精确性”原则,兼顾“误差小”、“仪器少”、“耗电少”等各方面因素综合考虑,灵活运用。 (1)正确性:实验原理所依据的原理应当符合物理学的基本原理。 (2)安全性:实验方案的实施要安全可靠,实施过程中不应对仪器及人身造成危害。要注 意到各种电表均有量程、电阻均有最大允许电流和最大功率,电源也有最大允许电流,不能烧坏仪器。 (3)方便性:实验应当便于操作,便于读数,便于进行数据处理。 (4)精确性:在实验方案、仪器、仪器量程的选择上,应使实验误差尽可能的小。 2.电学实验仪器的选择: (1)选择电表:首先保证流过电流表的电流和加在电压表上的电压均不超过使用量程,然后合理选择量程,务必使指针有较大偏转(一般要大于满偏度的1/3),以减少测读误差。 (2)选择滑动变阻器:注意流过滑动变阻器的电流不超过它的额定值,对大阻值的变阻器,如果是滑动头稍有移动,使电流、电压有很大变化的,不宜采用。 (3)应根据实验的基本要求来选择仪器,对于这种情况,只有熟悉实验原理,才能作出恰当的选择。总之,最优选择的原则是:方法误差尽可能小;间接测定值尽可能有较多的有效数字位数,直接测定值的测量使误差尽可能小,且不超过仪表的量程;实现较大范围的灵敏调节;在大功率装置(电路)中尽可能节省能量;在小功率电路里,在不超过用电器额定值的前提下,适当提高电流、电压值,以提高测试的准确度。

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高中物理20种电磁学仪器

高中物理20 种电磁学仪器 1. 电视机原理 1. 电视机的显像管中,电子束的偏转是用磁偏转技术实现的. 电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示. 磁场方向垂直于圆面. 磁场区的中心为O,半径为r. 当不加磁场时,电子束将通过O点而打到屏幕的中心M点. 为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度 B 应为多少? 解析:如图所示,电子在磁场中沿圆弧ab 运动,圆心为O,半径为R,以v 表示电子进入磁= 场时的速度,m、e 分别表示电子的质量和电荷量,则 1 2 eU mv 2 evB 2 mv R 又有tan 2 r R 由以上各式解得: B 1 2mv r e tan 2 2. 电磁流量计 2. 电磁流量计广泛应用于测量可导电液体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图所示的横截面为长方形的一段管道.其中空部分的长、宽、高分别为图中的a、b、c.流量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度 B 的匀强磁场,磁场方向垂直前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为() A. I c bR B a B. I b aR B c

C. I cR a B b D. I R bc B a 2. 质谱仪 3. 如图是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导 入图中所示的容器 A 中,使它受到电子束轰击,失去 一个电子变成正一价的分子离子。分子离子从狭缝s1 以很小的速度进入电压为U 的加速电场区(初速不 计),加速后,再通过狭缝s2、s3 射入磁感强度为 B 的匀强磁场,方向垂直于磁场区的界面PQ。最后,分 子离子打到感光片上,形成垂直于纸面而且平行于狭 缝s3 的细线。若测得细线到狭缝s3 的距离为d,试 导出分子离子的质量m的表达式。 解析:以m、q 表示离子的质量电量,以v 表示离子从狭缝s2 射出时的速度,由功能关系可得 射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得 式中R为圆的半径。感光片上的细黑线到s3 缝的距离d=2R 解得 4. 磁流体发电 3. 磁流体发电是一种新型发电方式,图1 和图 2 是其工作原理示意图。图1 中的长方体是发电导管,其中空部分的长、高、宽分别为l 、a、b,前后两个侧面是绝缘体,上下两个 侧面是电阻可略的导体电极,这两个电极与负载电阻R1相连。整个发电导管处于图 2 中磁

高中物理电磁学知识点梳理

高中物理知识点梳理 电磁学部分: 1、基本概念: 电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速2、基本规律: 电量平分原理(电荷守恒) 库伦定律(注意条件、比较-两个近距离的带电球体间的电场力) 电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场) 电场力做功的特点及与电势能变化的关系 电容的定义式及平行板电容器的决定式 部分电路欧姆定律(适用条件) 电阻定律 串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系) 焦耳定律、电功(电功率)三个表达式的适用范围 闭合电路欧姆定律 基本电路的动态分析(串反并同) 电场线(磁感线)的特点 等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点 常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管) 电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率) 电动机的三个功率(输入功率、损耗功率、输出功率) 电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、

