当前位置:文档之家› The Long-Term Variability of the X-Ray Sources in NGC 6946 and NGC 44854490

The Long-Term Variability of the X-Ray Sources in NGC 6946 and NGC 44854490

The Long-Term Variability of the X-Ray Sources in NGC 6946 and NGC 44854490
The Long-Term Variability of the X-Ray Sources in NGC 6946 and NGC 44854490

a r X i v :0804.1411v 2 [a s t r o -p h ] 14 J u l 2008

ApJS,in press

Preprint typeset using L A T E X style emulateapj v.10/09/06

THE LONG-TERM VARIABILITY OF THE X-RAY SOURCES IN NGC 6946AND NGC 4485/4490

Joel K.Fridriksson 1,2,Jeroen Homan 2,Walter H.G.Lewin 1,2,Albert K.H.Kong 3,and David Pooley 4

ApJS,in press

ABSTRACT

We analyze data from ?ve Chandra observations of the spiral galaxy NGC 6946and from three Chandra observations of the irregular/spiral interacting galaxy pair NGC 4485/4490,with an emphasis on investigating the long-term variability exhibited by the source populations.We detect 90point sources coincident with NGC 6946down to luminosities of a few times 1036ergs s ?1,and 38sources coincident with NGC 4485/90down to a luminosity of ~1×1037ergs s ?1.Twenty-?ve (15)sources in NGC 6946(NGC 4485/90)exhibit long-term (i.e.,weeks to years)variability in luminosity;11(4)are transient candidates.The single ultraluminous X-ray source (ULX)in NGC 6946and all but one of the eight ULXs in NGC 4485/90exhibit long-term ?ux variability.Two of the ULXs in NGC 4485/90have not been identi?ed before as ultraluminous sources.The widespread variability in both systems is indicative of the populations being dominated by X-ray binaries,and this is supported by the X-ray colors of the sources.The distribution of colors among the sources indicates a large fraction of high-mass X-ray binaries in both systems.The shapes of the X-ray luminosity functions of the galaxies do not change signi?cantly between observations and can be described by power laws with cumulative slopes ~0.6?0.7(NGC 6946)and ~0.4(NGC 4485/90).

Subject headings:galaxies:individual (NGC 6946,NGC 4485,NGC 4490)—X-rays:binaries —

X-rays:galaxies

1.INTRODUCTION

The systematic study of X-ray source populations in external galaxies ?rst became possible with the Einstein Observatory in 1978.Signi?cant advances in the ?eld were made with subsequent satellites such as ROSAT ,but a giant leap forward has been taken with Chan-dra .With its subarcsecond spatial resolution and high sensitivity it is possible to resolve the vast majority of the luminous ( 1037ergs s ?1)X-ray sources in galaxies out to distances of 20?30Mpc.In addition,the spec-trometric capabilities of the Chandra ACIS CCD detec-tor allow spectral properties of sources to be extracted.For two recent reviews of the study of X-ray sources in normal galaxies,emphasizing results from Chandra ,see Fabbiano &White (2006)and Fabbiano (2006).We now know that X-ray source populations in galaxies are dominated at high luminosities ( 1037ergs s ?1,the range typically explored with Chandra observations)by X-ray binaries (XRBs)consisting of an accreting neutron star or black hole and a stellar companion.In addition,galaxies usually have a few young supernova remnants (SNRs)in this luminosity range.Unsurprisingly,the X-ray populations in early-type galaxies (E and S0)seem to consist mostly of low-mass X-ray binaries (LMXBs),whereas galaxies with younger stellar populations (spi-ral and irregular galaxies)typically have a much higher fraction of the shorter lived high-mass X-ray binaries (HMXBs).In galaxies with a high star formation rate HMXBs are especially common.

1

Department of Physics,Massachusetts Institute of Technology,Cambridge,MA 02139;joelkf@https://www.doczj.com/doc/594645858.html,.

2MIT Kavli Institute for Astrophysics and Space Research,Cambridge,MA 02139.

3Institute of Astronomy and Department of Physics,National Tsing Hua University,Hsinchu,Taiwan 30013.

4Department of Astronomy,University of Wisconsin–Madison,Madison,WI 53706.

An important class of sources in external galaxies are the so-called ultraluminous X-ray sources (ULXs),usu-ally de?ned as non-nuclear sources with implied isotropic X-ray luminosities ≥1039ergs s ?1.Detections of ULXs with luminosities as high as ~1041ergs s ?1have been reported (see,e.g.,Davis &Mushotzky 2004).The na-ture of ULXs is still debated,and it has been argued that at least some of them might be a new class of objects,so-called intermediate-mass black holes (IMBHs)with masses M ~102?104M ⊙(see,e.g.,Miller &Colbert 2004).

We present in this paper the X-ray source population study of the spiral galaxy NGC 6946and the interact-ing irregular/spiral system NGC 4485/4490.A special emphasis is placed on studying the long-term (weeks to years)variability properties of the source populations.These galaxies were chosen because they are nearby (D 8Mpc)and have multiple (three or more)long ( 20ks)Chandra ACIS exposures spanning a baseline of a few years.Both show an enhanced star formation rate.The spiral NGC 6946also has the fortunate char-acteristic of being observed nearly face-on,and the NGC 4485/90system has low Galactic extinction and a large number of ULXs.For more background information on the galaxies,see §§3.1and 3.2.

Not much work has been done on the long-term vari-ability of X-ray sources in external galaxies,since Chan-dra observations at multiple epochs are usually not avail-able.We know from observations in our own Galaxy that time variability of various kinds,including tran-sient outbursts,eclipses,dips,as well as less severe vari-ations in ?ux,is very common among XRBs.Temporal and spectral analysis carried out for the most luminous sources in nearby galaxies shows behavior similar to that in Galactic XRBs,clearly pointing to XRB populations (see Fabbiano 2006,and references therein).For ex-ample,Kong et al.(2002)?nd that among 204detected

2Fridriksson et al.

sources in M31,50%are variable on timescales of months and 13are transients.Sivako?et al.(2005b)?nd short-timescale ?ares in 3out of 157sources in the elliptical galaxy NGC 4697,and

two

of

the

?ares have durations and luminosities similar to Galactic superbursts (ther-monuclear bursts with very long (hours)durations and very large ?uences;see Kuulkers 2004).Sivako?et al.(2005a)also ?nd long-term variability in 26out of 124sources in NGC 4697,and 11of those are transient candidates.Zezas et al.(2006),analyzing seven Chan-dra observations of the Antennae galaxies,?nd intensity and/or spectral variability among sources on timescales of years,months,days,and hours.Overall,~50%of the sources detected in each observation show either spec-tral or intensity variation but do not all follow a com-mon trend,indicating that there are various classes of sources.Of the 14ULXs in the Antennae,12show long-term variability.In general,variability of some sort is very common among ULXs (see Fabbiano &White 2006;Fabbiano 2006).Despite widespread variability in lumi-nosity among individual sources,X-ray luminosity func-tions (XLFs)seem to be remarkably stable from one observation to another,as indicated by observations of NGC 5128(Kraft et al.2001),M33(Grimm et al.2005),and the Antennae (Zezas et al.2007).

The organization of the paper is as follows.In §2we describe the common analysis steps performed for both galaxies,including source detection,photometry,the construction of light curves and hardness ratios,and testing for ?ux and spectral variability.In §3we discuss general properties and the observations of the galaxies and present the results of the source detection.In §4we present and discuss our results on various properties of the source populations in the galaxies.Finally,in §5we brie?y summarize our results.Included are tables with the source catalog for each galaxy and various observed and derived parameters for each source.

2.DATA ANALYSIS

The Chandra observations of both galaxies were an-alyzed with the CIAO software,version 3.4(CALDB ver. 3.3.0),and with ACIS Extract (hereafter AE),version 3.131.AE is an ACIS point source extrac-tion package developed at Pennsylvania State Univer-sity (Broos et al.2002),which assists in a large vari-ety of complex data processing tasks.The procedures used in AE are described in Townsley et al.(2003)and Getman et al.(2005).We note that all errors mentioned in this paper are,unless explicitly stated otherwise,Pois-son errors with a con?dence level corresponding to 1σGaussian.They were computed using the Gehrels ap-proximation of Poisson limits (Gehrels 1986).

2.1.Source detection

The level 1event ?les from the Chandra data archive were reprocessed,and new level 2event ?les created by following the standard ACIS data preparation procedure recommended by the Chandra X-ray Center (CXC).5The data were checked for periods of unusually high back-ground.No such periods were found in any observation of either galaxy.A monochromatic exposure map eval-uated at 1.5keV was created for each observation,and

5

See https://www.doczj.com/doc/594645858.html,/ciao/guides/acis

2,2,2

2,

8,8

manual/index.html .

X-Ray Variability in NGC6946,NGC4485/903 the centroid of the extraction regions as recommended in

Broos et al.(2002).

2.2.Light Curves

AE is capable of performing extensive broadband pho-

tometry.For all sources an estimate of both the photon

?ux and the energy?ux in the0.3?7keV band was com-

puted from the AE results for each observation,as well

as for the co-added exposure.For all but the faintest

sources the photon?ux was computed by dividing the

number of net(i.e.,background-subtracted)counts by

the exposure time and the mean e?ective area at the

source location for a given energy band(the MEAN

,(1)

T

and the hard color as

H?M

HR2=

4Fridriksson et al.

to our using 7keV.However,for the vast majority of sources only a very small fraction of the counts in the 0.3?8keV band is between 7and 8keV,so this should have a negligible e?ect.They also use a slightly di?er-ent method to account for variations in e?ective area.As Prestwich et al.(2003)discuss in their paper,absorption will tend to blur the distinction in a color-color diagram between the di?erent source types.However,this e?ect should not be very severe for the galaxies studied in this paper;although NGC 6946su?ers from substantial ex-tinction,it is observed face-on,and the absorption col-umn in the direction of NGC 4485/90is low (see §3).2.4.Variability

We compute a signi?cance parameter for long-term ?ux variability for each source:

S ?ux =max i,j

|F i ?F j |

σ2F i +σ2F j ,(3)where F i denotes the photon ?ux of a source in the

i th Chandra observation,and σF i is the correspond-ing error.We de?ne a source as variable if S ?ux >3.We also quantify the variability by computing the ratio R =F max /F min .We consider a source to be a tran-sient candidate if its measured ?ux is consistent with zero (within ~1σerror)in at least one observation,and if the source is also clearly variable (S ?ux >3).

We test for short-term ?ux variability (within single observations)by performing a one-sided Kolmogorov-Smirnov test for each source in each observation,compar-ing event times to a uniform count-rate model.We de?ne a source as showing evidence for variability if the signi?-cance of the computed K-S statistic is less than 3×10?3(i.e.,if the null hypothesis that the count rate is uniform can be rejected at the 99.7%level or more,corresponding to approximately 3σGaussian con?dence).

To search for long-term spectral variability,we com-pute signi?cance parameters for the variability in the hardness ratios.They are de?ned analogously to the ?ux variability parameter above.Again,we require 3σcon?dence to classify a source as variable.

2.5.ROSAT and XMM-Newton Data

Apart from Chandra ,there are three other X-ray tele-scopes that have had good enough spatial resolution to possibly be of signi?cant value to this study.The Ein-stein HRI,the ROSAT HRI,and the XMM-Newton EPIC cameras all had or have an on-axis resolution of 10′′.However,the Einstein and ROSAT HRIs were only sen-sitive in the 0.15?3.5and 0.1?2.4keV bands and had negligible energy resolution.None of the galaxies ana-lyzed in this paper was observed with the Einstein HRI.For the ULXs that were well resolved from neighbor-ing bright sources the long-term light curves were ex-tended by adding data points from ROSAT and XMM-Newton observations.It was usually necessary to use small extraction regions to minimize the contamination from nearby sources and from the di?use emission in which many sources are embedded.

2.5.1.ROSAT

ROSAT count rates were derived from the RDF (ra-tionalized data format)?les available from the ROSAT

TABLE 2

ROSAT HRI Observations of NGC

6946Start Date Seq.ID Exp.a (ks)

1994May 14rh600501n0059.891995Aug 13rh600718n0021.511996Aug 10

rh500476n00

8.36

a Good live exposure time.

Archive.The event data ?les were corrected for the HRI aspect error (see,e.g.,David et al.1999)using the cor-rection script developed at the Smithsonian Astrophys-ical Observatory (SAO).8Background-subtracted count rates were extracted using the ASTERIX software pack-age (ver. 2.3-b2).The xrtsort ,xrtsub ,and xrtcorr tasks were used,which automatically make dead-time,vignetting,and quantum e?ciency corrections.In all cases counts were extracted from a circle of radius 8′′.For point sources with an o?-axis angle 5′the PSF encircled energy fraction for such a circle is ~0.84(David et al.1999;Zimmermann et al.1998).The count rates were therefore divided by this number to correct for the counts missed by the ?nite extraction region.

To facilitate comparison with the Chandra results count rates from ROSAT were converted to energy ?ux in the 0.3?7keV band using PIMMS.To determine the spectral model to use for the conversion the eight mod-els described in §2.2were ?tted to the source spectrum from the co-added Chandra exposure,and the best-?tting model used.

2.5.2.XMM-Newton

For XMM-Newton data a new analysis was performed for each of three EPIC detectors using the SAS software,versions 7.0.0and 7.1.0,and the latest available cali-bration ?les at the time of the analysis.Starting with the original data ?les (ODFs)from the XMM-Newton archive,MOS and PN data were reprocessed using the emproc and epproc tasks.After excluding periods of high background,source spectra were extracted with the evselect task.The eregionanalyse task was used to center the extraction radius on the centroid of the counts distribution for each source.Counts were extracted from circles with radii in the range 8′′to 15′′as deemed ap-propriate in each case.The event selection criteria used for the spectral extraction were PATTERN =0?12and FLAG =#XMMEA

X-Ray Variability in NGC6946,NGC4485/90

5

Fig. 1.—DSS images of NGC6946(left)and NGC4485/4490(right)with positions of detected X-ray sources overlaid.Foreground stars are represented with plus symbols,historical supernovae with boxes,SNRs with diamonds,ULXs with crosses,and other sources with circles.Blue indicates that long-term variability is detected,green that it is not,and red denotes transient candidates.The white ellipses are the D25elliptical isophotes and the yellow circle encloses the central area in NGC6946that was excluded from analysis.

