当前位置:文档之家› am的调制与解调

am的调制与解调

am的调制与解调
am的调制与解调

1课程设计目的:

掌握am调制与解调系统的理论设计和软件仿真方法,掌握应用matlab分析时域频域特性的方法。通过MATLAB仿真,加深对AM系统的理解;锻炼运用所学知识,独立分析问题、解决问题的综合能力

2课程设计要求:

运用通信原理的基本理论和专业知识,对AM系统进行设计、仿真(仿真用程序实现),要求用程序画出调制信号,载波,已调信号、相干解调之后信号的的波以及已调信号的功率谱密度。

用matlab产生一个频率为1HZ、功率为1的余弦信源,设载波频率为10HZ,A=2,试画出:调制信号,AM信号,载波,解调信号及已调信号的功率谱密度。

3相关知识:

AM调制信号波形图:

AM调制也称普通调幅波,已调波幅度将随调制信号的规律变化而线性变化,但载波频率不变。设载波是频率为ωc的余弦波:uc(t)=Ucmcosωct, 调制信号为频率为Ω的单频余弦信号,即UΩ(t)=UΩmcosΩt(Ωωc),则普通调幅波信号为:

u AM(t)= (U cm+kUΩm cos Ωt)cosωc t = U cm(1+M a cosΩt)cosωc t (1)

——式中:Ma=kUΩm/U cm,称为调幅系数或调幅度

AM调制信号波形如图1所示:

图1.普通调幅波形

显然AM波正负半周对称时:MaUcm=Umax-Ucm =Ucm-Umin,

调幅度为:Ma=( Umax-Ucm )∕Ucm =( Ucm-Umin )∕Ucm。

Ma=0时,未调幅状态

Ma=1时,满调幅状态(100%),正常Ma值处于0~1之间。

Ma>1时,普通调幅波的包络变化与调制信号不再相同,会产生失真,称为过调幅现象。所以,普通调幅要求Ma必须不大于1。图2所示为产生失真时的波形。

图2.Ma>1时的过调制波形

4课程设计分析

4.1AM 调制原理:

AM 调制就是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移(精确到常数因子)。由于这种搬移是线性的,因此,幅度调制通常又称为线性调制。AM 是指调制信号去控制高频载波的幅度,使其随调制信号呈线性变化的过程。AM 信号的调制原理模型如下[6]:

调制模型

m(t)为基带信号,它可以是确知信号,也可以是随机信号,但通常认为它的平均值为0.

载波为

)¢t w (cos )t (00+=C A C (2.3.1)

上式中,A 为载波振幅,w 为载波角频率0?为载波的初始相位。

解调方法利用相干解调。解调就是实现频谱搬移,通过相乘器与载波相乘来实现。相干解调时,接收端必须提供一个与接受的已调载波严格同步的本地载波,它与接受的已调信号相乘后,经低通滤波器取出低频分量,得到原始的基带调制信号。相干解调的一般模型如下:

图1 AM 信号的相干解调原理框图

将已调信号乘上一个与调制器同频同相的载波,得

解调框图

t w t m A t m A t

w t m A S c c AM 2cos )]([21)]([21cos )]([t cosw t)(0020c +++=+=? 由上式可知,只要用一个低通滤波器,就可以无失真的恢复出原始的调制信

号 。

)]([21)(00T M A T M +=

通过信号的功率谱密度的公式,得到功率谱密度。

4.2AM 解调原理:

振幅解调是振幅调制的逆过程,从频谱的角度看就是将有用信号从高频段搬到低频段。而要完成频谱搬移(有新频率产生),电路中必须要有非线性器件。一般情况下,AM 波采用包络检波即峰值检波的方式实现解调。即包络检波就是从AM 波中还原出原调制信号的过程。

设输入普通调幅信号uAM (t )如(1)式所示,图4中非线性器件工作在开关状态,则非线性器件输出电流为:io(t)=guAM(t)·K1(ωc t )

