当前位置:文档之家› 状态空间与simulink仿真

状态空间与simulink仿真

状态空间与simulink仿真
状态空间与simulink仿真

考虑以下系统

u x X ????

??????+??????????-----=102101110221

[]x

y 001=

对系统设计一个状态反馈控制器使得闭环阶跃响应的超调量小于5%,且在稳态值1%范围的调节时间小于4.6S 。 ○

1主导二阶极点方法配置极点 分析:

超调量小于5%,即

%52

1≤--ξξπ

e

算得69.0≥ξ

稳态值1%范围的调节时间小于4.6S ,即

6.46

.4≤=

σ

s t

1≥σ

下面首先对系统的能控性进行判断,以编程方式实现 a=[-1 -2 -2;0 -1 1;1 0 -1];

b=[2;0;1]; %输入a ,b 矩阵 q=[b a*b a^2*b] rank(q)

计算结果为

??????????--=511010042q

q 的秩为3

因此该系统为完全能控型系统,在满足系统要求的前提下,理论上能任意配置期望极点

下面根据具体的求解思路进行编程求解反馈控制器k

g=poly(a); %求原系统的特征方程

a2=g(2);a1=g(3);a0=g(4);

w=[1 0 0;a2 1 0;a1 a2 1];

q1=[a^2*b a*b b];

p=q1*w; %求解转换矩阵

deta=1;

zeta=0.75;

wn=deta/zeta; %输入满足条件的ζ和δ

den=conv([1 4],[1 2*deta wn^2]); %输入期望极点(-4,-1±0.88i)

aa2=den(2);aa1=den(3);aa0=den(4);

k=[aa0-a0 aa1-a1 aa2-a2];

k1=k*(inv(p)) %输出配置矩阵k

k

得到[]

1

.

1

1=

4778

.

.

0444

6444

下面对系统进行验证,是否满足条件

ahat=a-b*k1;

bhat=b;

chat=[1 0 0];

dhat=0;

sys=ss(ahat,bhat,chat,dhat);

step(sys,'r');

sys1=ss(a,b,c,d);

hold on;

grid on;

step(sys1,'.-');

(其中sys1为未加控制器的原系统)

由图可知,系统在进行配置之前并未满足系统要求,在增加控制器之后,系统要求得到满足。

2对称根轨迹(SRL )方法配置极点 将SRL 方程写成标准的根轨迹形式 0)

()()

()(1=--+s D s D s N s N ρ

由此,我们需要先将上面的状态空间形式转换为传递函数形式,编程实现如下: a=[-1 -2 -2;0 -1 1;1 0 -1]; b=[2;0;1]; c=[1 0 0];

d=0; [num,den]=ss2tf(a,b,c,d)

num=[ 0 2.0000 2.0000 -2.0000] den=[1.0000 3.0000 5.0000 5.0000]

下面再画出根轨迹图,寻找满足条件的ρ

num1=conv([2 2 -2],[2 -2 -2]); %此处计算的参数根据num(s)和num (-s) den1=conv([1 3 5 5],[-1 3 -5 5]); %此处计算的参数根据den(s)和den (-s) sys1=tf(num1,den1);

rlocus(sys1); %画根轨迹图 grid on;

根据系统要求69.0≥ξ 和 1≥σ

如图所示,配置的极点将满足系统要求,现选取两组进行验证1.ρ=2

p1=[-2.09 -1.42+0.845*1i -1.42-0.845*1i];

k1=acker(a,b,p1)

得k1=[0.7079 0.1931 0.5143]

如上题所写程序画出响应图(其中sys1为未加控制器的原系统)

得k1=[0.9271 0.2769 0.6857]

作出响应图如下(其中sys1为未加控制器的原系统)

将两个不同的ρ值阶跃响应图进行对比(sys2为ρ=3,sys为ρ=2)

有比较可知:较小的ρ值的响应速度较慢,较大的ρ值响应速度快。

3全阶观测器的设计 首先检验系统的是否完全能观 a=[-1 -2 -2;0 -1 1;1 0 -1]; c=[1 0 0];

q=[c;c*a;c*a*a] rank(q)

??????????----=241221001q

rank(q)=3

说明系统是完全能观的

下面就是观测器期望极点选择,一般为了考虑观测器的响应速度要比闭环系统快,又要考虑干扰抑制,一般极点为闭环极点的2---5倍。

根据主导二阶极点方法所配置的极点为s1=-4 s2,3=-1±0.88i 选择观测器极点为s1=-12 s2,3=-3±0.88i

由此可进一步求出观测器增益矩阵l a=[-1 -2 -2;0 -1 1;1 0 -1]; c=[1 0 0];

pe=[-12;-3+0.88*i;-3-0.88*i]; lt=acker(a',c',pe); l=lt'

求得l=[15;1.872;-25.2592];

可得全维观测器的方程为

u x ly bu x lc bk a x ????