?uxes for the three instruments were combined into a single?ux result by taking the mean weighted with the inverse variance(i.e.,squared error)of each individual ?ux.

3.OBSERVATIONS AND SOURCE DETECTIONS

3.1.NGC6946

NGC6946is one of the closest large spiral galax-ies and is seen nearly face-on.It is classi?ed by de Vaucouleurs et al.(1991)as type SAB(rs)cd.It has been extensively studied in almost all wavelength bands and has been shown to have strong nuclear starburst activity(Elmegreen et al.1998b).High star formation activity in its disk has also been observed(Sauty et al. 1998),and in agreement with this NGC6946has been host to nine recorded supernovae in the last91years (three in the past7years),currently the highest known number of historical supernovae in any galaxy.The global star formation rate in NGC6946for stars in the mass range2?60M⊙is estimated by Sauty et al. (1998)to be~4M⊙yr?1,and Crosthwaite&Turner (2007)estimate the dynamical mass of the galaxy to be ~2×1011M⊙.

The distance to NGC6949is given by de Vaucouleurs (1979)as5.1Mpc and is listed as5.5Mpc in Tully(1988), assuming a Hubble constant value of75km s?1Mpc?1. More recently,Eastman et al.(1996)derive a distance of5.7±0.7Mpc based on a Type II supernova,and Sharina et al.(1997)?nd a distance of6.4±0.4Mpc based on photometric observations of the brightest stars in the galaxy.Finally,Karachentsev et al.(2000)es-timate the distance to the NGC6946galaxy group (consisting of NGC6946and seven other small galax-ies)to be5.9±0.4Mpc,based on observations of the brightest blue giants in the galaxies.We choose to adopt a distance of5.9Mpc,as do Holt et al.(2003),Schlegel et al.(2003),and Larsen et al.(2002).The Galactic absorption column in the direction of NGC6946 is2.0×1021cm?2(Dickey&Lockman1990;Stark et al. 1992;Kalberla et al.2005).

NGC6946was?rst observed in X-rays with the Ein-stein satellite;three observations with the Einstein IPC were made in1979–1981.Analyzing these observations, Fabbiano&Trinchieri(1987)resolve the X-ray emission from the galaxy into two peaks.NGC6946was observed with the ROSAT PSPC in1992,twice with the ASCA satellite in1993and1994,and three times with the ROSAT HRI in1994–96.Schlegel(1994b)analyzes the ROSAT PSPC observation and resolves emission from the galaxy into nine point sources,as well as?nding ev-idence for di?use emission.Analyzing the?rst of the three ROSAT HRI observations and the second of the two ASCA observations Schlegel et al.(2000)detect14 point sources and di?use emission from the galaxy.Most recently,NGC6946has been observed?ve times with Chandra between2001and2004,and11times with XMM-Newton in2003–2006.The most detailed studies so far of the X-ray emission components of NGC6946 are presented in a pair of papers based on the?rst of the ?ve Chandra observations.Holt et al.(2003)study the point source population and?nd72sources;the di?use emission is extensively studied in Schlegel et al.(2003). The Chandra observations of NGC6946are summa-rized in Table1.These are all ACIS-S full-frame imag-ing observations taken in Timed Exposure mode.The frame time was in all cases set at the standard value of 3.2s,and events were telemetered in the Faint format. The observations span a period of about39months and have a cumulative good live exposure time of172.5ks. In each observation the majority of sources falls on the back-illuminated S3chip,and a smaller portion falls on the front-illuminated S2and/or S4chips.None of the observations covers the whole D25isophote.

6Fridriksson et al.

TABLE3

XMM-Newton EPIC Observations of NGC6946

MOS-1MOS-2PN

X-Ray Variability in NGC6946,NGC4485/907

TABLE4

Chandra Observations of NGC4485/4490

Start Date Instrument Obs.ID Exp.a(ks)Data Mode b 2000Nov3ACIS-S157919.52F 2004Jul27ACIS-S472538.41VF 2004Nov20ACIS-S472639.59VF

a Good live exposure time.

b Telemetry formats:F=Faint,VF= Very Faint.

detections),and23.6sources in the hard band,or45% of our53detections.Overall,we estimate that~28of our total85detections in the0.3?7keV band can be expected to arise from CBSs.

The ROSAT HRI and XMM-Newton EPIC observa-tions of NGC6946are summarized in Tables2and3.A total of11XMM-Newton EPIC observations have been made,all of which su?er from periods of high back-ground.Six of them are completely unusable and were therefore not analyzed further,and they are not included in Table3.

3.2.NGC4485/4490

NGC4485and NGC4490are a closely interacting pair of galaxies,variously classi?ed as spiral or irregular sys-tems(see Fig.1).In de Vaucouleurs et al.(1991)NGC 4490is classi?ed as type SB(s)d,and the smaller com-panion NGC4485as type IB(s)m.Both galaxies show signs of tidal disruption.Tully(1988)gives separate dis-tances of7.8Mpc(NGC4490)and9.3Mpc(NGC4485) to the two galaxies,assuming a Hubble constant value of75km s?1Mpc?1.These distances are adopted by Roberts&Warwick(2000)and Liu&Bregman(2005). Such disparate distances are,however,unphysical for such a closely interacting system.Roberts et al.(2002), Elmegreen et al.(1998a),and Read et al.(1997)there-fore assume a distance of7.8Mpc to both galaxies.

A consistent distance of8Mpc to the pair is adopted by Clemens&Alexander(2002),Clemens et.al(1998, 1999,2000),Thronson et al.(1989),and Viallefond et al. (1980),based on the suspected membership of the sys-tem in the CVn II cloud(de Vaucouleurs et al.1976), and this is the value we used.The Galactic absorp-tion column in the direction of NGC4485/4490is1.8×1020cm?2(Dickey&Lockman1990;Stark et al.1992; Kalberla et al.2005).

NGC4485/90has been studied at radio,infrared, and optical wavelengths and shows evidence for en-hanced star formation(Viallefond et al.1980;Klein 1983;Thronson et al.1989).Clemens et.al(1999) estimate a star formation rate in NGC4490of~4.7M⊙yr?1and a dynamical mass of~1.6×1010M⊙within8kpc(the companion NGC4485being less mas-sive by about a factor of8).The system was?rst ob-served in X-rays with the ROSAT PSPC in1991.Ana-lyzing those data,Read et al.(1997)detected four point-like sources,three in NGC4490and one in NGC4485. The galaxy pair was subsequently observed three times with the ROSAT HRI in1995and1996.Analyzing two of those observations,Roberts&Warwick(2000)only found one additional point source,an apparently tran-sient source coincident with NGC4490.Liu&Bregman

TABLE5

ROSAT HRI Observations of NGC

4485/4490

Start Date Seq.ID Exp.a(ks)

1996Jun18rh600855n0026.70

1996Nov26rh600855a0124.58

Note.—One additional ROSAT HRI ob-

servation was made.We did not make use of

it due to its shortness.

a Good live exposure time.

(2005)analyzed all three ROSAT observations as part of their study of ULXs using the ROSAT HRI archive. They found the same sources as Roberts&Warwick (2000).Most recently,the system was observed three times with Chandra between2000and2004and once with XMM-Newton in2002.Analyzing the?rst of the Chandra observations,Roberts et al.(2002)found31 point sources,29of those being coincident with NGC 4490,one coincident with NGC4485,and one source lo-cated in a bridge between the galaxies.

The Chandra observations of the NGC4485/90sys-tem are summarized in Table4.These are all ACIS-S full-frame imaging observations taken in Timed Expo-sure mode.The frame time was in all cases set at the standard value of3.2s,and events were telemetered in either the Faint or Very Faint formats.The observations span a period of about4yr and have a cumulative good live exposure time of97.5ks.In all three observations all the sources coincident with NGC4485/90fall within the S3chip.

The data were analyzed as described in§2.Source detection was performed on a8.8′×8.7′rectangle en-compassing the system.A total of38reliable source de-tections down to a luminosity of~1×1037ergs s?1were found to be coincident with the two galaxies.Of these, 33are coincident with NGC4490,three coincident with NGC4485,and two more are located in the bridge be-tween the galaxies(see Fig.1).The source catalog is presented in Table10.An adaptively smoothed color-coded image based on the co-added Chandra exposure is shown in Figure2.

Of the38sources,27had previously been detected by Roberts et al.(2002)and11had not been seen before. In addition,four of the sources reported in Roberts et al. (2002)fell below our threshold of detection signi?cance and are therefore not included in our https://www.doczj.com/doc/594645858.html,-paring our source locations to the USNO-A2.0Cata-logue(Monet et al.1998),we?nd no close matches be-tween the locations of foreground stars and our detected sources.There have been two historical supernovae in NGC4490:SN1982F,which is not detected,and re-cently SN2008ax.

We estimate how many of our detections can be ex-pected to arise from CBSs using the same procedure as the one described for NGC6946in§3.1.We use the re-sults of Clemens et.al(1998)to estimate that a typical absorption column through the NGC4485/90system is ~3.5×1021cm?2,giving a total absorption column of ~3.7×1021cm?2for CBSs behind NGC4485/90.Ap-plying the formulae of Bauer et al.(2004)then yields an estimate of~5for the expected number of CBSs among

8Fridriksson et

al.

Fig. 2.—Adaptively smoothed color-coded images based on the co-added Chandra exposures of NGC6946(left)and NGC4485/4490 (right).Red corresponds to X-rays with energies0.3?1keV,green to1?2keV,and blue to2?7keV.

our38detected sources.For comparison,we note that

Roberts et al.(2002),using the results of Giacconi et al.

(2001),attribute<4.5of their detections to CBSs.

The ROSAT HRI and XMM-Newton EPIC observa-

tions of NGC4485/90are summarized in Tables5and6.

The?rst of the ROSAT observations is too short to be

of signi?cant use to this study,and it is not included in

Table5.

4.PROPERTIES OF THE SOURCE POPULATIONS

4.1.Flux Variability

The variability properties of the sources in NGC6946

are summarized in Table11.Based on the source?ux

variability parameter S?ux de?ned in§2.4we classify

25of the85nonforeground sources,or29%,as variable

on timescales of weeks,months,or years.Of these,17

sources are seen to vary by more than a factor of2,and

we classify11sources(or13%of the85)as transient

candidates(two of those are recent supernovae).Ev-

idence for short-term(hours)variability,as de?ned in

§2.4,is seen in four,or5%,of the85sources.Two

Fig. 3.—Long-term light curve of the ULX in NGC6946

(CXOU J203500.7+601130).Diamonds represent Chandra ACIS

observations,crosses represent XMM-Newton EPIC observations,

and squares represent ROSAT HRI observations.

of those also show long-term variability.Unsurprisingly,

none of the sources associated with SNRs from the lists

of Matonick&Fesen(1997)and Lacey&Duric(2001)

shows variability of any kind above a level of2σ,with

the exception of the ULX(see§4.2.2).

The variability properties of the sources in NGC

4485/90are summarized in Table12.We classify15

of the38sources,or39%,as showing variability on

timescales of months or years.Of these,10sources vary

by more than a factor of2,and four sources(or11%of

the38)are transient candidates.Evidence for short-term

variability is seen in four of the38sources.All of those

also show long-term variability.

Due to the limited number of counts within each obser-

vation for most of the sources showing short-term vari-

ability,it is very di?cult(with one marginal exception)

to draw any concrete conclusions about the nature of the

variability(e.g.,to distinguish between burst-like behav-

ior and more continuous decline or rise in count rate).

The brightest of these sources,CXOU J203500.1+600908

in NGC6946,seems in the?rst Chandra observation to

show a burst-like increase in count rate on a timescale of

~5?10ks superposed on a steady decline in count rate

throughout the whole observation.

Where possible,the baseline of the long-term light

curves of the ULXs was extended by adding data points

from ROSAT HRI and XMM-Newton observations as de-

scribed in§2.5.Long-term light curves of the10bright-

est sources in NGC6946are shown in Figures3and4,

and of the10brightest sources in NGC4485/90in Fig-

ures5and 6.We emphasize that the error bars in

the light curves contain only the1σPoisson errors in

the counts.The ROSAT and XMM-Newton data are

generally of much lower quality than the Chandra data,

and comparisons of luminosities between di?erent instru-

ments should be regarded with some caution.Various

factors(e.g.,cross-calibration issues and uncertainties in

instrument responses and in assumed spectral shapes for

energy conversions)are likely to add to the errors.To

X-Ray Variability in NGC6946,NGC4485/909

TABLE6

XMM-Newton EPIC Observation of NGC4485/4490

MOS-1MOS-2PN

10

Fig.upper limits with

(1982)report absorption corrected luminosities of~7×1038ergs s?1and~4×1038ergs s?1in the0.2?4keV band(after scaling their values to our adopted distance). SN1980K was also observed by the ROSAT PSPC in 1992June.Schlegel(1994c)gives a luminosity estimate of~2×1037ergs s?1in the0.5?2keV range(scaled to our adopted distance).Type II SN1968D is seen in all?ve Chandra observations and has a luminosity of ~2×1037ergs s?1.The other four historical supernovae (SN1917A,SN1939C,SN1948B,and SN1969P)are not detected.