高中物理电学实验专题知识讲解

物理电学实验专题 一、伏安法测电阻及拓展 1.下表中选出适当的器材,试设计一个测量阻值约为15k Ω的电阻的电路。要求方法简捷,R X 两端电压能从0开始变化,要求有尽可能高的精确度。 电流表A 1:量程1mA 内阻约50Ω; 电流表A 2:量程300A μ 内阻约300Ω 电流表A 3:量程100A μ 内阻约500Ω;电压表V 1:量程10V 内阻约15K Ω 固定电阻:R 0=9990Ω; 电流表G :I g =300A μ、R g =10Ω。 滑动变阻器R 1: 阻值约50Ω;额定电流为1A 滑动变阻器R 2: 阻值约100K Ω 额定电流为0.001A 电池组:E=3V ;内阻小但不可忽略; 开关,导线若干 2. 两块电压表测电阻 用以下器材测量一待测电阻R x 的阻值(900~1000Ω): 电源E ,具有一定内阻,电动势约为9.0V ; 电压表V 1,量程为1.5V ,内阻r 1=750Ω; 电压表V 2,量程为5V ,内阻r 2=2500Ω; 滑线变阻器R ,最大阻值约为100Ω; 单刀单掷开关K ,导线若干。 (1)测量中要求电压表的读数不小于其量程的3 1 ,试画出测量电阻R x 的 一种实验电路原理图(原理图中的元件要用题图中相应的英文字母标注)。 (2)根据你所画的电路原理图在题给的实物图上画出连线。 (3)若电压表V 1的读数用U 1表示,电压表V 2的读数用U 2表示,则由已知量和测得量表示R x 的公式为R x =_________________。 3. 两块电流表测电阻 从下表中选出适当的实验器材,设计一电路来测量电流表A 1的内阻r 1。要求方法简捷,有尽可能高的测量精度,器材代号 规格 电流表(A 1) 量程100mA ,内阻r 1待测(约40Ω) 电流表(A 2) 量程500uA ,内阻r 2=750Ω 电压表(V ) 量程10V ,内阻r 3=10k Ω 电阻(R 1) 阻值约100Ω,作保护电阻用 滑动变阻器(R 2) 总阻值约50Ω 电池(E ) 电动势1.5V ,内阻很小 开关(K ) 导线若干 (2)若选测量数据中的一组来计算r 1,则所用的表达式r 1=________________,式中各符号的意义是____________________________________。 4.现有实验器材如下: 电池E ,电动势约10V ,内阻约1Ω 电流表A 1,量程300mA ,内阻r 1约为5Ω 电流表A 2,量程10A ,内阻r 2约为0.2Ω 电流表A 3,量程250mA ,内阻r 3约为5Ω 电阻箱R 0,最大阻值999.9Ω,阻值最小改变量为0.1Ω 滑动变阻器R 1,最大阻值100Ω,开关及导线若干 要求用图1所示电路测定图中电流表A 的内阻 (1)在所给的三个电流表中,哪几个可用此电路精确测定其电阻? (2)在可测的电流表中任选一个作为测量对象,简要写出按电路图的主要连接方法. A A ′ R 1 R 0

高中物理电磁学基础知识

一、电场基本规律 2、库仑定律 (1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。 (2)表达式:k=9.0×109N?m2/C2——静电力常量 (3)适用条件:真空中静止的点电荷。 1、电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。(1)三种带电方式:摩擦起电,感应起电,接触起电。 (2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=1.6×10-19C ——密立根测得e的值。 二、电场能的性质 1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。 2、电势φ (1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。 (2)定义式:φ——单位:伏(V)——带正负号计算 (3)特点: ○1电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。 ○2电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。 ○3电势的大小由电场本身决定,与Ep和q无关。 ○4电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。 (4)电势高低的判断方法 ○1根据电场线判断:沿着电场线电势降低。φA>φB ○2根据电势能判断: 正电荷:电势能大,电势高;电势能小,电势低。 负电荷:电势能大,电势低;电势能小,电势高。 结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。 3、电势能Ep (1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。 (2)定义式:——带正负号计算 (3)特点: ○1电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。 ○2电势能的变化量△Ep与零势能面的选择无关。 4、电势差UAB (1)定义:电场中两点间的电势之差。也叫电压。 (2)定义式:UAB=φA-φB (3)特点: ○1电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。 ○2单位:伏 ○3电场中两点的电势差是确定的,与零势面的选择无关 ○4U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。 5、静电平衡状态