=gUcm(1+M a cosΩt)cosωc t · 式中: g ——非线性器件伏安特性曲线斜率。

])12cos()12(2)1(21[11t w n n c n n --?-+∑∞=-π

可见io中含有直流,Ω,ωc,ωc±Ω以及其它许多组合频率分量,其中的低频分量是gUm(1+M s cosΩt)∕Π。用低通滤波器取出io中这一低频分量,滤除ωc-Ω及其以上的高频分量,就可以恢复与原调制信号U(t)成正比的单频信号了。

图4.解调原理图

图4中(a)图为包络检波电路的组成模型,(b)图则为包络检波还原信号的波形变化过程和频谱的变化情况。

5仿真:

clear

clc

close all;

t=0:0.01:2*pi;

y0=2^(1/2)*cos(2*pi*t);

y1=5+2^(1/2)*cos(2*pi*t); %信源频率为1Hz的余弦

y2=cos(2*pi*10*t); %载波10Hz

y3=y1.*y2; %已调信号

y4=y3.*y2; %同步解调,与载波相乘

figure(1);

[b,a]=cheby1(12,0.5,100/500); %切比雪夫滤波器

y5=filter(b,a,y4); %滤波

figure(1);

subplot(5,1,1);

plot(y0); %画出信源的图形

title('余弦信号');

subplot(5,1,2);

plot(y2); %画出载波图形

title('载波信号');

subplot(5,1,3);

plot(y3); %画出已调信号的信号图形title('调制信号');

subplot(5,1,4);

plot(y4);

title('相干解调信号');

subplot(5,1,5);

plot(y5); %画出解调信号的图形title('解调信号');

N=100;

t=0:0.01:1;

T=1;

Pxx=(abs(fftshift(fft(y5)).^2)/T);

f=-length(Pxx)/2:length(Pxx)/2-1

figure(2);

plot(f,Pxx);

title('解调信号的功率谱密度');

xlabel('频率');

ylabel('功率(dB)');

grid on

6结果分析:

就是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化。通过相干解调,通过低通滤波器得到解调信号。图中第一个基带余弦信号,第二个为载波信号,第三个为调制信号,可以看出调制信号幅度随基带信号的幅度变化而变化。第四个为相干解调信号,可以看出其中含有高频信号。第五个为通过低通滤波器后的信号,可以看出和基带信号基本保持一致

从已调信号的功率谱密度图上可以看出,已调信号带宽是基带信号带宽的2倍,并且在载波处有冲激。

7参考文献:

[1].《通信原理》(第五版),樊昌信等,国防工业出版社

[2].《现代通信原理》曹志刚钱亚生清华大学出版社

[3].《通信原理》黄载禄殷蔚华编著科学出版社

[4].《通信原理简明教程》,南利平,清华大学出版社

4FSK调制和解调

%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>初始化数据>>>>>>>>>>>>>>>>>>>>> %--------------------------------------------------- clc,clear,close all; fs = 30000; Time_Hold_On = 0.1; Num_Unit = fs * Time_Hold_On; one_Level = zeros ( 1, Num_Unit ); two_Level = ones ( 1, Num_Unit ); three_Level = 2*ones ( 1, Num_Unit ); four_Level = 3*ones ( 1, Num_Unit ); A = 1; % the default ampilitude is 1 w1 = 300; %初始化载波频率 w2 = 600; w3=900; w4=1200; %--------------------------------------------------- %>>>>>>>>>>>>>>>>>>串并转换>>>>>>>>>>>>>>> %--------------------------------------------------- Sign_Set=[0,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1] Lenth_Of_Sign_Set = length ( Sign_Set ); %计算信号长度 j=1; for I=1:2:Lenth_Of_Sign_Set %信号分离成两路信号Sign_Set1(j)= Sign_Set(I);Sign_Set2(j)=Sign_Set(I+1); j=j+1; end Lenth_Of_Sign = length ( Sign_Set1 ); st = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 ); sign_orign = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 ); sign_result = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 ); t = 0 : 1/fs : Time_Hold_On * Lenth_Of_Sign- 1/fs; %--------------------------------------------------- %>>>>>>>>>>>产生基带信号>>>>>>>>>>>> %--------------------------------------------------- for I = 1 : Lenth_Of_Sign if ((Sign_Set1(I) == 0)&(Sign_Set2(I) == 0)) %00为1电平sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = one_Level; elseif ((Sign_Set1(I) == 0)&(Sign_Set2(I) == 1)) %01为2电平sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = two_Level; elseif ((Sign_Set1(I) == 1)&(Sign_Set2(I) == 1)) %11为3电平