4.2.2.ULX in NGC6946

The only ultraluminous X-ray source in NGC6946,of-ten called MF16(Matonick&Fesen1997),has been ex-tensively studied.It was?rst detected with the Einstein IPC in1979–1981(Fabbiano&Trinchieri1987)and was later observed with the ROSAT PSPC in1992.Analyz-ing the ROSAT observation,Schlegel(1994a)derived an X-ray luminosity of3.7×1039ergs s?1in the0.5?2keV band(scaled to our adopted distance),and identi?ed the source as a supernova remnant based on an optical coun-terpart discovered by Blair&Fesen(1994).The rem-nant appears to be quite evolved,perhaps~103?104yr old(Blair&Fesen1994;Dunne et.al2000;Blair et al. 2001).Hubble Space Telescope images presented by Blair et al.(2001)reveal a three loop structure with an extent of1.4′′×0.8′′(corresponding to39×23pc at our adopted distance).Various models have been put forward to try to explain this unusually high luminosity from such an evolved SNR.Blair et al.(2001)propose that ejecta from a young supernova might be interacting with the dense shell of an older SNR;Dunne et.al(2000) suggest instead that a single supernova blast wave is in-teracting with a dense circumstellar nebula from a high-mass progenitor and that a hard spectral component in the ROSAT PSPC data comes from a pulsar wind nebula. Schlegel et al.(2003),analyzing the?rst Chandra obser-vation,argue from spectral considerations that neither of these scenarios can explain the data.Roberts&Colbert (2003)analyze the?rst two Chandra observations of the object and speculate that the luminosity of MF16arises from a black hole X-ray binary(BHXRB)within the SNR.They argue this based on(1)the point-like na-ture of the X-ray source,(2)the close resemblance of the source spectrum to spectra from other ULXs thought to be BHXRBs,(3)the short-timescale(minutes)variabil-ity of the hard component(1.1?10keV)of the?ux,and (4)the long-timescale drop of~13%in count rate be-tween the?rst and second Chandra observations(~3% thereof stemming from a degradation in e?ective area). Our K-S test does not detect short-timescale variations in the full0.3?7keV band for any of the Chandra observa-tions.We do,however,see de?nite long-term variability in the Chandra data(see light curve in Fig.3).There is a drop in luminosity of~5%between the?rst and

11

Fig.5.—Long-term light Chandra ACIS observations, crosses represent

second observations,and then a much larger drop be-tween the second and third observations;the luminosity in the third observation is~79%of the original?rst ob-servation value.Two weeks later,in the fourth Chandra observation,the luminosity has again increased to~93% of its original value.We also see clear evidence of vari-ability in the XMM-Newton data,most notably a~20% jump in luminosity in the12days between two obser-vations in2004June.Finally,we see variations in the soft color with a signi?cance of2.9σ(see Fig.7).These spectral variations do not seem to have a clear correlation with?ux.There is spectral softening associated with the drop in?ux between the second and third Chandra ob-servations,but there is no detectable hardening when the ?ux subsequently increases again.Overall,this observed variability considerably strengthens the case for an ac-creting object as the source of at least part of the X-ray emission from MF16.

4.2.3.ULXs in NGC4485/4490

The NGC4485/90system contains a high number of ULXs,a total of eight.In a comprehensive sur-vey of nearby galaxies observed with the ROSAT HRI, Liu et al.(2006,see also Liu&Bregman2005)?nd an average rate of~0.5ULXs per galaxy.The rate is higher when only considering late-type galaxies and still higher for starburst galaxies(~1.0).Considerably higher num-bers,however,are not unusual for interacting galaxies (see,e.g.,Brassington et al.2007),an extreme case being the Antennae,with14known ULXs(Zezas et al.2006). Seven of the ULXs in the NGC4485/90system are in NGC4490and one is in NGC4485.We numerate them here in order of right ascension(see Table10).Two of them,ULX-5and ULX-7,have not been identi?ed as being ultraluminous before,their luminosities having entered the ULX range only in the most recent Chandra observation.

The maximum luminosities of the ULXs range from 1.0×1039ergs s?1to4.1×1039ergs s?1.These sources show a lot of variability.Long-term?ux variability above the3σlevel is exhibited by all but one of them(see light curves in Figs.5and6).ULX-7is a transient,ULX-5 varies by a factor of~11and ULX-6by a factor of ~5.The others vary by less than a factor of2.ULX-5 shows short-term?ux variability.Two sources,ULX-6and ULX-8,have signi?cant variations in their hard color.In both cases,there is a clear transition from a harder higher luminosity state to a softer lower luminos-ity one and back(see Fig.7).

Vazquez et al.(2007)use the Infrared Spectrograph on the Spitzer Space Telescope to do mid-infrared spec-tral diagnostics on six of the ULXs(all except ULX-5and ULX-7).They?nd that?ve of those show ionization features that they claim indicate accretion, whereas the sixth source,ULX-1,seems to be more con-sistent with a SNR.As pointed out by Roberts et al. (2002),ULX-1is coincident with a radio source,FIRST J123029.4+413927,which also points towards a SNR ori-gin for ULX-1.However,we see a~30%drop in lumi-nosity in the four months between the second and third Chandra observations—behavior that is more typical of an accreting XRB than a SNR.This is reminiscent of the ULX in NGC6946,which has also been associated with a SNR but whose X-ray variability indicates an accreting XRB.

The abundance of variability among the ULXs in NGC 4485/90is similar to what is seen in the Antennae. Zezas et al.(2006)?nd that two of the ULXs in the Antennae show variability on a timescale of a few days. Twelve out of14ULXs show long-term variability,one being a transient,and four of the ULXs occasionally have luminosities below the ULX limit.In NGC4485/90we

12

Fig. 6.—represent upper limits with3σGaussian con?dence.

?nd that four of the eight ULXs have a luminosity be-low1039ergs s?1in at least one of the three Chandra observations.It is therefore clear that a single observa-tion of a galaxy is by no means guaranteed to discover the galaxy’s full ULX population.Surveys such as that of Liu et al.(2006),where many of the galaxies are only observed once or twice,can only give a lower limit to the average number of sources in a galaxy with the potential of being ultraluminous at one time or other.

4.3.Hardness Ratios

4.3.1.Variability

The hardness ratios of the sources in NGC6946,both for each observation and for the co-added exposure,are given in Tables13and14.The hardness ratios for the NGC4485/90sources are similarly given in Table15. Signi?cance parameters for variability in the hardness ratios between observations are given in Tables11(NGC 6946)and12(NGC4485/90).Variability above3σin ei-ther of the ratios is only detected in two of the sources in NGC6946and three of the sources in NGC4485/90.In addition,the ULX in NGC6946shows a2.9σvariation in its hard color.We note that a much larger fraction of the sources probably undergoes some spectral varia-tion,but most of the sources have too few counts for the hardness ratios to be very sensitive to spectral changes. Color-luminosity plots for the sources exhibiting signif-icant hardness ratio variability are shown in Figure7. Four of these sources(one of those being SN2002hh) seem to show a clear correlation between higher luminos-ity and increased hardness,whereas the other two show more complicated behavior.Previous studies of exter-nal galaxies have routinely found sources with spectral variability,in some cases with spectral behavior reminis-cent of Galactic XRBs;?ux-color transitions have also been observed in ULXs(Fabbiano2006and references therein).Zezas et al.(2006)?nd signs of variability in hardness ratios of21of their~70detected sources in the Antennae;some of these are ULXs.As in our case, they?nd that the variability does not follow the same pattern for all sources.They see sources that become harder with higher luminosity,as we do,but also sources that soften with increased luminosity.In addition,some of the sources show no regular pattern,or no signi?cant variation in luminosity.

4.3.2.Supersoft Sources

Two sources have especially soft spectra and are strong candidates for supersoft sources(SSSs;see,e.g., Di Stefano&Kong2003).CXOU J203426.2+600914in NGC6946has all of its68source counts below1keV, and CXOU J123034.5+413834in NGC4490has32of its total35source counts below1keV,25counts be-ing below0.65keV.Both sources have a luminosity of ~9×1036ergs s?1,and neither one shows evidence for variability.

4.3.3.Spectral Classi?cation

Color-color diagrams for the sources in NGC6946and NGC4485/90,based on the co-added exposures,are shown in Figure8.The fact that most of the sources do not show signi?cant variation in their hardness ra-tios between observations provides justi?cation for using hardness ratios calculated from the co-added exposure to describe the source populations’spectral properties.The classi?cation scheme of Prestwich et al.(2003)discussed in§2.3,is overlaid.As mentioned before,although a source’s position in a color-color diagram does not give conclusive information about the nature of the source, the overall distribution of sources should give us some information about the population as a whole.Also indi-cated in the color-color diagrams is the physically allowed region,covering all combinations of HR1and HR2possi-ble if the net counts in all the energy bands(S,M,H,T;

X-Ray Variability in NGC6946,NGC4485/90

13

Fig.7.—Soft or hard color as a function of luminosity for sources that show signi?cant variation in their hardness ratios.Numbers next to data points indicate their order in time.

see§2.3)are non-negative.Due to background subtrac-

tion in cases of very few source counts,some of the hard-

ness ratios fall outside this region.They are,however,

all consistent with the physically allowed region within

their1σerrors.

Prestwich et al.(2003)note that,while thermal SNRs

are in general expected to have?0.9

indicated in the classi?cation scheme,SNRs whose spec-

tra are dominated by nonthermal components will have

somewhat harder spectra and are likely to be located in

the LMXB or even absorbed sources part of the color-

color diagram.We see in Figure8that the locations of

the sources associated with SNRs in NGC6946are in

good agreement with this.

For NGC4485/90,all but two of the38sources fall in

the XRB regions of the color-color diagram,with roughly

equal portions falling in the LMXB and HMXB regions.

In NGC6946there seems to be a much larger SNR com-

ponent to the population.In addition to the four de-

tected historical supernovae and the six sources associ-

ated with optically or radio identi?ed SNRs,~5sources

have colors consistent with thermal SNRs.The rest of

the sources in NGC6946(apart from the SSS candidate)

have colors consistent with XRBs,again with roughly

equal portions in the LMXB and HMXB regions.We

note that a large portion of the sources has colors con-

sistent with both regions.The large presence of HMXBs

in these systems,indicated by the color-color diagrams,

is not surprising given the high level of star formation

observed.

All the ULXs have colors consistent with XRBs.The

ULX in NGC6946falls?rmly in the LMXB region,

whereas six of the ULXs in NGC4485/90have col-

ors more consistent with HMXBs.Variable and tran-

sient sources are equally divided between the LMXB

and HMXB regions in NGC4485/90.For NGC6946,

these sources seem to slightly favor the LMXB region,

but this is hardly a signi?cant di?erence.The most vari-

able sources(those that vary by a factor of10or more)

are also seen to be roughly equally divided between the

LMXB and HMXB regions in both galaxies.

4.4.Luminosity Functions

We construct X-ray luminosity functions(XLFs)for

each observation,as well as the co-added exposure,of

both NGC6946and NGC4485/90.We use luminosities

from the full0.3?7keV band.In the case of NGC6946,

where parts of the galaxy fell outside the Chandra detec-

tors in each observation,only sources that fell within the

detectors in all?ve observations were considered.Hence,

24of the85nonforeground sources were discarded.This

was done to make sure that when comparing the XLFs

from di?erent observations we are comparing the same

source population.

To avoid any e?ects of incompleteness at the low-

luminosity end of the XLF,we set a conservative com-

pleteness limit for both galaxies and consider only the

portion of the XLF above that limit.To facilitate com-

parisons between di?erent observations we use the same

completeness limit for all observations of each galaxy.We

?t a simple power law to the unbinned distribution for

each observation using the Cash statistic(Cash1979).

14Fridriksson et al.

Fig.8.—Color-color diagrams for the sources in NGC6946and NGC4485/4490based on the co-added Chandra exposures.The classi?cation scheme of Prestwich et al.(2003)is overlaid.Histor-ical supernovae are represented with boxes,SNRs with diamonds, ULXs with crosses,and other sources with circles.Blue indicates that long-term variability is detected,green that it is not,and red denotes transient candidates.The triangle enclosed by the dashed lines represents the physically allowed region where net counts in all energy bands are non-negative.Due to background subtraction, faint sources can fall outside this region.

In order to test the null hypothesis that the XLFs of dif-ferent observations of the same galaxy are derived from the same parent distribution,we compare the XLFs in pairs using a two-sided Kolmogorov-Smirnov test.

The XLFs for NGC6946are shown in Figure9.We adopt a completeness limit of2×1037ergs s?1.Judging from the?gure,the XLF of the galaxy does not seem to

TABLE7

Indices of

XLFs of NGC

6946

Obs.αa

10430.61±0.13

44040.63±0.10

46310.67±0.11

46320.72±0.13

46330.67±0.12

0.73±0.14

Best-?t cumulative

Uncertainties

are estimated90%

intervals.

observations.This is borne out by

K-S tests between the?ve

which yield signi?cance levels

0.99and thus do not warrant re-

of a common parent distri-

performing the K-S test between

and each of the observations,we

levels,ranging from0.13to0.77.

slopes of the XLFs are shown in

all cases~0.6?0.7and are in good

other.We note that Holt et al.

of0.68±0.03for the?rst Chandra

with our value of0.61±0.13.

4485/90are shown in Figure9.

limit of4×1037ergs s?1.

seem to be signi?cant variation

observations.This is supported by

the three observations,which

from0.58to0.97.Performing

the co-added exposure and indi-

yields higher signi?cance levels here

in contrast to NGC6946.The

slopes of the XLFs shown in Table8

other and are all~0.4?0.5.We note

(2002)derive a slope of0.57±0.10

observation,in agreement with our

There is an indication in Figure9

break or cuto?in the XLFs,which

for the~3most luminous sources.

?tting a broken power law to

led to a best-?t break lumi-nosity of~(2?3)×1039ergs s?1and a slope for the low-luminosity portion that is~0.05lower than for the simple unbroken power law(i.e.,~0.4).The slope of the high-luminosity portion was,however,in all cases very poorly constrained.

We use the results of Bauer et al.(2004)to assess whether CBSs are likely to have a signi?cant e?ect on the XLFs.In NGC6946we expect~8CBSs among the~25sources typically above the completeness limit and within the region covered by all?ve Chandra obser-vations.In NGC4485/90we estimate that~3of the ~23sources typically above the completeness limit can be expected to be CBSs.Based on these numbers alone, one might expect that CBSs could have a signi?cant ef-fect in the case of NGC6946but probably only a small e?ect for NGC4485/90.As it turns out,the cumula-

X-Ray Variability in NGC 6946,NGC 4485/90

15

Fig.9.—Cumulative X-ray luminosity functions for all the Chandra observations and the co-added exposures of NGC 6946and NGC 4485/4490.The vertical lines show the adopted com-pleteness limits.

tive number-?ux slopes for CBSs derived in Bauer et al.(2004)are quite similar to the ones for the XLFs:0.55for the 0.5?2keV band and 0.56for the 2?8keV band.Contamination of our sample by CBSs is there-fore likely to have only a small e?ect in both cases.The true slopes for NGC 4485/90are probably slightly ?atter than those derived above and slightly steeper for NGC 6946.However,the change in XLF slopes due to CBSs is almost certainly well within the uncertainties quoted in Tables 7and 8.