??????-+??????????+??????????--------=++--=2592.25872.115102~0444.16444.17814.2411872.10888.22888.59556.18~)(~

下面可依据上式构建simulink 图,据此观察观测器的跟踪能力

跟踪效果图如下X1

X2

X3

据此发现观测器跟踪效果较好。

4降阶控制系统设计 从输出方程可以看出,此系统输出就等于第一个状态,即变换矩阵P 为单位阵,而最小阶观测器的阶次为2。

d

d

c c b b a a ====

最小阶观测器的期望特征根选为-3±0.88i

?

?????=-=1021111a a

[]??

??

??--=--=10

11222212a a

?

?

????==1022

b b ]00[21

1==c c y l u b l b y a l a x a l a x q n q n +-+-+-=--)12()1121()

1222(~ 据此求观测器增益

a22=[-1 1;0 -1]; a12=[-2 -2];

pe=[-3+1i*2*7^(1/2)/3;-3-1i*2*7^(1/2)/3]; lt=acker(a22',a12',pe); l=lt'

求得??

?

???-=5556.35556.1l

得到

y

u y x x q n q n

??

????-+??????-+??????-+???

???--=--5556.35556.11112.81112.35556.25556.1~1112.81112

.71112.41112.2~引入中间变量

y x ly x q n q n ??

?

?

??--=-=--5556.35556.1~~η

得最小阶观测器的状态方程为

u y ??

????-+??????-+???

???--=1112.81112.32224.15778.91112.81112

.71112.41112.2ηη

????

??????++=y y y x 42~21ηη

下面可依据上式构建simulink 图,据此观察观测器的跟踪能力

X2

X3

由上面可见,观测器跟踪能力较好。

○5带反馈观测系统的设计

由分离定理可知,观测器与反馈可单独设计,互不影响。

k

反馈[]

1

=

4778

0444

.

1

.

6444

.

l=[15;1.872;-25.2592]

a

x+

lc

bv

bk

lcx

x

=~)

(

-

+

-

~

下面可依据上式构建simulink图,据此观察观测器的跟踪能力

其中Gain7为增益调整设计 a=[-1 -2 -2;0 -1 1;1 0 -1];

b=[2;0;1];k1=[1.4778 1.6444 0.0444]; y=a-b*k1; c=[1 0 0]; d=0;

k=1/dcgain(y,b,c,d) k=-3.5554

或使用书本上的参考输入法计算k

???

???????

?

??

?????-----=??

????-100001

1101011022211

u x N N ????

??????--=-=5.15.115

.2X

U N N 5554.3=+=X U KN N N

结果相同

下面看一下系统输出对阶跃的跟踪曲线

一开始出现较大误差,但还是能跟踪上阶跃。

下面再看看系统对白噪声干扰的抑制能力

由上图可见,系统的抗干扰能力一般。

6积分控制器的设计 积分控制相当于增加了额外状态,状态方程变为

ω??

?

???+??????-??????+????????????=??????b r u b x x a c x x i i 001000 由题意可知

原系统可等价于

r u x x x x i i ?????

???????-??