(完整版)高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:2 2 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量: 2 02 2022212121V L md qU V L m qE at y = == 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y = = θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变

(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1 += 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1= I R R R 2 12 + 并联电路功率分配 1 22 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE -I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt > P=IU > S l R ρ=

(完整版)高中物理电磁学优质习题整理

例3-1 【新课标全国Ⅰ】关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()。 A 安培力的方向可以不垂直于直导线 B 安培力的方向总是垂直于磁场的方向 C 安培力的大小与通电直导线和磁场方向的夹角无关 D 将直导线从中点折成直角,安培力的大小一定变为原来的一半 例3-2 图中装置可演示磁场对通电导线的作用.电磁铁上、下两磁极之间某一水平面内固定两条平行金属 导轨,是置于导轨上并与导轨垂直的金属杆。当电磁铁线圈两端、,导轨两端、, 分别接到两个不流电源上时,便在导轨上滑动。下列说法正确的是()。 A若接正极,接负极,接正极,接负极,则向右滑动B若接正极,接负极,接负极, 接正极,则向右滑动 C若接负极,接正极,接正极,接负极,则向左滑动D若接负极,接正极,接负极,接正极,则向左滑动 例3-3 如图所示,磁感应强度大小为的匀强磁场方向斜向右上方,与水平方向所夹 的锐角为45°。将一个34金属圆环置于磁场中,圆环的圆心为,半径为,两条半径 和0 相互垂直,且沿水平方向。当圆环中通以电流I时,圆环受到的安培力大小为()。 A 2 B 32 CD 2 例3-4 如图所示,边长为的等边三角形导体框是由3根电阻均为 3 的导体棒构成, 磁感应强度为的匀强磁场垂直导体框所在平面,导体框两顶点与电动势为,内阻为 的电源用电阻可忽略的导线相连,则整个线框受到的安培力大小为()。 A 0B3 C2 D 例4-1 如图所示,在倾角为的光滑斜面上,垂直斜面放置一根长为、质量为的直导体棒,当通以图示方向电流I时,欲使导体棒静止在斜面上,可加一平行于纸面的匀强磁场,当外加匀强磁场的磁感应强度的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,下列说法中正确的是()。 A 此过程中磁感应强度逐渐增大 B 此过程中磁感应强度先减小后增大 C 此过程中磁感应强度的最小值为sin D 此过程中磁感应强度的最大值为 tan 例4-2 【上海卷】如图所示,质量为、长度为的直导线用两绝缘细线悬挂于、′, 并处于匀强磁场中,当导线中通以沿正方向的电流,且导线保持静止时悬线与 竖直方向夹角为。磁感应强度方向和大小可能为()。 A 正向,tan B 正向, C 负向,tan D 延悬线向上,sin 例4-3 【新课标全国Ⅰ卷】如图,一长为10 的金属棒用两个完全相同的弹 簧水平地悬挂在匀强磁场中,磁场的磁感应强度大小为0.1 ,方向垂直于纸面向里;弹簧上端固定,下端 与金属棒绝缘。金属棒通过开关与一电动势为12 的电池相连,电路总电阻为2Ω。已知开关断开时两弹簧的伸长量均为0.5 ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 ,重力加速度大小取10 / 2。判断开关闭合后金属棒所受安培力的方向,并 求出金属棒的质量。 例5-1 如图所示,一个长方形线框静止放在同一平面内直导线附近,线框可以自由移动, 直导线固定不动。当直导线和线框中分别通以图示方向的恒定电流′和时,则线框的受 力情况和运动情况是()。 A 线框四个边受到安培力的作用 B 线框仅左边和右边受到安培力 C 线框向左运动 D 线框向右运动