Our results agree well with previous results for other galaxies.As mentioned in §1,XLFs have been seen to be remarkably stable in spite of variability among in-dividual sources,and NGC 6946and NGC 4485/90do

TABLE 8

Power-law Indices of the XLFs of NGC

4485/90Obs.αa 15790.45±0.1047250.49±0.0947260.42±0.08Co-added

0.45±0.08

a

Best-?t cumulative slope.Uncertainties given are estimated 90%con?dence intervals.

not seem to be an exception.Single-observation snap-shots of their XLFs therefore seem to represent rather well their shape averaged over longer times.Their cumu-lative XLF slopes fall ?rmly in the regime of starburst galaxies,whose slopes are typically between 0.4and 0.8(Fabbiano 2006)—another clear indication of the young stellar populations in these two systems.

5.SUMMARY AND CONCLUSIONS

We have presented a study of the X-ray source pop-ulations in the spiral galaxy NGC 6946and the ir-regular/spiral interacting galaxy pair NGC 4485/4490.We analyzed data from ?ve Chandra observations of NGC 6946and from three Chandra observations of NGC 4485/90.We detect 90point sources coincident with NGC 6946(excluding a small circumnuclear region)down to luminosities of a few times 1036ergs s ?1.We as-sociate ?ve of these with foreground stars.Seven sources are coincident with optically or radio identi?ed SNRs,and four are supernovae from the past 40years.We de-tect 38sources coincident with NGC 4485/90down to a luminosity of ~1×1037ergs s ?1.

In NGC 6946,25of the 85sources exhibit long-term (weeks to years)variability in luminosity;11are transient candidates.We detect short-term (hours)variability in four sources.Three sources show signi?cant variability in their hardness ratios.We ?nd that the single ULX in NGC 6946,the SNR known as MF16,exhibits long-term variability in ?ux and color that strongly supports speculations of its high luminosity arising from an XRB within the remnant.

In NGC 4485/90,15of the 38sources show ?ux vari-ability on timescales of months to years;four are tran-sient candidates.Short-term variability is seen for four sources,and three show variability in their hardness ra-tios.NGC 4485/90contains eight ULXs.Two of these have not been identi?ed as ULXs before;this shows the value of long-term monitoring in identifying ultralumi-nous sources.All but one of the ULXs exhibit long-term variability,and one of them is a transient.One of the ULXs,which has been associated with a SNR based on spectral characteristics and its spatial coincidence with a radio source,shows clear long-term variability pointing to an accreting XRB.We detect short-term variability for one ULX,and two have signi?cant variations in color.This abundant variability among the ULXs clearly points to accretion as the source of luminosity.

Consistent with the widespread variability seen within the source populations,the X-ray colors of the sources

16Fridriksson et al.

indicate that the populations are dominated by XRBs. The source population of NGC6946also seems to contain a sizable SNR component,perhaps~15%?20%of the detected sources.The distribution of colors among the sources in both NGC6946and NGC4485/90indicates roughly equal fractions of LMXBs and HMXBs.Such a signi?cant presence of HMXBs is consistent with the fact that both systems show high star formation activity. The shape of the XLFs of NGC6946and NGC4485/90 does not change signi?cantly between observations,and seems to be well represented by single-observation snap-shots.The XLF of NGC6946(above2×1037ergs s?1) can be described by a power law with cumulative slope ~0.6?0.7.The XLF of NGC4485/90can be described by a power law with cumulative slope~0.4between 4×1037and2×1039ergs s?1.Above~2×1039ergs s?1, the luminosity function drops o?rather sharply.The ?atness of the slopes(especially for NGC4485/90)is an-other testament to the systems’high star formation rate and young stellar population.

This work was supported by Chandra Award https://www.doczj.com/doc/594645858.html,e was made of data obtained from the High Energy Astrophysics Science Archive Research Cen-ter(HEASARC),provided by NASA’s Goddard Space Flight Center.We thank the referee for thorough read-ing of the paper and constructive comments.

REFERENCES

Bauer,F.E.,Alexander,D.M.,Brandt,W.N.,Schneider,D.P., Treister,E.,Hornschemeier,A.E.,&Garmire,G.P.2004,AJ, 128,2048

Blair,W.,&Fesen,R.1994,ApJ,424,L103

Blair,W.P.,Fesen,R.A.,&Schlegel,E.M.2001,AJ,121,1497 Brassington,N.J.,Ponman,T.J.,&Read,A.M.2007,MNRAS, 377,1439

Broos,P.S.,Townsley,L.K.,Getman,K.,&Bauer, F. E. 2002,ACIS Extract,An ACIS Point Source Extraction Package(University Park:Pennsylvania State Univ.), https://www.doczj.com/doc/594645858.html,/xray/docs/TARA/ae guide.html Canizares,C.R.,Kriss,G.A.,&Feigelson,E.D.1982,ApJ,253,

L17

Cash,W.1979,ApJ,228,939

Clemens,M.S.,Alexander,P.,&Green,D.A.1998,MNRAS,297, 1015

———.1999,MNRAS,307,481

———.2000,MNRAS,312,236

Clemens,M.S.,&Alexander,P.2002,MNRAS,333,39 Crosthwaite,L.P.,&Turner,J.L.2007,ApJ,134,1827

David,L.P.,et al.1999,The ROSAT High Resolution Imager (HRI)Calibration Report(Cambridge:SAO)

Davis,S.D.,&Mushotzky,R.F.2004,ApJ,604,653

de Vaucouleurs,G.1979,ApJ,227,729

de Vaucouleurs,G.,de Vaucouleurs,A.,&Corwin,H.G.,Jr.1976, Second Reference Catalogue of Bright Galaxies(Austin:Univ. Texas Press)

de Vaucouleurs,G.,de Vaucouleurs,A.,Corwin,H.G.,Jr.,Buta, R.J.,Paturel,G.,&Fouque,P.1991,Third Reference Catalogue

of Bright Galaxies(New York:Springer)

Dickey,J.M.,&Lockman,F.J.1990,ARA&A,28,215

Diehl,R.,et al.2006,Nature,439,45

Di Stefano,R.,&Kong,A.K.H.2003,ApJ,592,884

Dunne,B.C.,Gruendl,R.A.,&Chu,Y.-H.2000,AJ,119,1172 Eastman,R.G.,Schmidt,B.P.,&Kirshner,R.1996,ApJ,466, 911

Elmegreen,D.E.,Chromey,F.R.,Knowles,B.D.,&Wittenmyer, R.A.1998a,AJ,115,1433

Elmegreen,D.E.,Chromey,F.R.,&Santos,M.1998b,AJ,116, 1221

Fabbiano,G.,&Trinchieri,G.1987,ApJ,315,46

Fabbiano,G.,&White,N.E.2006,in Compact Stellar X-Ray Sources,ed.W.H.G.Lewin&M.van der Klis(Cambridge: Cambridge Univ.Press),475

Fabbiano,G.2006,ARA&A,44,323

Gehrels,N.1986,ApJ,303,336

Getman,K.V.,et al.2005,ApJS,160,319

Giacconi,R.,et al.2001,ApJ,551,624

Grimm,H.-J.,McDowell,J.,Zezas,A.,Kim,D.-W.,&Fabbiano, G.2005,ApJS,161,271

———.2007,ApJS,173,170

Holt,S.S.,Schlegel,E.M.,Hwang,U.,&Petre,R.2003,ApJ, 588,792

Kalberla,P.M.W.,Burton,W.B.,Hartmann,D.,Arnal,E.M., Bajaja,E.,Morras,R.&Poeppel,W.G.L.2005,A&A,440, 775

Karachentsev,I.D.,Sharina,M.E.,&Huchtmeier,W.K.2000,

A&A,362,544

Kilgard,R.E.,et al.2005,ApJS,159,214

Klein,U.1983,A&A,121,150

Kong,A.K.H.,Garcia,M.R.,Primini,F.A.,Murray,S.S.,Di Stefano,R.,&McClintock,J.E.2002,ApJ,577,738

Kraft,R.P.,Kregenow,J.M.,Forman,W.R.,Jones,C.,&Murray, S.S.2001,ApJ,560,675Kuulkers,E.2004,Nucl.Phys.B Proc.Suppl.,132,466

Lacey,C.K.,&Duric,N.2001,ApJ,560,719

Larsen,S.S.,Efremov,Y.N.,Elmegreen,B.G.,Alfaro,E.J.,

Battinelli,P.,Hodge,P.W.,&Richtler,T.2002,ApJ,567,896

Li,W.2002,IAU Circ.8005,

https://www.doczj.com/doc/594645858.html,/iauc/08000/08005.html

Liu,J.-F.,&Bregman,J.N.2005,ApJS,157,59

Liu,J.-F.,Bregman,J.N.,&Irwin,J.2006,ApJ,642,171

Matonick,D.M.,&Fesen,R.A.1997,ApJS,112,49

Miller,M.C.,&Colbert,E.J.M.2004,Int.J.Mod.Phys.D,13,

1

Misra,K.,Pooley,D.,Chandra,P.,Bhattacharya,D.,Ray,A.K.,

Sagar,R.,&Lewin,W.H.G.2007,MNRAS,381,280

Monet,D.,et al.1998,USNO-A V2.0,A Catalog of Astrometric

Standards(Flagsta?:USNO)

Nikiforov,I.I.,Petrovskaya,I.V.,&Ninkovic,S.2000,in IAU

Colloq.174,Small Galaxy Groups,ed.M.J.Valtonen&C.Flynn

(San Francisco:ASP),399

Prestwich,A.H.,Irwin,J.A.,Kilgard,R.E.,Krauss,M.I.,Zezas,

A.,Primini,F.,Kaaret,P.,&Boroson,

B.2003,ApJ,595,719

Read,A.M.,Ponman,T.J.,&Strickland,D.K.1997,MNRAS,

286,626

Rho,J.,Jarrett,T.H.,Chugai,N.N.,&Chevalier,R.A.2007,

ApJ,666,1108

Roberts,T.P.,&Colbert,E.J.M.2003,MNRAS,341,L49

Roberts,T.P.,&Warwick,R.S.2000,MNRAS,315,98

Roberts,T.P.,Warwick,R.S.,Ward,M.J.,&Murray,S.S.2002,

MNRAS,337,677

Sauty,S.,Gerin,M.,&Casoli,F.1998,A&A,339,19

Schlegel,E.M.1994a,ApJ,424,L99

———.1994b,ApJ,434,523

———.1994c,AJ,108,1893

Schlegel,E.M.,Blair,W.P.,&Fesen,R.A.2000,AJ,120,791

Schlegel,E.M.,Holt,S.S.,&Petre,R.2003,ApJ,598,982

Sharina,M.E.,Karachentsev,I.D.,&Tikhonov,N.A.1997,AstL,

23,373

Sivako?,G.R.,Jordan,A.,Juett,A.M.,Sarazin,C.L.,&Irwin,J.

M.2005a,in IAU Symp.230,Populations of High Energy Sources

in Galaxies,ed.E.J.A.Meurs&G.Fabbiano(Cambridge:

Cambridge Univ.Press),210

Sivako?,G.R.,Sarazin,C.L.,&Jordan,A.2005b,ApJ,624,L17

Stark,A.A.,Gammie,C.F.,Wilson,R.W.,Bally,J.,Linke,R.

A.,Heiles,C.,&Hurwitz,M.1992,ApJS,79,77

Tacconi,L.J.,&Young,J.S.1986,ApJ,308,600

Thronson,H.A.,Jr.,Hunter,D.A.,Casey,S.,Latter,W.B.,&

Harper,D.A.1989,ApJ,339,803

Townsley,L.K.,Feigelson,E.D.,Montmerle,T.,Broos,P.S.,Chu,

Y.-H.,&Garmire,G.P.2003,ApJ,593,874

Tully,R. B.1988,Catalog of Nearby Galaxies(Cambridge:

Cambridge Univ.Press)

Vazquez,G.A.,Hornschemeier,A.E.,Colbert,E.,Roberts,T.P.,

Ward,M.J.,&Malhotra,S.2007,ApJ,658,L21

Viallefond,F.,Allen,R.J.,&de Boer,J.A.1980,A&A,82,207

Zezas,A.,Fabbiano,G.,Baldi,A.,Schweizer,F.,King,A.R.,

Ponman,T.J.,&Rots,A.H.2006,ApJS,166,211

Zezas,A.,Fabbiano,G.,Baldi,A.,Schweizer,F.,King,A.R.,Rots,

A.H.,&Ponman,T.J.2007,ApJ,661,135

Zimmermann,U.,Boese,G.,Becker,W.,Belloni,T.,Doebereiner,

S.,Izzo, C.,Kahabka,P.,&Schwentker,O.1998,EXSAS

User’s Guide(Garching:ROSAT Scienti?c Data Center),

http://www.mpe.mpg.de/xray/wave/rosat/doc/users-guide/exsasguide.php

20Fridriksson et al.