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

QPSK调制与解调原理

QPSK 调制: 四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四 进制移相键控。QPSK 是在M=4时的调相技术,它规定了四种载波相位,分别为45°, 135°,225°,315°,调制器输入的数据是二进制数字序列,为了能和四进制的载 波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数 字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称 为双比特码元。每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进 制四个符号中的一个符号。QPSK 中每次调制 可传输2个信息比特,这些信息比特 是通过载波的四种相位来传递的。解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。 图2-1 QPSK 相位图 以π/4 QPSK 信号来分析,由相位图可以看出: 当输入的数字信息为“11”码元时,输出已调载波 ? ?? ? ? +4ππ2cos c t f A (2-1) 当输入的数字信息为“01”码元时,输出已调载波 ? ?? ? ? +43ππ2c o s c t f A (2-2) 当输入的数字信息为“00”码元时,输出已调载波 ? ?? ? ? +45ππ2cos c t f A (2-3) 当输入的数字信息为“10”码元时,输出已调载波 ? ?? ? ? +47ππ2cos c t f A (2-4) QPSK 调制框图如下: 图 2-2 QPSK 调制框图 其中串并转换模块是将码元序列进行I/Q 分离,转换规则可以设定为奇数位为I ,偶 数位为Q 。 例::I 路:11010;Q 路:01001 电平转换模块是将1转换成幅度为A 的电平,0转换成幅度为-A 的电平。 11 0100 10

GFSK的调制解调原理

GFSK 的调制和解调原理 高斯频移键控GFSK (Gauss frequency Shift Keying),是在调制之前通过一个高斯低通滤波器来限制信号的频谱宽度,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。它是一种连续相位频移键控调制技术,起源于FSK(Frequency- shift keying)。但FSK 带宽要求在相当大的程度上随着调制符号数的增加而增加。而在工业,科学和医用433MHz 频段的带宽较窄,因此在低数据速率应用中,GFSK 调制采用高斯函数作为脉冲整形滤波器可以减少传输带宽。由于数字信号在调制前进行了Gauss 预调制滤波,因此GFSK 调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用(高斯预调制滤波器能进一步减小调制频谱,它可以降低频率转换速度,否则快速的频率转换将导致向相邻信道辐射能量)。 GFSK 调制 1、直接调制:将数字信号经过高斯低通滤波后,直接对射频载波进行模拟调 频。由于通常调制信号都是加在PLL 频率合成器的VCO 上(图一),其固有的环路高通特性将导致调制信号的低频分量受到损失,调制频偏(或相偏)较小。因此,为了保证调制器具有优良的低频调制特性,得到较为理想的GFSK 调制特性,提出了一种称为两点调制的直接调频技术。 uc 图一 两点调制:调制信号被分成2部分,一部分按常规的调频法加在PLL 的VCO 端,另一部分则加在PLL 的主分频器一端(基于PLL 技术的频率合成器将增加两个分频器:一个用于降低基准频率,另一个则用于对VCO 进行分频 )。由于主分频器不在控制反馈环内,它能够被信号的低频分量所调制。这样,所产生的复合GFSK 信号具有可以扩展到直流的频谱特性,且调制灵敏度基本上为一常量, 鉴频器 PD 环路低通滤波器LF 压控振荡器VCO 载波信号 调制信号ui 调频信号uo 主分频器