??????????+??????????????????-----=??????000110201010110022100010 积分控制器的极点配置为s1=-12 s2,3=-3±0.88i s4=-4

利用编程求出k

a=[0 1 0 0;0 -1 -2 -2;0 0 -1 1;0 1 0 -1]; >> b=[0;2;0;1];

>> pe=[-12;-3+0.88*i;-3-0.88*i;-4]; >> k=acker(a,b,pe)

K=[-234.5856 -77.4275 77.3805 173.8550]

构建simulink图有

分别加入两个阶跃,先加step1,阶跃图有

再加入step,响应图有

在一起加step和step1,响应如图

由此可见,积分控制系统对于干扰有很好的抑制作用,并且具有很好的跟踪效果,动态特性也相对于简单的参考输入设计有了一定的改善。

总结

从以上的设计可总结出状态空间的控制器的设计思路。

1.首先对观测器的能观性与能控性进行判断;

2.如果完全能观或能控,则进行以下分析;如果不是,可以进行能控与能观分

解出来;

3.如果使用原系统状态反馈,可以根据系统要求进行极点配置,进而设计出控

制器;如果还需要设计观测器,可合理配置观测器极点,进而设计整个系统。

4.如果使用观测器状态反馈,由于分离定理,观测器与反馈可分别设计,所以

设计过程基本和上面一样;

5.对于以上系统都存在较大的余差,故需设计参考输入,或者采取积分控制器

都可以很好的消除稳态余差。

SIMULINK模块介绍

示波器的使用和数据保存 1.示波器的参数 " Number of axes" 项用于设定示波器的Y 轴数量,即示波器的输入信号端口的个数,其预设值为"1" ,也就是说该示波器可以用来观 察一路信号,将其设为"2" ,则可以同时观察两路信号,并且示波器的图标也自动变为有两个输入端口,依次类推,这样一个示波器可以同时观察多路信号。 "Time range" (时间范围) ,用于设定示波器时间轴的最大值,这一般可以选自动(auto) ,这样X 轴就自动以系统仿真参数设置中的起始和终止时间作为示披器的时间显示范围。 第三项用于选择标签的贴放位置。 第四项用于选择数据取样方式,其中Decimation 方式是当右边栏设为"3" 时,则每3 个数据取一个,设为"5" 时,则是5 中取1 ,设的数字越大显示的波形就越粗糙,但是数据存储的空间可以减少。一般该项保持预置值"1" ,这样输入的数据都显示,画出的波形较光滑漂亮。如果取样方式选Sample time 采样方式,则其右栏里输入的是采样的时间间隔,这时将

按采样间隔提取数据显示。该页中还有一项"Floating scope" 选择,如果在它左方的小框中点击选中,则该示波器成为浮动的示波器,即没有输入接口,但可以接收其他模块发送来的数据。 示波器设置的第二页是数据页,这里有两项选择。第一项是数据点数,预置值是5000 ,即可以显示5000个数据,若超过5000 个数据,则删掉前面的保留后面的。也可以不选该项,这样所有数据都显示,在计算量大时对内存的要求高一些。如果选中了数据页的第二项"Save data to workspace" ,即将数据放到工作间去,则仿真的结果可以保存起来,并可以用MATLAB 的绘图命令来处理,也可以用其他绘图软件画出更漂亮的图形。 在保存数据栏下,还有两项设置,第一项是保存的数据命名(Variable name) ,这时给数据起一个名,以便将来调用时识别。第二项是选择数据的保存格式(Format) ,该处有3 种选择:Arrary格式适用于只有一个输入变量的情况;Structure with time 和Structure 这两种格式适用于以矢量表示的多个变量情况,并且前者同时保存数值和时间,后者仅保存数值。用Arrary 格式保存的变量,为了以后可以用

通信仿真课程设计-matlab-simulink

成都理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 201620101133 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,电话,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