TABLE11

Chandra V ariability Properties for NGC6946Sources

K-S Test for Short-Term Flux Variability a Long-Term Variability No.Source Designation Obs.ID Obs.ID Obs.ID Obs.ID Obs.ID Flux Hardness Ratios Comments f CXOU J10434404463146324633S flux b R c S HR1d S HR2e 1203419.0+6010070.120.94······0.83 2.2 2.40.50.8

2203421.4+6010170.960.98······0.39 2.0 3.90.60.2

3203423.4+601039···0.66······0.13 4.01100.70.5l

4203424.7+6010380.650.68······0.29 2.5 3.00.9 1.4

5203425.0+6009060.30·········0.1511.973.00.80.5l

6203426.1+6009090.480.69······0.7710.9 2.70.6 1.6l

7203426.2+6009140.580.47······0.49 1.2 1.50.40.3

8203429.1+6010510.330.85········· 3.2>1.50.50.9l

9203431.5+6006380.25············ 1.97.10.40.3

10203431.5+601056············0.46 5.578.30.30.7l

11203432.0+6012070.150.39···0.33··· 1.6>1.4 1.6 1.7

12203432.4+6008210.79············ 6.0>5.00.00.0l

13203434.4+6010320.030.65···0.820.13 3.3 1.8 1.50.9l,star 14203435.3+6007420.220.44······0.17 1.7 4.00.30.3

15203436.1+6008390.670.74···0.230.55 1.6 3.5 1.10.7

16203436.4+6005580.300.41········· 1.7 1.70.40.4

17203436.5+6009300.210.69···0.930.858.2 1.6 3.5 1.7l,sp 18203437.2+6009540.020.92···0.160.90 1.8 6.8 1.1 1.0

19203437.2+6010190.970.45···0.750.570.7 2.3 1.1 1.0

20203437.9+6004340.420.460.18······0.7 1.20.9 1.3

21203439.8+6008220.860.950.810.430.11 2.6 3.0 1.3 1.1

22203440.5+6009460.18···0.820.870.91 1.47.9 1.0 1.1

23203441.3+6008460.220.440.150.440.58 1.3 2.60.80.5

24203442.0+6005290.070.350.37···0.29 1.5 4.8 1.2 1.4

25203443.1+6006520.34···0.910.13··· 1.77.20.30.6

26203444.2+600719···0.290.920.600.4410.22250.6 3.5l,sp 27203445.9+6010490.010.390.880.160.97 2.1 5.00.50.8

28203446.3+6013280.360.020.130.150.80 1.4 1.7 1.4 1.5

29203447.1+6008500.65············ 4.0>2.30.00.0l

30203447.5+6010030.610.970.200.730.29 1.5 2.0 2.3 1.1

31203447.6+6009320.950.580.310.900.428.413.6 1.6 1.2l

32203448.4+6008110.010.720.300.100.30 5.7 3.0 1.4 1.7l

33203448.6+6009410.810.990.75···0.44 3.8>2.30.40.7l

34203448.8+6005540.182.4×10?30.750.010.07 3.5 1.5 1.2 1.5s,l,star 35203449.0+6012170.850.330.470.500.50 2.8 1.5 1.9 1.8

36203449.4+6013420.800.230.572.2×10?30.32 1.7 2.6 1.40.9s

37203449.7+6010110.460.540.660.370.120.9 1.5 1.0 1.2

38203449.7+6008060.260.30···0.830.28 1.5 5.20.70.6

39203449.7+6010200.950.920.640.090.07 1.5 2.80.9 1.6

40203450.0+6009240.430.340.340.870.33 1.0 1.6 1.3 1.1

41203450.4+6010160.950.960.102.4×10?3··· 1.88.50.4 1.0s

42203450.4+600724···0.820.340.400.99 6.9>22.7 1.1 1.6l

43203450.7+6007470.690.040.220.230.150.6 1.80.40.6

44203450.7+6012070.700.214.6×10?30.840.90 1.58.50.7 1.1

45203450.9+6010200.650.050.120.830.61 1.4 1.5 1.1 1.5

46203451.5+6012480.130.360.980.720.31 1.5 2.9 1.0 1.1

47203451.5+6009090.130.810.120.890.77 1.312.30.6 1.1

48203453.3+6010550.500.150.190.630.15 1.2 2.3 1.3 1.1

49203453.4+6007190.550.26···0.200.59 6.125.80.8 1.5l

50203453.7+6009100.070.590.780.930.300.9 1.7 1.50.5

51203455.6+6009300.300.280.410.340.11 3.28.2 1.40.8l

52203456.5+6008340.01 1.000.820.500.06 4.2 1.7 1.60.8l

53203456.5+6008190.010.570.830.700.38 1.2 2.0 1.5 1.0

54203456.8+6005320.770.870.810.010.62 2.0 2.4 1.60.7

55203456.9+6012090.370.250.600.230.16 1.2 3.1 1.10.7star 56203456.9+6008260.080.080.690.460.02 3.612.80.4 1.0l

57203457.2+6007330.700.06········· 2.1>1.9 1.0 1.0star 58203457.7+6009480.350.100.400.880.08 5.4 1.8 1.2 1.0l

59203458.4+6009340.190.640.010.530.83 1.2 1.60.5 1.5

60203500.1+6009086.2×10?150.240.500.760.8012.2 1.8 1.20.9s,l 61203500.4+6008590.180.770.340.370.48 2.2 4.60.8 1.1

62203500.6+6012500.080.580.800.770.95 3.7 4.3 1.30.8l

63203500.7+6011300.480.670.250.310.618.9 1.2 2.9 1.8l

64203500.9+6010100.860.400.110.540.64 2.9 1.30.7 2.1

65203501.1+6009230.960.34······0.76 1.2 4.70.80.5

66203501.9+6010030.980.040.260.130.96 2.3 1.50.7 1.9

67203504.6+6011170.480.590.810.840.36 1.8 1.9 1.40.6

68203504.6+6009180.260.690.260.630.43 1.1 2.3 1.00.9

69203505.3+6006230.120.220.570.510.910.8 1.2 1.5 1.6

70203505.5+6007420.73···0.200.360.58 1.2 2.6 1.20.6

71203506.5+6010400.280.410.020.850.20 2.5 2.4 1.3 1.7

72203508.1+6011130.680.760.960.350.89 1.7 2.1 1.6 1.0

高二《甜美纯净的女声独唱》教案

高二《甜美纯净的女声独唱》教案 一、基本说明 教学内容 1)教学内容所属模块:歌唱 2)年级:高二 3)所用教材出版单位:湖南文艺出版社 4)所属的章节:第三单元第一节 5)学时数: 45 分钟 二、教学设计 1、教学目标: ①、在欣赏互动中感受女声的音域及演唱风格,体验女声的音色特点。 ②、在欣赏互动中,掌握美声、民族、通俗三种唱法的特点,体验其魅力。 ③、让学生能够尝试用不同演唱风格表现同一首歌。 ④、通过学唱歌曲培养学生热爱祖国、热爱生活的激情。 2、教学重点: ①、掌握女高音、女中音的音域和演唱特点。 ②、掌握美声、民族、通俗三种方法演唱风格。 3、教学难点: ①、学生归纳不同唱法的特点与风格。

②、学生尝试用不同演唱风格表现同一首歌。 3、设计思路 《普通高中音乐课程标准》指出:“音乐课的教学过程就是音乐的艺术实践过程。”《甜美纯净的女声独唱》作为《魅力四射的独唱舞台》单元的第一课,是让学生在丰富多彩的歌唱艺术形式中感受出女声独唱以其优美纯净的声音特点而散发出独特的魅力。为此,本课从身边熟悉的人物和情景入手,激发学生学习兴趣,把教学重心放在艺术实践中,让学生在欣赏、学习不同的歌唱风格中,培养自己的综合欣赏能力及歌唱水平。在教学过程中让学生体会不同风格的甜美纯净女声的内涵,感知优美纯净的声音特点而散发出的独特魅力,学会多听、多唱,掌握一定的歌唱技巧,提高自己的演唱水平。为实现以上目标,本人将新课标“过程与方法”中的“体验、比较、探究、合作”四个具体目标贯穿全课,注重学生的个人感受和独特见解,鼓励学生的自我意识与创新精神,强调探究、强调实践,将教学过程变为整合、转化间接经验为学生直接经验的过程,让学生亲身去感悟、去演唱,并力求改变现在高中学生普遍只关注流行歌曲的现状,让学生自己确定最适合自己演唱的方法,自我发现、自我欣赏,充分展示自己的的声音魅力。 三、教学过程 教学环节及时间教师活动学生活动设计意图

尊重的素材

尊重的素材(为人处世) 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺术,也是仁爱的情操。—刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚 尊重别人,才能让人尊敬。———笛卡尔 谁自尊,谁就会得到尊重。———巴尔扎克 人应尊敬他自己,并应自视能配得上最高尚的东西。———黑格尔 对人不尊敬,首先就是对自己的不尊敬。———惠特曼

每当人们不尊重我们时,我们总被深深激怒。然而在内心深处,没有一个人十分尊重自己。———马克·吐温 忍辱偷生的人,绝不会受人尊重。———高乃依 敬人者,人恒敬之。———《孟子》 人必自敬,然后人敬之;人必自侮,然后人侮之。———扬雄 不知自爱反是自害。———郑善夫 仁者必敬人。———《荀子》 君子贵人而贱己,先人而后己。———《礼记》 尊严是人类灵魂中不可糟蹋的东西。———古斯曼 对一个人的尊重要达到他所希望的程度,那是困难的。———沃夫格纳 经典素材 1元和200元 (尊重劳动成果) 香港大富豪李嘉诚在下车时不慎将一元钱掉入车下,随即屈身去拾,旁边一服务生看到了,上前帮他拾起了一元钱。李嘉诚收起一元钱后,给了服务生200元酬金。 这里面其实包含了钱以外的价值观念。李嘉诚虽然巨富,但生活俭朴,从不挥霍浪费。他深知亿万资产,都是一元一元挣来的。钱币在他眼中已抽象为一种劳动,而劳动已成为他最重要的生存方式,他的所有财富,都是靠每天20小时以上的劳动堆积起来的。200元酬金,实际上是对劳动的尊重和报答,是不能用金钱衡量的。 富兰克林借书解怨 (尊重别人赢得朋友)

那一刻我感受到了幸福_初中作文

那一刻我感受到了幸福 本文是关于初中作文的那一刻我感受到了幸福,感谢您的阅读! 每个人民的心中都有一粒幸福的种子,当它拥有了雨水的滋润和阳光的沐浴,它就会绽放出最美丽的姿态。那一刻,我们都能够闻到幸福的芬芳,我们都能够感受到幸福的存在。 在寒假期间,我偶然在授索电视频道,发现(百家讲坛)栏目中大学教授正在解密幸福,顿然引起我的好奇心,我放下了手中的遥控器,静静地坐在电视前,注视着频道上的每一个字,甚至用笔急速记在了笔记本上。我还记得,那位大学教授讲到了一个故事:一位母亲被公司升职到外国工作,这位母亲虽然十分高兴,但却又十分无奈,因为她的儿子马上要面临中考了,她不能撇下儿子迎接中考的挑战,于是她决定拒绝这了份高薪的工作,当有人问她为什么放弃这么好的机会时,她却毫无遗憾地说,纵然我能给予儿子最贵的礼物,优异的生活环境,但我却无当给予他关键时刻的那份呵护与关爱,或许以后的一切会证明我的选择是正确的。听完这样一段故事,我心中有种说不出的感觉,刹那间,我仿拂感觉那身边正在包饺子的妈妈,屋里正在睡觉的爸爸,桌前正在看小说的妹妹给我带来了一种温馨,幸福感觉。正如教授所说的那种解密幸福。就要选择一个明确的目标,确定自已追求的是什么,或许那时我还不能完全诠释幸福。 当幸福悄悄向我走来时,我已慢慢明白,懂得珍惜了。 那一天的那一刻对我来说太重要了,原本以为出差在外的父母早已忘了我的生日,只有妹妹整日算着日子。我在耳边唠叨个不停,没想到当日我失落地回到家中时,以为心中并不在乎生日,可是眼前的一切,让我心中涌现的喜悦,脸上露出的微笑证明我是在乎的。

爸爸唱的英文生日快乐歌虽然不是很动听,但爸爸对我的那份爱我听得很清楚,妈妈为我做的长寿面,我细细的品尝,吃出了爱的味道。妹妹急忙让我许下三个愿望,嘴里不停的唠叨:我知道你的三个愿望是什么?我问:为什么呀!我们是一家人,心连心呀!她高兴的说。 那一刻我才真正解开幸福的密码,感受到了真正的幸福,以前我无法理解幸福,即使身边有够多的幸福也不懂得欣赏,不懂得珍惜,只想拥有更好更贵的,其实幸福比物质更珍贵。 那一刻的幸福就是爱的升华,许多时候能让我们感悟幸福不是名利,物质。而是在血管里涌动着的,漫过心底的爱。 也许每一个人生的那一刻,就是我们幸运的降临在一个温馨的家庭中,而不是降临在孤独的角落里。 家的感觉就是幸福的感觉,幸福一直都存在于我们的身边!

初中语文古文赏析曹操《短歌行》赏析(林庚)

教育资料 《短歌行》 《短歌行》赏析(林庚) 曹操这一首《短歌行》是建安时代杰出的名作,它代表着人生的两面,一方面是人生的忧患,一方面是人生的欢乐。而所谓两面也就是人生的全面。整个的人生中自然含有一个生活的态度,这就具体地表现在成为《楚辞》与《诗经》传统的产儿。它一方面不失为《楚辞》中永恒的追求,一方面不失为一个平实的生活表现,因而也就为建安诗坛铺平了道路。 这首诗从“对酒当歌,人生几何”到“但为君故,沉吟至今”,充分表现着《楚辞》里的哀怨。一方面是人生的无常,一方面是永恒的渴望。而“呦呦鹿鸣”以下四句却是尽情的欢乐。你不晓得何以由哀怨这一端忽然会走到欢乐那一端去,转折得天衣无缝,仿佛本来就该是这么一回事似的。这才是真正的人生的感受。这一段如是,下一段也如是。“明明如月,何时可掇?忧从中来,不可断绝。越陌度阡,枉用相存。契阔谈宴,心念旧恩。月明星稀,乌鹊南飞。绕树三匝,何枝可依。”缠绵的情调,把你又带回更深的哀怨中去。但“山不厌高,海不厌深”,终于走入“周公吐哺,天下归心”的结论。上下两段是一个章法,但是你并不觉得重复,你只觉得卷在悲哀与欢乐的旋涡中,不知道什么时候悲哀没有了,变成欢乐,也不知道什么时候欢乐没有了,又变成悲哀,这岂不是一个整个的人生吗?把整个的人生表现在一个刹那的感觉上,又都归于一个最实在的生活上。“我有嘉宾,鼓瑟吹笙”,不正是当时的情景吗?“周公吐哺,天下归心”,不正是当时的信心吗? “青青子衿”到“鼓瑟吹笙”两段连贯之妙,古今无二。《诗经》中现成的句法一变而有了《楚辞》的精神,全在“沉吟至今”的点窜,那是“青青子衿”的更深的解释,《诗经》与《楚辞》因此才有了更深的默契,从《楚辞》又回到《诗经》,这样与《鹿鸣》之诗乃打成一片,这是一个完满的行程,也便是人生旅程的意义。“月明星稀”何以会变成“山不厌高,海不厌深”?几乎更不可解。莫非由于“明月出天山”,“海上生明月”吗?古辞说:“枯桑知天风,海水知天寒”,枯桑何以知天风,因为它高;海水何以知天寒,因为它深。唐人诗“一叶落知天下秋”,我们对于宇宙万有正应该有一个“知”字。然则既然是山,岂可不高?既然是海,岂可不深呢?“并刀如水,吴盐胜雪”,既是刀,就应该雪亮;既是盐,就应该雪白,那么就不必问山与海了。 山海之情,成为漫漫旅程的归宿,这不但是乌鹊南飞,且成为人生的思慕。山既尽其高,海既尽其深。人在其中乃有一颗赤子的心。孟子主尽性,因此养成他浩然之气。天下所以归心,我们乃不觉得是一个夸张。 .