信号的调制与解调(完整版)

信号与系统 课 程 设 计 设计题目:信号的调制与解调 院系:机械电子工程系 专业班级:09应用电子技术 学生姓名:谢焱松吴杰谭雨恒刘庆 学号:09353017 09353018 09353019 09353020 专业班级:文如泉 起止时间:2010.12.13-2010.12.25

设计任务: 信号的调制与解调 ?目的:理解Fourier变换在通信系统中的应用:掌握调制与解调的基本原理。 ?要求:实现信号的调制与解调。 ?内容:调制信号为一取样信号(自己选,一般取常见的信号),利用MATLAB分析幅度调制(AM)产生的信号频谱,比较信号调制前后的频谱并解调已调信号。设载波信号的频率为100HZ。 ?方法:应用MATLAB平台。 ?参考资料:MATLAB相关书籍。 教师点评:

一、课程设计目的 利用MATLAB 集成环境下的Simulink 仿真平台,设计一个2ASK/2DPSK 调制与解调系统。用示波器观察调制前后的信号波形;用频谱分析模块观察调制前后信号频谱的变化;加上各种噪声源,用误码测试模块测量误码率;最后根据运行结果和波形来分析该系统性能。 二、课程设计要求 (1)熟悉MATLAB 环境下的Simulink 仿真平台,熟悉2ASK/2DPSK 系统的调制解调原理,构建调制解调电路图。 (2)用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号的频谱的变化。并观察解调前后频谱有何变化以加深对该信号调制解调原理的理解。 (3)在调制与解调电路间加上各种噪声源,用误码测试模块测量误码率,并给出仿真波形,改变信噪比并比较解调后波形,分析噪声对系统造成的影响。 (4)在老师的指导下,要求独立完成课程设计的全部内容,并按要求编写课程设计学年论文,能正确阐述和分析设计和实验结果。 三、基本原理 1 ASK 调制与解调 ASK 即幅移键控(振幅键控),是一种相对简单的调制方式。 对于振幅键控这样的线性调制来说,在二进制里,2ASK 是利用基带矩形脉冲去键控一个连续的载波,使载波时断时续的输出,有载波输出时表示发送“1”,反之表示发送“0”。 根据线性调制的原理,一个2ASK 信号可表示为:t w t s t e c cos )()(0=。式中,w c 为载波角频率,s(t)为单极性NRZ 矩形脉冲序列∑-=n b n nT t g a t s )()(。其中,g(t)是持续时 间为T b 、高度为1的矩形脉冲,常称为门函数;a n 为二进制数字 调制:幅移键控相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。二进制振幅键控它实际是当调制的数字信号为“1”时,传输载波;当调

FSK调制解调原理及设计

一.2FSK 调制原理: 1、2FSK 信号的产生: 2FSK 是利用数字基带信号控制在波的频率来传送信息。例如,1码用频率f1来传输,0码用频率f2来传输,而其振幅和初始相位不变。故其表示式为 { )cos()cos(21 1 22)(θωθω?++=t A t A FSK t 时发送时发送"1""0" 式中,假设码元的初始相位分别为1θ和2θ;112 f π=ω和222f π=ω为两个不同的码元的角频率;幅度为A 为一常数,表示码元的包络为矩形脉冲。 2FSK 信号的产生方法有两种: (1)模拟法,即用数字基带信号作为调制信号进行调频。如图1-1(a )所示。 (2)键控法,用数字基带信号)(t g 及其反)(t g 相分别控制两个开关门电路,以此对两个载波发生器进行选通。如图1-1(b )所示。 这两种方法产生的2FSK 信号的波形基本相同,只有一点差异,即由调频器产生的2FSK 信号在相邻码元之间的相位是连续的,而键控法产生的2FSK 信号,则分别有两个独立的频率源产生两个不同频率的信号,故相邻码元的相位不一定是连续的。 (a) (b) 2FSK 信号产生原理图 由键控法产生原理可知,一位相位离散的2FSK 信号可看成不同频率交替发送的两个2ASK 信号之和,即 ) cos(])([)cos(])([) cos(·)()cos()()(221122112θωθωθωθω?+-++-=+++=∑∑∞-∞=∞-∞=t nT t g a t nT t g a t t g t t g t n s n n s n FSK