Simulink仿真参数设定

simulink中的solver各选项表示的意思ZZ 2007-05-11 21:12 | (分类:默认分类) 构建好一个系统的模型之后,接下来的事情就是运行模型,得出仿真结果。运行一个仿真的完整过程分成三个步骤:设置仿真参数,启动仿真和仿真结果分析。 一、设置仿真参数和选择解法器 设置仿真参数和选择解法器,选择Simulation菜单下的Parameters命令,就会弹出一个仿真参数对话框,它主要用三个页面来管理仿真的参数。 Solver页,它允许用户设置仿真的开始和结束时间,选择解法器,说明解法器参数及选择一些输出选项。 Workspace I/O页,作用是管理模型从MATLAB工作空间的输入和对它的输出。 Diagnostics页,允许用户选择Simulink在仿真中显示的警告信息的等级。 1、Solver页 此页可以进行的设置有:选择仿真开始和结束的时间;选择解法器,并设定它的参数;选择输出项。 仿真时间:注意这里的时间概念与真实的时间并不一样,只是计算机仿真中对时间的一种表示,比如10秒的仿真时间,如果采样步长定为0.1,则需要执行100步,若把步长减小,则采样点数增加,那么实际的执行时间就会增加。一般仿真开始时间设为0,而结束时间视不同的因素而选择。总的说来,执行一次仿真要耗费的时间依赖于很多因素,包括模型的复杂程度、解法器及其步长的选择、计算机时钟的速度等等。 仿真步长模式:用户在Type后面的第一个下拉选项框中指定仿真的步长选取方式,可供选择的有Variable-step(变步长)和Fixed-step(固定步长)方式。变步长模式可以在仿真的过程中改变步长,提供误差控制和过零检测。固定步长模式在仿真过程中提供固定的步长,不提供误差控制和过零检测。用户还可以在第二个下拉选项框中选择对应模式下仿真所采用的算法。 变步长模式解法器有:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb和discrete。ode45:缺省值,四/五阶龙格-库塔法,适用于大多数连续或离散系统,但不适用于刚性(stiff)系统。它是单步解法器,也就是,在计算y(tn)时,它仅需要最近处理时刻的结果y(tn-1)。一般来说,面对一个仿真问题最好是首先试试ode45。 ode23:二/三阶龙格-库塔法,它在误差限要求不高和求解的问题不太难的情况下,可能会比ode45更有效。也是一个单步解法器。 ode113:是一种阶数可变的解法器,它在误差容许要求严格的情况下通常比ode45有效。ode113是一种多步解法器,也就是在计算当前时刻输出时,它需要以前多个时刻的解。 ode15s:是一种基于数字微分公式的解法器(NDFs)。也是一种多步解法器。适用于刚性系统,当用户估计要解决的问题是比较困难的,或者不能使用ode45,或者即使使用效果也不好,就可以用ode15s。 ode23s:它是一种单步解法器,专门应用于刚性系统,在弱误差允许下的效果好于ode15s。它能解决某些ode15s所不能有效解决的stiff问题。 ode23t:是梯形规则的一种自由插值实现。这种解法器适用于求解适度stiff的问题而用户又需要一个无数字振荡的解法器的情况。 ode23tb:是TR-BDF2的一种实现, TR-BDF2 是具有两个阶段的隐式龙格-库塔公式。discrtet:当Simulink检查到模型没有连续状态时使用它。 固定步长模式解法器有:ode5,ode4,ode3,ode2,ode1和discrete。 ode5:缺省值,是ode45的固定步长版本,适用于大多数连续或离散系统,不适用于刚性系统。

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目:信息系统课程设计仿真 院(系):信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012 年 1 月 14 日至2012 年 1 月 25 日 华中科技大学武昌分校制

信息系统仿真课程设计任务书

目录 摘要 (5) 一、Simulink仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLAB仿真设计 (12) 2.1、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2自编matlab程序: (13) 2.1.3 仿真图形 (13) 2.1.4仿真结果分析 (15) 2.2用双线性变换法设计IIR数字滤波器 (15) 2.2.1双线性变换法的基本知识 (15) 2.2.2采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3自编matlab程序 (16) 2.2.4 仿真波形 (17) 2.2.5仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20)

摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能强大、简单易学、编程效率高,目前已发展成为由MATLAB语言、MATLAB工作环境、MATLAB图形处理系统、MATLAB数学函数库和MATLAB应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM编码器对一连续信号进行编码。最后利用MATLAB进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