适合女生KTV唱的100首好听的歌

适合女生KTV唱的100首好听的歌别吝色你的嗓音很好学 1、偏爱----张芸京 2、阴天----莫文蔚 3、眼泪----范晓萱 4、我要我们在一起---=范晓萱 5、无底洞----蔡健雅 6、呼吸----蔡健雅 7、原点----蔡健雅&孙燕姿 8、我怀念的----孙燕姿 9、不是真的爱我----孙燕姿 10、我也很想他----孙燕姿 11、一直很安静----阿桑 12、让我爱----阿桑 13、错过----梁咏琪 14、爱得起----梁咏琪 15、蓝天----张惠妹 16、记得----张惠妹 17、简爱----张惠妹 18、趁早----张惠妹 19、一念之间----戴佩妮 20、两难----戴佩妮 21、怎样----戴佩妮 22、一颗心的距离----范玮琪 23、我们的纪念日----范玮琪 24、启程----范玮琪 25、最初的梦想----范玮琪 26、是非题----范玮琪 27、你是答案----范玮琪 28、没那么爱他----范玮琪 29、可不可以不勇敢----范玮琪 30、一个像夏天一个像秋天----范玮琪 31、听,是谁在唱歌----刘若英 32、城里的月光----许美静 33、女人何苦为难女人----辛晓琪 34、他不爱我----莫文蔚 35、你是爱我的----张惠妹 36、同类----孙燕姿 37、漩涡----孙燕姿 38、爱上你等于爱上寂寞----那英 39、梦醒了----那英 40、出卖----那英 41、梦一场----那英 42、愿赌服输----那英

43、蔷薇----萧亚轩 44、你是我心中一句惊叹----萧亚轩 45、突然想起你----萧亚轩 46、类似爱情----萧亚轩 47、Honey----萧亚轩 48、他和他的故事----萧亚轩 49、一个人的精彩----萧亚轩 50、最熟悉的陌生人----萧亚轩 51、想你零点零一分----张靓颖 52、如果爱下去----张靓颖 53、我想我是你的女人----尚雯婕 54、爱恨恢恢----周迅 55、不在乎他----张惠妹 56、雪地----张惠妹 57、喜欢两个人----彭佳慧 58、相见恨晚----彭佳慧 59、囚鸟----彭羚 60、听说爱情回来过----彭佳慧 61、我也不想这样----王菲 62、打错了----王菲 63、催眠----王菲 64、执迷不悔----王菲 65、阳宝----王菲 66、我爱你----王菲 67、闷----王菲 68、蝴蝶----王菲 69、其实很爱你----张韶涵 70、爱情旅程----张韶涵 71、舍得----郑秀文 72、值得----郑秀文 73、如果云知道----许茹芸 74、爱我的人和我爱的人----裘海正 75、谢谢你让我这么爱你----柯以敏 76、陪我看日出----蔡淳佳 77、那年夏天----许飞 78、我真的受伤了----王菀之 79、值得一辈子去爱----纪如璟 80、太委屈----陶晶莹 81、那年的情书----江美琪 82、梦醒时分----陈淑桦 83、我很快乐----刘惜君 84、留爱给最相爱的人----倪睿思 85、下一个天亮----郭静 86、心墙----郭静

关于我的幸福作文八篇汇总

关于我的幸福作文八篇汇总 幸福在每个人的心中都不一样。在饥饿者的心中,幸福就是一碗香喷喷的米饭;在果农的心中,幸福就是望着果实慢慢成熟;在旅行者的心中,幸福就是游遍世界上的好山好水。而在我的心中,幸福就是每天快快乐乐,无忧无虑;幸福就是朋友之间互相帮助,互相关心;幸福就是在我生病时,母亲彻夜细心的照顾我。 幸福在世间上的每个角落都可以发现,只是需要你用心去感受而已。 记得有一次,我早上出门走得太匆忙了,忘记带昨天晚上准备好的钢笔。老师说了:“今天有写字课,必须要用钢笔写字,不能用水笔。”我只好到学校向同学借了。当我来到学校向我同桌借时,他却说:“我已经借别人了,你向别人借吧!”我又向后面的同学借,可他们总是找各种借口说:“我只带了一枝。”问了三四个人,都没有借到,而且还碰了一鼻子灰。正当我急的像热锅上的蚂蚁团团转时,她递给了我一枝钢笔,微笑的对我说:“拿去用吧!”我顿时感到自己是多么幸福!在我最困难的时候,当别人都不愿意帮助我的时候,她向我伸出了援手。 幸福也是无时无刻都在身旁。 当我生病的时候,高烧持续不退时,是妈妈在旁边细心

的照顾我,喂我吃药,甚至一夜寸步不离的守在我的床边,直到我苏醒。当我看见妈妈的眼睛布满血丝时,我的眼眶在不知不觉地湿润了。这时我便明白我有一个最疼爱我的妈妈,我是幸福的! 幸福就是如此简单!不过,我们还是要珍惜眼前的幸福,还要给别人带来幸福,留心观察幸福。不要等幸福悄悄溜走了才发现,那就真的是后悔莫及了! 这就是我拥有的幸福,你呢? 悠扬的琴声从房间里飘出来,原来这是我在弹钢琴。优美的旋律加上我很强的音乐表现力让一旁姥爷听得如醉如痴。姥爷说我是幸福的,读了《建设幸福中国》我更加体会到了这一点。 儿时的姥爷很喜欢读书,但当时家里穷,据姥爷讲那时上学可不像现在。有点三天打鱼两天晒网,等地里农活忙了太姥爷就说:“别去念书了,干地里的活吧。”干活时都是牛马拉车,也没机器,效率特别低。还要给牲口拔草,喂草,拾柴火,看书都是抽空看。等农闲时才能背书包去学校,衣服更是老大穿了,打补丁老二再接着穿,只有盼到过年时才有能换上件粗布的新衣服。写字都是用石板,用一次擦一次,那时还没有电灯,爱学习的姥爷在昏暗的煤油灯下经常被灯火不是烧了眉毛就是燎了头发。没有电灯更没有电视,没有电视更没有见过钢琴,只知道钢琴是贵族家用的。

高中语文文言文曹操《短歌行(对酒当歌)》原文、翻译、赏析

曹操《短歌行【对酒当歌】》原文、翻译、赏析译文 原文 面对美酒应该高歌,人生短促日月如梭。对酒当歌,人生几何? 好比晨露转瞬即逝,失去的时日实在太多!譬如朝露,去日苦多。 席上歌声激昂慷慨,忧郁长久填满心窝。慨当以慷,忧思难忘。 靠什么来排解忧闷?唯有狂饮方可解脱。何以解忧?唯有杜康。 那穿着青领(周代学士的服装)的学子哟,你们令我朝夕思慕。青青子衿,悠悠我心。 正是因为你们的缘故,我一直低唱着《子衿》歌。但为君故,沉吟至今。 阳光下鹿群呦呦欢鸣,悠然自得啃食在绿坡。呦呦鹿鸣,食野之苹。 一旦四方贤才光临舍下,我将奏瑟吹笙宴请宾客。我有嘉宾,鼓瑟吹笙。 当空悬挂的皓月哟,你运转着,永不停止;明明如月,何时可掇? 我久蓄于怀的忧愤哟,突然喷涌而出汇成长河。忧从中来,不可断绝。 远方宾客踏着田间小路,一个个屈驾前来探望我。越陌度阡,枉用相存。 彼此久别重逢谈心宴饮,争着将往日的情谊诉说。契阔谈讌,心念旧恩。 明月升起,星星闪烁,一群寻巢乌鹊向南飞去。月明星稀,乌鹊南飞。 绕树飞了三周却没敛绕树三匝,何枝

翅,哪里才有它们栖身之 所? 可依? 高山不辞土石才见巍 峨,大海不弃涓流才见壮阔。(比喻用人要“唯才是举”,多多益善。)山不厌高,水不厌深。 只有像周公那样礼待贤 才(周公见到贤才,吐出口 中正在咀嚼的食物,马上接 待。《史记》载周公自谓: “一沐三握发,一饭三吐哺, 犹恐失天下之贤。”),才 能使天下人心都归向我。 周公吐哺,天 赏析 曹操是汉末杰出的政治家、军事家和文学家,他雅好诗章,好作乐府歌辞,今存诗22首,全是乐府诗。曹操的乐府诗多描写他本人的政治主张和统一天下的雄心壮志。如他的《短歌行》,充分表达了诗人求贤若渴以及统一天下的壮志。 《短歌行》是政治性很强的诗作,主要是为曹操当时所实行的政治路线和政策策略服务的,但是作者将政治内容和意义完全熔铸在浓郁的抒情意境之中,全诗充分发挥了诗歌创作的特长,准确而巧妙地运用了比兴手法,寓理于情,以情感人。诗歌无论在思想内容还是在艺术上都取得了极高的成就,语言质朴,立意深远,气势充沛。这首带有建安时代"志深比长""梗概多气"的时代特色的《短歌行》,读后不觉思接千载,荡气回肠,受到强烈的感染。 对酒当歌,人生几何? 譬如朝露,去日苦多。 慨当以慷,幽思难忘。 何以解忧,唯有杜康。 青青子衿,悠悠我心。 但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。 我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇? 忧从中来,不可断绝。 越陌度阡,枉用相存。 契阔谈,心念旧恩。 月明星稀,乌鹊南飞, 绕树三匝,何枝可依? 山不厌高,海不厌深, 周公吐哺,天下归心。 《短歌行》是汉乐府的旧题,属于《相和歌?平调曲》。这就是说它本来是一个乐曲的名称,这种乐曲怎么唱法,现在当然是不知道了。但乐府《相和歌?平调曲》中除了《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗“长歌正激烈”,魏文帝曹丕《燕歌行》“短歌微吟不能长”和晋代傅玄《艳歌行》“咄来长歌续短歌”等句,认为“长歌”、“短

小学生作文《感悟幸福》范文五篇汇总

小学生作文《感悟幸福》范文五篇 小草说,幸福就是大地增添一份绿意;阳光说,幸福就是撒向人间的温暖;甘露说,幸福就是滋润每一个生命。下面是为大家带来的有关幸福650字优秀范文,希望大家喜欢。 感悟幸福650字1 生活就像一部壮丽的交响曲,它是由一篇一篇的乐章组成的,有喜、有怒、有哀、有乐。每一个人都有自己丰富多彩的生活,我也有自己的生活。我原本以为,吃可口的牛排,打电脑游戏,和朋友开心玩乐就是幸福。可是,我错了,幸福并不仅仅如此。 记得有一次,我放学回到家里放下书包就拿起一包饼干来吃。吃着吃着,突然我觉得牙齿痛了起来,而且越来越痛,痛得我连饼干也咬不动了。我放下饼干,连忙去拿了一面镜子来看。原来这又是那一颗虫牙在“作怪”。“哎哟哟,哎哟哟,痛死我了……”我不停地说着。渐渐地,那牙疼得越来越厉害,疼得我坐立不安,直打滚。后来在妈妈的陪伴下去了医院,治好了那颗虫牙。跨出医院大门时,我觉得心情出奇的好,天空格外的蓝,路边的樟树特别的绿,看什么都顺眼,才猛然一悟,幸福是简单而平凡的,身体健康就是一种幸福! 这学期我发现我的英语退步了,我决定要把这门功课学好,于是,我每天回

家做完作业后,都抽出半小时时间复习英语,在课上也听得特别认真,一遇到不懂的题目主动请教老师。经过一段时间的努力,终于,在上次考试的时候,我考了97分。妈妈表扬了我,我心里美滋滋的。我明白了经过自己的努力享受到成功的喜悦,这也是一种幸福。 …… 每个人都无一例外的渴望幸福。不同的人有不同的感受,其实,幸福就是那种能在平凡中寻找欢乐、能在困境中找到自信的一种心境。同学们,幸福其实很简单,就在我们的身边,触手可及。用心去认真地品味吧,它一直未曾离开我们身边! 感悟幸福650字2 有的人认为幸福就是腰缠万贯,有的人认为幸福就是找到意中人,“采菊东篱下,悠然见南山”是陶渊明对邪恶幸福,“从明天起做一个幸福人,喂马、劈柴、周游世界。从明天起,关心蔬菜和粮食,我有一所房子,面朝大海,春暖花开。”这是海子的幸福。一千种人就有一千种对幸福的理解。 我对幸福的理解就是幸福使简单而平凡的,是无处不在的! 我的牙疼得奇怪而顽强不是这颗牙疼就是那颗牙疼;不是吃冷的疼就是吃热

曹操《短歌行》其二翻译及赏析

曹操《短歌行》其二翻译及赏析 引导语:曹操(155—220),字孟德,小名阿瞒,《短歌行 二首》 是曹操以乐府古题创作的两首诗, 第一首诗表达了作者求贤若渴的心 态,第二首诗主要是曹操向内外臣僚及天下表明心迹。 短歌行 其二 曹操 周西伯昌,怀此圣德。 三分天下,而有其二。 修奉贡献,臣节不隆。 崇侯谗之,是以拘系。 后见赦原,赐之斧钺,得使征伐。 为仲尼所称,达及德行, 犹奉事殷,论叙其美。 齐桓之功,为霸之首。 九合诸侯,一匡天下。 一匡天下,不以兵车。 正而不谲,其德传称。 孔子所叹,并称夷吾,民受其恩。 赐与庙胙,命无下拜。 小白不敢尔,天威在颜咫尺。 晋文亦霸,躬奉天王。 受赐圭瓒,钜鬯彤弓, 卢弓矢千,虎贲三百人。 威服诸侯,师之所尊。 八方闻之,名亚齐桓。 翻译 姬昌受封为西伯,具有神智和美德。殷朝土地为三份,他有其中两分。 整治贡品来进奉,不失臣子的职责。只因为崇侯进谗言,而受冤拘禁。 后因为送礼而赦免, 受赐斧钺征伐的权利。 他被孔丘称赞, 品德高尚地位显。 始终臣服殷朝帝王,美名后世流传遍。齐桓公拥周建立功业,存亡继绝为霸 首。