其中)(t g 是脉宽为s T 的矩形脉冲表示的NRZ 数字基带信号。 {P ,0P 11概率,概率-= n a {P 1,0P 1-=概率,概率n a 其中,n a 为n a 的反码,即若1=n a ,则0=n a ;若0=n a ,则1=n a 。 2、2FSK 信号的频谱特性: 由于相位离散的2FSK 信号可看成是两个2ASK 信号之和,所以,这里可以直接应用2ASK 信号的频谱分析结果,比较方便,即 )] ()()()([]|)(||)(||)(||)([|) ()()(2211161222221211622221f f f f f f f f T f f Sa T f f Sa T f f Sa T f f Sa f S f S f S S S S S T ASK ASK FSK S ++-+++-+++-+++-=+=δδδδππππ 2FSK 信号带宽为 s s FSK R f f f f f B 2||2||21212+-=+-≈ 式中,s s f R =是基带信号的带宽。 二.2FSK 解调原理: 仿真是基于非相干解调进行的,即不要求载波相位知识的解调和检测方法。 其非相干检测解调框图如下 M 信号非相干检测解调框图 当k=m 时检测器采样值为: 当k ≠m 时在样本和中的信号分量将是0,只要相继频率之间的频率间隔是,就与相移值无关了,于是其余相关器的输出仅有噪声组成。 其中噪声样本{}和{}都是零均值,具有相等的方差 对于平方律检测器而言,即先计算平方包络 并取其最大值信号。

FM调制解调原理

F M调制解调原理 Hessen was revised in January 2021

频率调制信号的表示式为:()cos[()]t m c S t A t kfm d ωττ-∞ =+?其中,kf 为调频灵敏度,m(t)为调制信号。从公式出发即可完成频率调制的程序。 调频信号的解调方法通常是采用鉴频法。方框图如图所示 其中鉴频器包括微分电路和包络检波。 在模拟信号的调频程序中,先对输入参量的个数做出判断,少于则运行默认的。然后对信号进行调制,这里采样的调制信号是最简单的正弦信号,当然也可以为其他信号。调制过程中,积分是根据积分的定义编写的一段程序。在对已调信号进行解调前加入了噪声。解调过程中的微分同样的根据定义编写的,当然也可以采用MATLAB 里自带的函数diff 。在经过包络检波后对幅值做出了一定的修正。 下图是调频信号的时域频域波形。经过调频之后的信号频谱不仅发生了频谱搬移还增加了频率分量。

下图绿色的是小信噪比条件下的解调波形,可以发现信噪比对解调的影响。

而在语音信号的调频中,积分采用cumsum来完成,微分采用diff。因为经过调试发现,采用根据定义编写的程序由于循环运行需要很多时间。另外,在经过微分器后,包络检波和低通这段和幅度调制的非相干解调一样,所以也可以在经过微分后调用AM包络检波的程序。对于调频信号来说,都会存在门限效应,使之在小信噪比情况下无法恢复出原来的调制信号。所以语音信号的调制解调是在很大信噪比情况下。