Simulink常用模块简介

1 Continuous(连续模块) Integrator :输入信号积分 Derivative :输入信号微分 State-Space :线性状态空间系统模型 Transfer-Fcn :线性传递函数模型 Zero-Pole :以零极点表示的传递函数模型 Memory :存储上一时刻的状态值 Transport Delay :输入信号延时一个固定时间再输出 Variable Transport Delay :输入信号延时一个可变时间再输出 2 Discrete (离散模块) Discrete-time Integrator :离散时间积分 Discrete Filter :IIR与FIR滤波器 Discrete State-Space :离散状态空间系统模型 Discrete Transfer-Fcn :离散传递函数模型 Discrete Zero-Pole :以零极点表示的离散传递函数模型 First-Order Hold :一阶采样和保持器 Unit Delay :一个采样周期的延时 3 Function&Tables(函数和表格模块) Fcn :用自己定义的函数(表达式)进行运算 MATLAB Fcn :利用MA TLAB的现有函数进行运算 S-Function :调用自编的S函数的程序进行运算 Look-Up Table :建立输入信号的查询表(线性峰值匹配) Look-Up Table (2-D):建立两个输入信号的查询表(线性峰值匹配) 4 Math Operations(数学运算模块) Sum :加减运算 Product :乘运算 Dot Product :点乘运算 Gain :比例运算 Math Function :包括指数函数、对数函数、求平方、开根号等常用数学函数Trigonometric Function :三角函数,包括正弦、余弦、正切等 MinMax :最值运算 Abs :取绝对值 Sign :符号函数 Logical Operator :逻辑运算 Relational Operator :关系运算 Complex to Magnitude-Angle :由复数输入转为幅值和相角输出 Magnitude-Angle to Complex :由幅值和相角输入合成复数输出 Complex to Real-Imag :由复数输入转为实部和虚部输出 Real-Imag to Complex :由实部和虚部输入合成复数输出 5 Nonlinear (非线性模块) Saturation :饱和输出,让输出超过某一值时能够饱和 Relay :滞环比较器,限制输出值在某一范围内变化 Switch :开关选择,当第二个输入端大于临界值时,输出由第一个输入端而来,否则输出由第三个输入端而来。

simulink仿真全参数设置

1.变步长(Variable—Step)求解器 可以选择的变步长求解器有:ode45,ode23,ode113,odel5s,ode23s和discret.缺省情况下,具有状态的系统用的是ode45;没有状态的系统用的是discrete. 1)ode45基于显式Runge—Kutta(4,5)公式,Dormand—Prince对.它是—个单步求解器(solver)。也就是说它在计算y(tn)时,仅仅利用前一步的计算结果y(tn-1).对于大多数问题.在第一次仿真时、可用ode45试一下. 2)ode23是基于显式Runge—Kutta(2,3).Bogackt和Shampine对.对于宽误差容限和存在轻微刚性的系统、它比ode45更有效一些.ode23也是单步求解器.3)odell3是变阶Adams-Bashforth—Moulton PECE求解器.在误差容限比较严时,它比ode45更有效.odell3是一个多步求解器,即为了计算当前的结果y(tn),不仅要知道前一步结果y(tn-1),还要知道前几步的结果y(tn-2),y(tn-3),…; 4)odel5s是基于数值微分公式(NDFs)的变阶求解器.它与后向微分公式BDFs(也叫Gear方法)有联系.但比它更有效.ode15s是一个多步求解器,如果认为一个问题是刚性的,或者在用ode45s时仿真失败或不够有效时,可以试试odel5s。odel5s是基于一到五阶的NDF公式的求解器.尽管公式的阶数越高结果越精确,但稳定性会差一些.如果模型是刚性的,并且要求有比较好的稳定性,应将最大的阶数减小到2.选择odel5s求解器时,对话框中会显示这一参数.可以用ode23求解器代替。del5s,ode23是定步长、低阶求解器. 5)ode23s是基于一个2阶改进的Rosenbrock公式.因为它是一个单步求解器,所以对于宽误差容限,它比odel5s更有效.对于一些用odel5s不是很有效的刚性问题,可以用它解决. 6)ode23t是使用“自由”内插式梯形规则来实现的.如果问题是适度刚性,而且需要没有数字阻尼的结果,可采用该求解器. 7)ode23tb是使用TR—BDF2来实现的,即基于隐式Runge—Kutta公式,其第一级是梯形规则步长和第二级是二阶反向微分公式.两级计算使用相同的迭代矩阵.与ode23s相似,对于宽误差容限,它比odtl5s更有效. 8)discrete(变步长)是simulink在检测到模型中没有连续状态时所选择的一种求解器.

simulink常用模块

SIMILINK模块库按功能进行分为以下8类子库: (1)Continuous(连续模块) (2)Discrete(离散模块) (3)Function&Tables(函数和平台模块) (4)Math(数学模块) (5)Nonlinear(非线性模块) (6)Signals&Systems(信号和系统模块) (7)Sinks(接收器模块) (8)Sources(输入源模块) 连续模块(Continuous)continuous.mdl Integrator:输入信号积分 Derivative:输入信号微分 State-Space:线性状态空间系统模型 Transfer-Fcn:线性传递函数模型 Zero-Pole:以零极点表示的传递函数模型 Memory:存储上一时刻的状态值 TransportDelay:输入信号延时一个固定时间再输出VariableTransportDelay:输入信号延时一个可变时间再输出离散模块(Discrete)discrete.mdl Discrete-timeIntegrator:离散时间积分器DiscreteFilter:IIR与FIR滤波器 DiscreteState-Space:离散状态空间系统模型