聚合诸侯捍卫中原,匡正天下功业千秋。号令诸侯以匡周室,主要靠的不是 武力。 行为磊落不欺诈,美德流传于身后。孔子赞美齐桓公,也称赞管仲。 百姓深受恩惠,天子赐肉与桓公,命其无拜来接受。桓公称小白不敢,天子 威严就在咫尺前。 晋文公继承来称霸,亲身尊奉周天王。周天子赏赐丰厚,仪式隆重。 接受玉器和美酒,弓矢武士三百名。晋文公声望镇诸侯,从其风者受尊重。 威名八方全传遍,名声仅次于齐桓公。佯称周王巡狩,招其天子到河阳,因 此大众议论纷纷。 赏析 《短歌行》 (“周西伯昌”)主要是曹操向内外臣僚及天下表明心 迹,当他翦灭群凶之际,功高震主之时,正所谓“君子终日乾乾,夕惕若 厉”者,但东吴孙权却瞅准时机竟上表大说天命而称臣,意在促曹操代汉 而使其失去“挟天子以令诸侯”之号召, 故曹操机敏地认识到“ 是儿欲据吾著炉上郁!”故曹操运筹谋略而赋此《短歌行 ·周西伯 昌》。 西伯姬昌在纣朝三分天下有其二的大好形势下, 犹能奉事殷纣, 故孔子盛称 “周之德, 其可谓至德也已矣。 ”但纣王亲信崇侯虎仍不免在纣王前 还要谗毁文王,并拘系于羑里。曹操举此史实,意在表明自己正在克心效法先圣 西伯姬昌,并肯定他的所作所为,谨慎惕惧,向来无愧于献帝之所赏。 并大谈西伯姬昌、齐桓公、晋文公皆曾受命“专使征伐”。而当 今天下时势与当年的西伯、齐桓、晋文之际颇相类似,天子如命他“专使 征伐”以讨不臣,乃英明之举。但他亦效西伯之德,重齐桓之功,戒晋文 之诈。然故作谦恭之辞耳,又谁知岂无更讨封赏之意乎 ?不然建安十八年(公元 213 年)五月献帝下诏曰《册魏公九锡文》,其文曰“朕闻先王并建明德, 胙之以土,分之以民,崇其宠章,备其礼物,所以藩卫王室、左右厥世也。其在 周成,管、蔡不静,惩难念功,乃使邵康公赐齐太公履,东至于海,西至于河, 南至于穆陵,北至于无棣,五侯九伯,实得征之。 世祚太师,以表东海。爰及襄王,亦有楚人不供王职,又命晋文登为侯伯, 锡以二辂、虎贲、斧钺、禾巨 鬯、弓矢,大启南阳,世作盟主。故周室之不坏, 系二国是赖。”又“今以冀州之河东、河内、魏郡、赵国、中山、常 山,巨鹿、安平、甘陵、平原凡十郡,封君为魏公。锡君玄土,苴以白茅,爰契 尔龟。”又“加君九锡,其敬听朕命。” 观汉献帝下诏《册魏公九锡文》全篇,尽叙其功,以为其功高于伊、周,而 其奖却低于齐、晋,故赐爵赐土,又加九锡,奖励空前。但曹操被奖愈高,心内 愈忧。故曹操在曾早在五十六岁写的《让县自明本志令》中谓“或者人见 孤强盛, 又性不信天命之事, 恐私心相评, 言有不逊之志, 妄相忖度, 每用耿耿。

2019-2020年高一音乐 甜美纯净的女声独唱教案

2019-2020年高一音乐甜美纯净的女声独唱教案 一、教学目标 1、认知目标:初步了解民族唱法、美声唱法、通俗唱法三种唱法的风格。 2、能力目标:通过欣赏部分女声独唱作品,学生能归纳总结出她们的演唱 风格和特点,并同时用三种不同风格演唱同一首歌曲。 3、情感目标:通过欣赏比较,对独唱舞台有更多元化的审美意识。 二、教学重点:学生能用三种不同风格演唱形式演唱同一首歌。 三、教学难点:通过欣赏部分女声独唱作品,学生能归纳总结出她们的演唱 风格和特点。 四、教学过程: (一)导入 1、播放第十三界全国青年歌手大奖赛预告片 (师)问:同学们对预告片中的歌手认识吗 (生)答: (师)问:在预告片中提出了几种唱法? (生)答:有民族、美声、通俗以及原生态四种唱法,今天以女声独唱歌曲重点欣赏民族、美声、通俗唱法,希望通过欣赏同学们能总结出三种唱法的风格和特点。 (二)、音乐欣赏

1、通俗唱法 ①(师)问:同学们平常最喜欢唱那些女歌手的歌呢?能唱唱吗? (可让学生演唱几句喜欢的歌,并鼓励) ②欣赏几首通俗音乐 视频一:毛阿敏《绿叶对根的情谊》片段、谭晶《在那东山顶上》片段、韩红《天路》片段、刘若英《后来》片段 视频二:超女《想唱就唱唱得响亮》 ①由学生总结出通俗音乐的特点 ②师总结并板书通俗音乐的特点:通俗唱法是在演唱通俗歌曲的基础上发展起来的,又称“流行唱法”。通俗歌曲是以通俗易懂、易唱易记、娱乐性强、便于流行而见长,它没有统一的规格和演唱技法的要求,比较强调歌唱者本人的自然嗓音和情绪的渲染,重视歌曲感情的表达。演唱上要求吐字清晰,音调流畅,表情真挚,带有口语化。 ③指出通俗音乐尚未形成系统的发声训练体系。其中用沙哑、干枯的音色“狂唱”和用娇柔、做作的姿态“嗲唱”,不属于声乐艺术的正道之物,应予以摒弃。 2、民族唱法 ①俗话说民族的才是世界的那么民族唱法的特点是什么呢? ②欣赏彭丽媛《万里春色满人间》片段 鉴赏提示:这首歌是剧种女主角田玉梅即将走上刑场时的一段难度较大的咏叹调。

关于以幸福为话题的作文800字记叙文5篇

关于以幸福为话题的作文800字记叙文5篇 ----WORD文档,下载后可编辑修改---- 下面是作者为各位家长学生收集整理的作文(日记、观后感等)范本,欢迎借鉴参考阅读,您的努力学习和创新是为了更美好的未来,欢迎下载! 以幸福为话题的作文800字记叙文1: 那是我生病后的第三天,妈妈从早上五点就起来为我准备早点。她蹑手蹑脚地走着“针步”,下楼煮早点,“啪”的一声,妈妈打开了煤气。在拿肉丝,打鸡蛋的她全然不知我正躲在楼梯口“监视”着她的一举一动。不一会儿,蛋炒好了。 她开始切肉丝,一不小心,妈妈的手指切破皮了,鲜血正一滴一滴地流下来,为了不影响我的睡眠,她把手指放在嘴里吸了一下,坚持把剩下的肉丝切完。 此时的我,心中犹如打翻了五味瓶,眼里的泪像断了线的珍珠般掉了下来,我再也忍不住了,一个劲地冲到妈妈面前,她赶紧把手背了过去,生怕让我知道了什么。 她吃惊地问我:“妈妈太吵了,吵到你了?”“不,不,没有”她见我这么早起来就让我再回去补个觉。我关心地问:“妈,你的手没事吧?”她吱唔着说:“没事,擦破点皮,不碍事!”我仔细地帮她清洗了伤口,贴了一片创可贴。 吃饭时,妈妈一直地往我碗里夹肉,“孩子,病刚好,多吃点!”可是我见她始终都没吃一块肉。我也夹了两块放在她的碗里。“儿子懂事了,你自己快点吃吧!补身体要紧!”我冲她点点头笑了笑,“嗯。” 这就是幸福,一份简简单单的幸福!我祈祷这幸福能伴我成长。 以幸福为话题的作文800字记叙文2: 在我眼中,成长就是记录我们长大过程中一点一滴的小事情的,而幸福就在这点点滴滴中。 在我的成长记忆中,永不磨灭的是2017年11月的一天。妈妈要去云南,妈妈早上四点半要到指定地点集合,这么早,妈妈要两三点就起来,可是最近我咳嗽比较严重,所以天天给我煮萝卜汤喝。 “叮铃铃,叮铃铃”闹钟叫了起来,把我从睡梦中吵醒,一醒来,去找妈妈,

尊重议论文

谈如何尊重人尊重他人,我们赢得友谊;尊重他人,我们收获真诚;尊重他人,我们自己也 获得尊重;相互尊重,我们的社会才会更加和谐. ——题记 尊重是对他人的肯定,是对对方的友好与宽容。它是友谊的润滑剂,它是和谐的调节器, 它是我们须臾不可脱离的清新空气。“主席敬酒,岂敢岂敢?”“尊老敬贤,应该应该!”共和 国领袖对自己老师虚怀若谷,这是尊重;面对许光平女士,共和国总理大方的叫了一 声“婶婶”,这种和蔼可亲也是尊重。 尊重不仅会让人心情愉悦呼吸平顺,还可以改变陌生或尖锐的关系,廉颇和蔺相如便是 如此。将相和故事千古流芳:廉颇对蔺相如不满,处处使难,但蔺相如心怀大局,对廉颇相 当的尊重,最后也赢得了廉颇的真诚心,两人结为好友,共辅赵王,令强秦拿赵国一点办法 也没有。蔺相如与廉颇的互相尊重,令得将相和的故事千百年令无数后人膜拜。 现在,给大家举几个例子。在美国,一个颇有名望的富商在散步 时,遇到一个瘦弱的摆地摊卖旧书的年轻人,他缩着身子在寒风中啃着发霉的面包。富 商怜悯地将8美元塞到年轻人手中,头也不回地走了。没走多远,富商忽又返回,从地摊上 捡了两本旧书,并说:“对不起,我忘了取书。其实,您和我一样也是商人!”两年后,富商 应邀参加一个慈善募捐会时,一位年轻书商紧握着他的手,感激地说:“我一直以为我这一生 只有摆摊乞讨的命运,直到你亲口对我说,我和你一样都是商人,这才使我树立了自尊和自 信,从而创造了今天的业绩??”不难想像,没有那一 句尊重鼓励的话,这位富商当初即使给年轻人再多钱,年轻人也断不会出现人生的巨变, 这就是尊重的力量啊 可见尊重的量是多吗大。大家是不是觉得一个故事不精彩,不够明确尊重的力量,那再 来看下一个故事吧! 一家国际知名的大企业,在中国进行招聘,招聘的职位是该公司在中国的首席代表。经 过了异常激烈的竞争后,有五名年轻人,从几千名应聘者中脱颖而出。最后的胜出者,将是 这五个人中的一位。最后的考试是一场面试,考官们都 作文话题素材之为人处世篇:尊重 思路 人与人之间只有互相尊重才能友好相处 要让别人尊重自己,首先自己得尊重自己 尊重能减少人与人之间的摩擦 尊重需要理解和宽容 尊重也应坚持原则 尊重能促进社会成员之间的沟通 尊重别人的劳动成果 尊重能巩固友谊 尊重会使合作更愉快 和谐的社会需要彼此间的尊重 名言 施与人,但不要使对方有受施的感觉。帮助人,但给予对方最高的尊重。这是助人的艺 术,也是仁爱的情操。———刘墉 卑己而尊人是不好的,尊己而卑人也是不好的。———徐特立 知道他自己尊严的人,他就完全不能尊重别人的尊严。———席勒 真正伟大的人是不压制人也不受人压制的。———纪伯伦 草木是靠着上天的雨露滋长的,但是它们也敢仰望穹苍。———莎士比亚

最新整理高中关于幸福的议论文800字范文3篇

最新整理高中关于幸福的议论文800字范文3篇 范文一 什么是幸福?当我把一个棒棒糖递给六岁的邻居小妹妹时,她满足的笑容告诉我,这是她的幸福。当我轻轻地走过妹妹的写字台时,我瞥见埋在桌上的妹妹的僵硬的表情。我笑笑,走近,她抬头,水汪汪的眼睛望着我,似乎带着某种渴求。我说:出去玩吧!她笑了,蹦蹦跳跳地跑了出去。我诧异,这么真诚的笑。玩耍是她的幸福。 暑假到了,马上面临实习的哥哥回来了。可没过几天,就不见人影了,好容易盼他回来,暑假也结束了。他说他去了内蒙的好多地方。我关切的问他累吗?他说:累啊!随后又骄傲地说:“可是我学会了许多东西,我相信那对我以后的人生路是有帮助的。”我笑,大声地喊:哥,你是我的榜样。在他看来,他的暑假是充实的,他是幸福的! 夜幕降临,繁星点点。隔着一层帘,我看见常年劳作的父亲坐在那里,默默地吸着一支烟。灯光打在他的脸上,我看不清他的表情,只有那斑白的鬓角依稀可见。父亲真的老了,每天早出晚归来支撑这个家,他一定很累了。眼泪盈满了眼眶,最后还是不争气的流了下来……“咳、、咳、、”一阵剧烈的咳嗽声传来。我擦干眼泪,走到父亲旁边,父亲把那支烟熄灭,慈祥的笑笑,说:爸爸老了,不中用了。我说:没有啊!父女两开怀的笑了,笑声混着一个个烟圈飘向远方……我问父亲:爸,这么多年付出,这么多年劳作,你幸福吗?他坚定地告诉我,幸福!他说:“只要你们开开心心快快乐乐地成长,我做的一切都值得。”他又说:“霞,好好读书,爸爸赚钱供你上大学,我还没老呢,至少还能干XX年,20年……然后是一片寂静,我和父亲看着远方,那里有希望。 年迈的姥姥是家里的大长辈,他常常念叨:平安就是福。那也许是经历了人生的酸甜苦辣后的感悟吧!每逢新春,一大家人在姥姥家围着看电视时,那应该是她的幸福吧! 幸福是什么?它不是你一个人拥有一座豪宅,它是一家人在并不宽敞的屋子里谈笑风生。它不是你一个人有拥山珍海味,它是一家人和和乐乐的吃一些普通