下面是语音信号调制解调的时域频域图。观看频谱可以看到调制信号的频谱相对于输入信号,发生了频谱搬移,还有在fc处多了一个冲激。 另外还有一个需要注意的问题,读入语音信号时所输入的路径必须和存放语音信号的路径相同。否则无法打开。 参考文献: [1]樊昌信,曹丽娜。通信原理。国防工业出版社。 [2] Santosh, the LNM IIT Jaipur (India).陈丽丹。FM调制解调系统设计与仿真

通信原理实验振幅键控ASK调制与解调实验

《通信原理》实验报告 实验七:振幅键控(ASK)调制与解调实验 实验九:移相键控(PSK/DPSK)调制与解调实验 系别:信息科学与技术系 专业班级:电信0902 学生姓名: 同组学生: 成绩: 指导教师:惠龙飞 (实验时间:2011年12月1日——2011年12月1日) 华中科技大学武昌分校

实验七 振幅键控(ASK )调制与解调实验 一、实验目的 1、 掌握用键控法产生ASK 信号的方法。 2、 掌握ASK 非相干解调的原理。 一、实验器材 1、 信号源模块 一块 2、 ③号模块 一块 3、 ④号模块 一块 4、 ⑦号模块 一块 5、 20M 双踪示波器 一台 6、 连接线 若干 二、基本原理 调制信号为二进制序列时的数字频带调制称为二进制数字调制。由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK )、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。 1、 2ASK 调制原理。 在振幅键控中载波幅度是随着基带信号的变化而变化的。使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2ASK 信号,这种二进制振幅键控方式称为通—断键控(OOK )。2ASK 信号典型的时域波形如图9-1所示,其时域数学表达式为: 2()cos ASK n c S t a A t ω=? (9-1) 式中,A 为未调载波幅度,c ω为载波角频率,n a 为符合下列关系的二进制序列的第n 个码元:

2DPSK的调制与解调解读

摘要 在现代通信技术中,因为基于数字信号的数据传输优于模拟信号的传输,所以数字信号的传输显得越来越重要。虽然近距离时我们可以利用数字基带信号直接传输,但是进行远距离传输时必须将基带信号调制到高频处。为了使数字信号能够在信道中传输,要求信道应具有高通形式的传输特性。然而,在实际信道中,大多数信道具有带通传输特性,数字信号不能直接在这种带通传输特特性的信道中传输,因此,必须用数字信号对载波进行调制,产生各种已调信号。我们通常采用数字键控的方法来实现数字调制信号,所以又将其称为键控法。当调制信号采用二进制数字信号时,这种调制就被称为二进制数字调制。最常用的二进制数字调制方式有二进制振幅键控、二进制移频键控和二进制移相键控。其中二进制移相键控又包括两种方式:绝对移相键控(2PSK)和相对(差分)移相方式(2DPSK )。在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,就产生了二进制移相键控,即所谓的绝对移相键控(2PSK)。虽然绝对移相键控的实现方法较为简单,但是却存在一个缺点,即我们所说的倒“ ”现象。因此,在实际中一般不采用2PSK 方式,而采用2DPSK方式对数字信号进行调制解调。本文主要讨论关于2DPSK的调制解调。并将其与MATLAB结合进行研究和仿真。 关键字:调制解调 2DPSK MATLAB仿真

目录 摘要 (1) 一、2DPSK原理介绍 (1) 1.12DPSK的基本原理: (1) 1.22DPSK的调制原理: (2) 1.32DPSK的解调原理: (3) 1.3.1 极性比较法: (5) 1.3.2 相位比较法: (5) 二、系统设计 (5) 2.1调制与解调原理 (5) 2.22DPSK调制解调总原理图 (6) 其2DPSK调制与解调信号在加入高斯噪声前后差别 (7) 2.3DPSK调制与解调波形图 (7) 三、系统仿真 (7) 3.1仿真程序 (7) 3.22DPSK模拟调制和差分相干解调法仿真图 (10) 3.2调试过程及结论 (11) 四、结论 (14) 致谢 (15) 参考文献 (16)

相关主题
文本预览
相关文档 最新文档