高中物理20种电磁学仪器

高中物理20种电磁学仪器 1.电视机原理 1.电视机的显像管中,电子束的偏转是用磁偏转技术实现的.电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图所示.磁场方向垂直于圆面.磁场区的中心为O,半径为r.当不加磁场时,电子束将通过O点而打到屏幕的中心M点.为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感应强度B应为多少? 解析:如图所示,电子在磁场中沿圆弧ab运动,圆心为O,半径为R,以v表示电子进入磁=场时的速度,m、e分别表示电子的质量和电荷量,则 1 2 eUmv 2 evB 2 mv R 又有tan 2 r R 由以上各式解 得: B 12mv re tan 2 2.电磁流量计 2.电磁流量计广泛应用于测量可导电液体(如污水)在管中的流量(在单位 时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图所示的横 截面为长方形的一段管道.其中空部分的长、宽、高分别为图中的a、b、c.流 量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金 属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度B的匀强磁场,磁场方向垂直前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R的电流表的两端连接,I表示测得的电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为() A. Ic bR Ba B. I b aR Bc

C.IcRa Bb D.IRbc Ba 3.质谱仪 3.如图是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子束轰击,失去 一个电子变成正一价的分子离子。分子离子从狭缝s1 以很小的速度进入电压为U的加速电场区(初速不 计),加速后,再通过狭缝s2、s3射入磁感强度为B 的匀强磁场,方向垂直于磁场区的界面PQ。最后,分 子离子打到感光片上,形成垂直于纸面而且平行于狭 缝s3的细线。若测得细线到狭缝s3的距离为d,试 导出分子离子的质量m的表达式。 解析:以m、q表示离子的质量电量,以v表示离子从狭缝s2 射出时的速度,由功能关系可得 射入磁场后,在洛仑兹力作用下做圆周运动,由牛顿定律可得 式中R为圆的半径。感光片上的细黑线到s3缝的距离d=2R 解得 4.磁流体发电 4.磁流体发电是一种新型发电方式,图1和图2是其工作原理示意图。图1中的长方体是发电导管,其中空部分的长、高、宽分别为l、a、b,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻R1相连。整个发电导管处于图2中磁

高中物理电磁学部分教学

高中物理电磁学部分教学 高中物理电磁学部分教学【1】 【摘要】随着电磁技术在现代科技的应用,电磁学部分在高中物理的教学中的重要性逐渐增加。 本文对高中电磁学部分的教学结构及有效教学方法进行了分析和探讨。 【关键词】高中物理;电磁学;教学研究 随着新课程改革的不断实施,新型的高中教学方法更加重视了所学理论知识与实际应用的结合。 对于高中物理教学而言,更加重视了物理知识与现代科技、现代生产和现代生活的结合,因为只有这样才能通过理论联系实际,强化学生对所学知识的应用能力,进而提高学生对物理知识的理解和掌握。 随着现代科技的迅速发展,电磁技术得到了广泛的应用,从一些高端科技到我们实际的生活,都会遇到对电磁技术的利用,因此,更加体现出了电磁学部分在高中物理的教学中的重要性。 笔者结合多年的高中物理教学经验,对高中物理电磁学部门的教学做了如下分析和研究。 一、高中电磁学部分的教学结构分析 高中物理电磁学部分的教学内容主要是对学习和研究电磁现象的一些规律及其对这些规律的实际应用,具体主要的内容包括电流现象、静电现象、磁现象、电磁场和电磁辐射等。

在实际的电磁理论之中,磁现象和电现象是一种不可分割的紧密联系体,但为了保证学生能够真正理解和掌握相关知识内容,进而培养学生运用电磁学知识解决和分析问题的能力,往往在教学中将磁现象和电现象分开处理。 只有让学生透彻地掌握磁学和电学的单一原理和应用,才能真正明白电磁学的基本原理和规律,进而将分散的、孤立的教学变成结构化、系统化的教学,让学生真正明白电磁学中电学和磁学的相互联系。 为此,高中物理教学应从弄清物理情境、掌握内在基本原理和锻炼知识运用能力三个方面来分析电磁学教学。 例如,在讲解电磁学中“带电粒子在复合场中的运动轨迹”问题时,首先让学生弄清带电粒子分别在电磁和磁场中的运动轨迹,让学生在头脑中形成“抛物线”运动和“圆”运动的全过程,进而在脑海中抽象出物理模型,建立清晰正确的物理情境。 其次,分别对带点粒子在电场和磁场中的运动原理进行讲解,让学生能够在带电粒子的受力大小及方向等方面深入理解带电粒子 在电磁场中运动的物理知识,进而明确为什么会在电场中沿“抛物线”运动而在磁场中沿“圆”运动。 再次,在学生真正掌握理解现象和原理的基础之上,分析和解决实际生活当中的相关物理问题,如磁悬浮列车的运动原因、轰击电子束加速等,进而提高学生对知识点的掌握和应用能力。 二、高中物理电磁学部分教学方法探讨