短歌行赏析介绍

短歌行赏析介绍 说道曹操, 大家一定就联想到三国那些烽火狼烟岁月吧。 但是曹操其实也是 一位文学 大家,今天就来分享《短歌行 》赏析。 《短歌行》短歌行》是汉乐府旧题,属于《相和歌辞·平调曲》。这就是说 它本来是一个乐曲名称。最初古辞已经失传。乐府里收集同名诗有 24 首,最早 是曹操这首。 这种乐曲怎么唱法, 现在当然是不知道。 但乐府 《相和歌·平调曲》 中除《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗 “长歌正激烈”, 魏文帝曹丕 《燕歌行》 “短歌微吟不能长”和晋代傅玄 《艳 歌行》 “咄来长歌续短歌”等句, 认为“长歌”、 “短歌”是指“歌声有长短”。 我们现在也就只能根据这一点点材料来理解《短歌行》音乐特点。《短歌行》这 个乐曲,原来当然也有相应歌辞,就是“乐府古辞”,但这古辞已经失传。现在 所能见到最早《短歌行》就是曹操所作拟乐府《短歌行》。所谓“拟乐府”就是 运用乐府旧曲来补作新词,曹操传世《短歌行》共有两首,这里要介绍是其中第 一首。 这首《短歌行》主题非常明确,就是作者希望有大量人才来为自己所用。曹 操在其政治活动中,为扩大他在庶族地主中统治基础,打击反动世袭豪强势力, 曾大力强调“唯才是举”,为此而先后发布“求贤令”、“举士令”、“求逸才 令”等;而《短歌行》实际上就是一曲“求贤歌”、又正因为运用诗歌 形式,含有丰富抒情成分,所以就能起到独特感染作用,有力地宣传他所坚 持主张,配合他所颁发政令。 《短歌行》原来有“六解”(即六个乐段),按照诗意分为四节来读。 “对酒当歌,人生几何?譬如朝露,去日苦多。慨当以慷,忧思难忘。何以 解忧,唯有杜康。” 在这八句中,作者强调他非常发愁,愁得不得。那么愁是什么呢?原来他是 苦于得不到众多“贤才”来同他合作, 一道抓紧时间建功立业。 试想连曹操这样 位高权重人居然在那里为“求贤”而发愁, 那该有多大宣传作用。 假如庶族地主 中真有“贤才”话, 看这些话就不能不大受感动和鼓舞。 他们正苦于找不到出路

感受幸福作文(15篇)

感受幸福作文(15篇) 感受幸福作文第1篇: 幸福是什么?这是许多同学要问的问题。 很小的时候,我就明白钱能够买来一大盒巧克力;钱能够买来玩具汽车;钱能够买许多的美丽的洋娃娃;钱能够买来一个大楼…… 我以为有钱就是幸福。 倡我错了,钱虽然能够买来一屋子巧克力,但买了甜蜜,钱虽然能买到房子,可是却买来家庭幸福;钱虽然能买来药,可是却买来健康,钱虽然能买来闹钟,可是买来时间……那时,我又明白了有钱必须幸福。 以前,我总是为了一条连衣裙而朝思暮想,盼望有一天能够穿上裙子,去放风筝。那时候,我以为拥有就是幸福。 最终有一天,妈妈给我买了这条连衣裙,我高兴的一宿都没有睡觉。可是几天的新鲜劲没有了,穿上裙子后,我并没有什么改变,依然是一个黄毛丫头。于是把它扔到箱子里。几个月后,我又把它翻出来,可是已经小了,穿下了。我又明白了,虽然裙子很美,但都是暂时的,完美的时光总是转瞬消失。 “幸福是什么?”我依然没有感受到。 几年后,我在街上看到了一对耄耋老人,他们虽然履蹒跚,可是互相搀扶,有时抬头看看天上的云卷云舒,有时望望西天如血的残阳,她们脸上洋溢着的是满足和幸福。 噢,我明白幸福就是真情。虽然他们很穷,可是他们很

相爱。他们彼此珍惜,从感叹世界对他们的公平。往往有的有钱人,他们虽然很有钱,可是他们并幸福,因为他们的心总是被金钱和权势所占据了,根本享受了这天伦之乐。 幸福其实很简单,就是和爸爸、妈妈吃一顿饭,和他在一齐聊聊天。 感受幸福作文第2篇: 夜,悄悄地打开了黑暗,散布着一如既往的宁静,天上的繁星披上了闪装,正对着我的眼,似乎害怕我听到它们之间的悄悄话。 知何时,甘寂寞的虫儿起劲地奏起了动听的乐曲,清凉的微风夹杂着泥土的芳香悄悄地将白天的烦闷与喧嚣赶跑。夜,显得更加宁静而诗意了。 静静的,左思,右想,就这样静静地坐在楼顶上,感受着夜馈赠我的美妙。就连天上偶尔飘过的云朵,也像是怕惊动了夜的宁静,如绒毛在平静水面滑过般,显得那么轻柔而迷人。 今夜独处在空旷的夜空下,感受着夜带给我的美妙,幸福惬意溢满于心。原先自我一向以来苦苦追寻的幸福其实就在自我的身边。 以往,有人努力打拼,渴望生活富裕来获得幸福,可一辈子的艰辛拼搏使自我逐渐沦为金钱的奴隶,苦苦追寻的幸福也越寻越远,最终留给自我的是岁月无情地染白的头发。其实,幸福并非是追寻能得到的,幸福是一种感受,仅有用心感受身边的一切,你就能发现,幸福无处在,譬如,管贫

短歌行赏析

短歌行赏析 《短歌行》 对酒当歌,人生几何?譬如朝露,去日苦多。 概当以慷,忧思难忘。何以解忧?唯有杜康。 青青子衿,悠悠我心。但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇?忧从中来,不可断绝。 越陌度阡,枉用相存。契阔谈咽,心念旧恩。 月明星稀,乌鹊南飞。绕树三匝,何枝可依。 山不厌高,海不厌深,周公吐哺,天下归心。 “短歌行”是汉乐府一个曲调的名称,是用于宴会场合的歌辞。曹操集子里现存《短歌行》两首,课文选的是第一首。作为一位政治家兼军事家的诗人曹操,十分重视人才,这首诗抒发了他渴望招纳贤才、建功立业的宏图大愿。 全诗三十二句,分四节,每八句一节。 第一节抒写诗人人生苦短的忧叹。“对酒当歌,人生几何?譬如朝露,去日苦多。”“当”,对着。“去日”,指逝去的岁月。这四句意思是:在边喝着酒,边唱着歌时,忽然感叹道:人生能有多久呢?人生啊,就好比早晨的露水,一会儿就干了,又苦于过去的日子太多了。“慨当以慷,忧思难忘。何以解忧?唯有杜康。”“慨当以慷”是“慷慨”的间隔用法,“当以”,没有实在意义,即指宴会上歌声慷慨激昂。“杜康”相传是发明酿酒的人,这里作酒的代称。这四句意思是:即使宴会上歌声慷慨激昂,诗人内心的忧愁还是难以消除。用什么来消除胸中的忧愁呢?只有借酒浇愁。我们如何理解诗人这种人生苦短的忧叹呢?诗人生逢乱世,

目睹百姓颠沛流离,肝肠寸断,渴望建功立业而不得,因而发出人生苦短的忧叹。这个点我们可从他的另一首诗《蒿里行》中得到佐证:“白骨露于野,千里无鸡鸣。生民百遗一,念之断人肠。” 第二节抒写诗人对贤才的渴求。“青青子衿,悠悠我心”,是引用《诗经?郑风?子衿》中的成句。“青衿”,周代读书人的服装,这里指代有学问的人。“悠悠”,长久的样子,形容思念之情。这两句意思是:你的衣领青青啊,总是让我如此挂念。原诗后两句是:“纵我不往,子宁不嗣音?”意思是:虽然我不能去找你,你为什么不主动给我音信?曹操因为事实上不可能一个一个地去找那些贤才,所以他使用这种含蓄的话来提醒他们,希望贤才主动来归。“但为君故,沉吟至今。”“沉吟”,低声叨念,表示渴念。这两句意思是:只因为你的缘故,让我渴念到如今。“青青子衿,悠悠我心。但为君故,沉吟至今。”四句以女子对心爱的男子的思念比喻自己对贤才的渴求。“呦呦鹿鸣,食野之苹。我有嘉宾,鼓瑟吹笙。”这四句引自《诗经?小雅?鹿鸣》,《鹿鸣》是一首描写贵族盛宴热情款待尊贵客人的的诗歌。前两句起兴,意思是:野鹿呦呦呦呦地叫,欢快地吃着野地里的艾蒿。以下各句描写宾客欢宴的场面,这里引用的两句意思是:我有很多尊贵的客人,席间弹起琴瑟,吹起笙乐。诗人引用这几句诗,表示自己对贤才的热情。 第三节抒写诗人对贤才难得的忧思和既得贤才的欣喜。“明明如月,何时可掇?”“明月”,比喻人才。“掇”,拾取,摘取。意思是:贤才有如天上的明月,我什么时候才能摘取呢?“忧从中来,不可断绝。”因为求才不得,内心不禁产生忧愁,这种忧愁无法排解。“越陌度阡,枉用相存。契阔谈讌,心念旧 恩。”“陌”、“阡”,都是指田间小路,东西向叫“陌”,南北向叫“阡”。“枉”,枉驾,屈驾。“用”,以。“存”,探问,问候。“契阔”,久别重逢。

女生唱的歌曲欢快甜美

女生唱的歌曲欢快甜美 美妙的歌曲能令我们陶醉其中而无法自拨,最激烈的歌曲能令我们的身体不由自主的跟着手舞足蹈起来,下面是小编整理的欢快甜美的歌曲的内容,希望能够帮到您。 欢快甜美的歌曲 1. Talking - 2. 羽毛- 劲歌金曲 3. 为你- 黑龙 4. 我的小时候- 罗艺达 5. 听说爱情回来过 6. 那个男人 7. 夫妻观灯_韩再芬、李迎春- 中国民歌宝典二 8. 往生- 镀飞爱在阳光空气中- 区瑞强- 音乐合辑 9. 说中国- 班- 华语群星 10. 第十八封信- Kent王健 11. 那一夜你喝了酒- 傅薇 12. 最近比较烦- 周华健/李宗盛/品冠- 滚石群星 13. 告白- 张娜拉 14. Talking VIII - 15. my love - 网友精选曲 16. 音乐人民- 音乐合辑 17. 深深深深- 徐誉滕 18. Honkytonk U - Toby Keith 19. 征服- 阿强 20. 我总会感动你- 沙宝亮欢快甜美的歌曲 1. 一千步的距离- 高桐 2. fleeing star - 音乐合辑 3. My Life - 李威杰 4. 小妹听我说- 金久哲 5. 上海滩- 梁玉嵘- 华语群星 6. 爱我多爱一些- 黎姿 7. 恋人未满- 8. 玛奇朵飘浮- 音乐听吧 9. 風- 音乐听吧 10. 七月- 小鸣 11. 滚滚红尘- 罗大佑 12. 张震岳—想要- 华语群星 13. 有梦有朋友- 14. 童年- 拜尔娜 15. 洪湖水,浪打浪- 宋祖英 16. 只爱到一半- 魏晨 17. 风雨人生路- 何静 18. 居家男人- 回音哥如果当时- 许嵩 19. 那个男人的谎言Tae In - 非主流音乐

尊重他人的写作素材

尊重他人的写作素材 导读:——学生最需要礼貌 著名数学家陈景润回厦门大学参加 60 周年校庆,向欢迎的人们说的第一句话是:“我非常高兴回到母校,我常常怀念老师。”被人誉为“懂得人的价值”的著名经济学家、厦门大学老校长王亚南,曾经给予陈景润无微不至的关心和帮助。陈景润重返母校,首先拜访这位老校长。校庆的第三天,陈景润又出现在向“哥德巴赫猜想”进军的启蒙老师李文清教授家中,陈景润非常尊重和感激他。他还把最新发表的数学论文敬送李教授审阅,并在论文扉页上工工整整写了以下的字:“非常感谢老师的长期指导和培养——您的学生陈景润。”陈景润还拜访了方德植教授,方教授望着成就斐然而有礼貌的学生,心里暖暖的。 ——最需要尊重的人是老师 周恩来少年时在沈阳东关模范学校读书期间 , 受到进步教师高盘之的较大影响。他常用的笔名“翔宇”就是高先生为他取的。周恩来参加革命后不忘师恩 , 曾在延安答外国记者问时说:“少年时代我在沈阳读书 , 得山东高盘之先生教诲与鼓励 , 对我是个很大的 促进。” 停奏抗议的反思 ——没有礼仪就没有尊重 孔祥东是著名的钢琴演奏家。 1998 年 6 月 6 日晚,他在汕头

举办个人钢琴独奏音乐会。演出之前,节目主持人再三强调,场内观众不要随意走动,关掉 BP 机、手提电话。然而,演出的过程中,这种令人遗憾的场面却屡屡发生:场内观众随意走动, BP 机、手提电话响声不绝,致使孔祥东情绪大受干扰。这种情况,在演奏舒曼作品时更甚。孔祥东只好停止演奏,静等剧场安静。然而,观众还误以为孔祥东是在渴望掌声,便报以雷鸣般的掌声。这件事,令孔祥东啼笑皆非。演出结束后,孔祥东说:有个 BP 机至少响了 8 次,观众在第一排来回走动,所以他只得以停奏抗议。 “礼遇”的动力 ——尊重可以让人奋发 日本的东芝公司是一家著名的大型企业,创业已经有 90 多年的历史,拥有员工 8 万多人。不过,东芝公司也曾一度陷入困境,土光敏夫就是在这个时候出任董事长的。他决心振兴企业,而秘密武器之一就是“礼遇”部属。身为偌大一个公司的董事长,他毫无架子,经常不带秘书,一个人步行到工厂车间与工人聊天,听取他们的意见。更妙的是,他常常提着酒瓶去慰劳职工,与他们共饮。对此,员工们开始都感到很吃惊,不知所措。渐渐地,员工们都愿意和他亲近,他赢得了公司上下的好评。他们认为,土光董事长和蔼可亲,有人情味,我们更应该努力,竭力效忠。因此,土光上任不久,公司的效益就大力提高,两年内就把亏损严重、日暮途穷的公司重新支撑起来,使东芝成为日本最优秀的公司之一。可见,礼,不仅是调节领导层之间关

相关主题
文本预览
相关文档 最新文档