高中【物理】高中物理电磁学所有概念-知识点-公式

高中物理电磁学所有概念-知识点-公式 十、电场 1.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电 势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E =U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 注:

高中物理电磁学公式总整理

高中物理電磁學公式總整理 電子電量為19106.1-?庫侖(Coul),1Coul=181025.6?電子電量。 一、靜電學 1.庫侖定律,描述空間中兩點電荷之間的電力 r r q kq r r q q F ??41 221221012== πε ,2 2 1221041r q kq r q q F ==πε,229/109Coul m Nt k ??≈ 由庫侖定律經過演算可推出電場的高斯定律kq q A d E E πε40 ==?=Φ?? 。 2.點電荷或均勻帶電球體在空間中形成之電場 r r kq q F E ?211== ,21r kq q F E == 導體表面電場方向與表面垂直。電力線的切線方向為電場方向,電力線越密集電場強度越大。 平行板間的電場A kq A kq E ππ224= = 3.點電荷或均勻帶電球體間之電位能r q kq U e 2 1=。本式以以無限遠為零位面。 4.點電荷或均勻帶電球體在空間中形成之電位r kq q U V e 1 == 。

導體內部為等電位。接地之導體電位恆為零。 電位為零之處,電場未必等於零。電場為零之處,電位未必等於零。 均勻電場內,相距d 之兩點電位差θcos Ed d E V =?=? 。故平行板間的 電位差d A kq Ed V π2= =?。 5.電容V C q V q C ?=?= ,,為儲存電荷的元件,C 越大,則固定電位差下可儲存的電荷量就越大。電容本身為電中性,兩極上各儲存了+q 與 -q 的電荷。電容同時儲存電能,C q CV U E 222 2==。 a.球狀導體的電容k r r kq q V q C === ,本電容之另一極在無限遠,帶有電荷-q 。 b.平行板電容kd A A kqd q V q C ππ22== = 。故欲加大電容之值,必須增大極板面積A ,減少板間距離d ,或改變板間的介電質使k 變小。 二、電路學 1.理想電池兩端電位差固定為ε。實際電池可以簡化為一理想電池串連

用思维导图学习高中物理复习电磁学

用思维导图学习高中物理电磁学 物理是高中课程的主要组成部分,在我们的成长过程中学习物理方面的知识,对我们日后的发展有很大的影响和帮助。电磁学是物理学的分支,其中包含电学和磁学,主要学习电磁波、电磁场以及带电物体动力学的相关内容。在学习电磁学的过程中使用思维导图,能够弥补直线性笔记的缺陷,将抽象的物理知识转化为直观、易懂的逻辑顺序图,能够帮助我们理清学习思路,强化物理知识,提高对物理学习的兴趣。 一、思维导图的概述 思维导图也称心智导图、脑力激荡图、树状图、概念地图和灵感触发图,主要用来表达发散性思维,是一种简单、有效的图形思维工具。思维导图可以将图片与教学内容结合在一起,使用相关的层级图将教学重点表现出来。在主题关键词、图像、颜色之间建立记忆链接,发挥人的左右脑机能,借助阅读、记忆和思维的规律帮助人们在科学发展与逻辑想象中建立平衡关系,激发人们的潜能,将抽象的内容形象化。思维导图是在众多感觉、记忆、思考、数字、食物、颜色和节奏中找寻一个关节点,形成思考中心,在点与点的连接中构建放射性的立体结构。每个连接点都是人们的记忆,利用思维导图的形式能够在自己的脑海中建立数据库[1]。 二、高中物理电磁学的学习现状

(一)物理逻辑思维能力较强,学生对物理的学习兴趣低 在高中物理学习过程中,教材内容较单一,我们在学习理论知识的过程中感到非常的枯燥和无聊。我们在高中的物理学习中更重视考试结果,忽视了在学习过程中的情感体验和学习能力的培养。同时,制定的教学目标过高,使我们感到压力太大,对学习物理会产生畏惧心理。在面对着抽象的电磁学内容时,我们对知识的理解和掌握不到位。在学习过程中遇到了很多的重点和难点,我们只是死记硬背公式,解题思路不能举一反三,将考试的重点标记出来,不考试的内容就忽略过去,在学习过程中比较被动。例如,在学习“恒定电流”这一章节时,需要掌握电阻、欧姆、焦耳等三大定律,我们会先将各个定律的内容学习一遍,然后将定义和相关公式背过。这样做我们虽然知道各个定律的重要性,但是根本没有对其理解。我们的学习兴趣低,对知识点的理解不够透彻,在电磁学教学活动中没有积极性和主动性,学习效率低[2]。 (二)自主学习能力差 长期依赖“被动式”学习方式,抑制了我们自主学习能力的提高。我们在学习电磁学内容时思维处于一种固化的状态,对教材资料中的内容缺乏理解,没有主动探索精神。遇到难以解决的问题就逃避过去,等到学期末统一复习时才发

高中物理电学公式大全

高中物理电学公式总结大全 一.电场 1.两种电荷、电荷守恒定律、元电荷: 2.库仑定律:F=kQ1Q2/r2(在真空中) 3.电场强度:E=F/q(定义式、计算式) 4.真空点(源)电荷形成的电场E=kQ/r2 5.匀强电场的场强E=U AB/d 6.电场力:F=qE 7.电势与电势差:U AB=φA-φB,U AB=W AB/q=-ΔE AB/q 8.电场力做功:W AB=qU AB=Eqd 9.电势能:E A=qφA 10.电势能的变化ΔE AB=E B-E A 11.电场力做功与电势能变化ΔE AB=-W AB=-qU AB (电势能的增量等于电场力做功的负值)0 12.电容C=Q/U(定义式,计算式) 13.平行板电容器的电容C=εS/4πkd 14.带电粒子在电场中的加速 (V o=0):W=ΔE K或qU=mV t2/2,V t=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度V o进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=V o t(在带等量异种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m 二、恒定电流 1.电流强度:I=q/t 2.欧姆定律:I=U/R 3.电阻、电阻定律:R=ρL/S 4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR 5.电功与电功率:W=UIt,P=UI 6.焦耳定律:Q=I2Rt 7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R 8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总

高中物理概念电磁学

一、库伦定律 ①电荷: ①电荷量(简称电量):用来度量带电体(静电)所含电量的多少。其符号是Q,单位是库伦(简称库),用符号C表示。通常正电荷量用正数表示,负电荷量用负数表示。 ②元电荷:也可叫做基本电荷。任意电荷量都等于该元电荷的整数倍,用e 表示。e= 1.6021892×10-19C,可取e=1.6×10-19C。它是一个电子或质子所带电荷量。 ③点电荷:忽略其体积的带电质点,其所带电荷可以用Q或q来表示。 ④净电荷:在导体中,未被电性抵消的电荷量叫做净电荷量,简称净电荷。 ⑤电荷平分原理:两个点电荷或体积相等的两个电荷相遇后,各自所带的电荷量为两个点电荷电量之和的一半。(正电荷用正值代入,负电荷用负值代入。) ②库伦定律: ①概念:在真空中的两个点电荷间的作用力的大小与它们的电量乘积成正比,与它们之间距离平方成反比,作用力的方向存在于它们的连线上。其中的这种作用力叫做静电力或库伦力。其方向遵循:同种电荷相斥,异种电荷相吸 ②公式其中k就是静电力恒量,在真空条件下其值为 k=9.0×109 二、电场、电场强度和电场线 ①电场: ①电场:电荷间的互相作用是通过电场发生的,只要有电荷,其周围就有电场。静电力就是电场对其他电荷的作用力。 ②对电场的认识:电场对处于其中的电荷有力的作用,可对电荷做功,从而具有能量和动量,而没有静止质量,具体形状等。 ②电场强度和电场线: ①电场强度:①概念:我们定义:电场力与检验电荷量的比值叫做其电场的电场强度。它是用来描述场源电荷发出电场的性质的物理量,与检验电荷无关。其符号是E,单位是N/C。电场强度是个矢量,其方向就是场源电荷的电场对 电场内正电荷的静电力方向。②k就是静电力恒量,Q是源电荷的电量。 ②电场线:①概念:电场线是这样一种曲线,它能表示电场强度,它每一点的切线方向与该处电场强度方向一致。电场强度方向就是电场线的方向。 ②电场线的性质:电场线的疏密可以表示电场强度的大小,电场线越密,电场强度越大。场源电荷为正电荷的电场线箭头指向背离源电荷方向,场源电荷为负电荷的电场线箭头指向靠近源电荷方向。

高考物理专题电磁学12道精选题附答案

选择题:第一道电场中能的性质 1.(2017·全国卷Ⅲ,21,6分)一匀强电场的方向平行于xOy平面,平面内a、b、c三点的位置如图5所示,三点的电势分别为10 V、17 V、26 V.下列说法正确的是() 图5 A.电场强度的大小为2.5 V/cm B.坐标原点处的电势为1 V C.电子在a点的电势能比在b点的低7 eV D.电子从b点运动到c点,电场力做功为9 eV 2.(2017·全国卷Ⅰ,20,6分)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r的关系如图4所示.电场中四个点a、b、c和d的电场强度大小分别为E a、E b、E c和E d.点a到点电荷的距离r a与点a的电势φa已在图中用坐标(r a,φa)标出,其余类推.现将一带正电的试探电荷由a点依次经b、c点移动到d点,在相邻两点间移动的过程中,电场力所做的功分别为W ab、W bc和W cd.下列选项正确的是() 图4

A.E a∶E b=4∶1 B.E c∶E d=2∶1 C.W ab∶W bc=3∶1 D.W bc∶W cd=1∶3 3.(多选)(2019·全国Ⅱ卷·20)静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则() A.运动过程中,粒子的速度大小可能先增大后减小 B.在M、N两点间,粒子的轨迹一定与某条电场线重合 C.粒子在M点的电势能不低于其在N点的电势能 D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行

参考答案与解析 1.【解析】 如图所示,设a 、c 之间的d 点电势与b 点电势相同,则ad dc =10-1717-26=79 ,所以d 点的坐标为(3.5 cm,6 cm),过c 点作等势线bd 的垂线,电场强度的方向由高电势指向低电势.由几何关系可得,cf 的长度为3.6 cm ,电场强度的大小E =U d =(26-17) V 3.6 cm =2.5 V/cm ,故 选项A 正确;因为Oacb 是矩形,所以有U ac =U Ob ,可知坐标原点O 处的电势为1 V ,故选项B 正确;a 点电势比b 点电势低7 V ,电子带负电,所以电子在a 点的电势能比在b 点的高7 eV ,故选项C 错误;b 点电势比c 点电势低9 V ,电子从b 点运动到c 点,电场力做功为9 eV ,故选项D 正确. 2.【解析】 由图可知,a 、b 、c 、d 到点电荷的距离分别为1 m 、2 m 、3 m 、6 m ,根据点电荷的场强公式E =k Q r 2可知,E a E b =r 2b r 2a =41,E c E d =r 2d r 2c =41,故A 正确,B 错误;电场力做功W = qU ,a 与b 、b 与c 、c 与d 之间的电势差分别为3 V 、1 V 、1 V ,所以W ab W bc =31,W bc W cd =1 1,故 C 正确, D 错误. 3.答案 AC 解析 在两个同种点电荷的电场中,一带同种电荷的粒子在两电荷的连线上自M 点(非两点电荷连线的中点)由静止开始运动,粒子的速度先增大后减小,选项A 正确;带电粒子仅在电场力作用下运动,若运动到N 点的动能为零,则带电粒子在N 、M 两点的电势能相等;仅在电场力作用下运动,带电粒子的动能和电势能之和保持不变,可知若粒子运动到N 点时动能不为零,则粒子在N 点的电势能小于在M 点的电势能,即粒子在M 点的电势能不低于其在N 点的电势能,选项C 正确;若静电场的电场线不是直线,带电粒子仅在电场力作用下的运动轨迹不会与电场线重合,选项B 错误;若粒子运动轨迹为曲线,根据粒子做曲线运动的条件,可知粒子在N 点所受电场力的方向一定不与粒子轨迹在该点的切线平行,选项D 错误.

相关主题
文本预览
相关文档 最新文档