DiscreteTransfer-Fcn:离散传递函数模型 DiscreteZero-Pole:以零极点表示的离散传递函数模型 First-OrderHold:一阶采样和保持器 Zero-OrderHold:零阶采样和保持器 UnitDelay:一个采样周期的延时 函数和平台模块(Function&Tables)function.mdl Fcn:用自定义的函数(表达式)进行运算 S-Function:调用自编的S函数的程序进行运算 Look-UpTable:建立输入信号的查询表(线性峰值匹配) Look-UpTable(2-D):建立两个输入信号的查询表(线性峰值匹配) 数学模块(Math)math.mdl Sum:加减运算 Product:乘运算 DotProduct:点乘运算 Gain:比例运算 MathFunction:包括指数函数、对数函数、求平方、开根号等常用数学函数TrigonometricFunction:三角函数,包括正弦、余弦、正切等 MinMax:最值运算 Abs:取绝对值 Sign:符号函数 LogicalOperator:逻辑运算

通信仿真课程设计-matlab-simulink

理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 3 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

Matlab中SIMULINK的模块库以及比较常用的模块

2009年04月18日星期六 13:41 SIMULINK的模块库介绍 SIMILINK模块库按功能进行分为以下8类子库: Continuous(连续模块) Discrete(离散模块) Function&Tables(函数和平台模块) Math(数学模块) Nonlinear(非线性模块) Signals&Systems(信号和系统模块) Sinks(接收器模块) Sources(输入源模块) 连续模块(Continuous) Integrator:输入信号积分 Derivative:输入信号微分 State-Space:线性状态空间系统模型 Transfer-Fcn:线性传递函数模型 Zero-Pole:以零极点表示的传递函数模型 Memory:存储上一时刻的状态值 Transport Delay:输入信号延时一个固定时间再输出 Variable Transport Delay:输入信号延时一个可变时间再输出离散模块(Discrete) Discrete-time Integrator:离散时间积分器 Discrete Filter:IIR与FIR滤波器 Discrete State-Space:离散状态空间系统模型 Discrete Transfer-Fcn:离散传递函数模型

Discrete Zero-Pole:以零极点表示的离散传递函数模型 First-Order Hold:一阶采样和保持器 Zero-Order Hold:零阶采样和保持器 Unit Delay:一个采样周期的延时 函数和平台模块(Function&Tables) Fcn:用自定义的函数(表达式)进行运算 MATLAB Fcn:利用matlab的现有函数进行运算 S-Function:调用自编的S函数的程序进行运算 Look-Up Table:建立输入信号的查询表(线性峰值匹配) Look-Up Table(2-D):建立两个输入信号的查询表(线性峰值匹配) 数学模块( Math ) Sum:加减运算 Product:乘运算 Dot Product:点乘运算 Gain:比例运算 Math Function:包括指数函数、对数函数、求平方、开根号等常用数学函数Trigonometric Function:三角函数,包括正弦、余弦、正切等 MinMax:最值运算 Abs:取绝对值 Sign:符号函数 Logical Operator:逻辑运算 Relational Operator:关系运算 Complex to Magnitude-Angle:由复数输入转为幅值和相角输出 Magnitude-Angle to Complex:由幅值和相角输入合成复数输出

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

Simulink常用模块名称及其功能简介

Simulink常用模块名称中英文对照Sources库 Band-Limited White Noise 宽带限幅白噪声模块,把一个白噪声引入到连续系统中 Chirp Signal 线性调频信号(频率按时间线性变化的正弦波)模块,产生频率增加的正弦信号 Clock 时钟信号模块,显示或者提供仿真时间 Constant 常量输入模块,产生一个常数值 Digital Clock 数字时钟模块,按指定的间隔产生采样时间 Digital Pulse Generator 产生具有固定间隔的脉冲 From File 从一个文件读取数据 From Work space 从在工作空间定义的矩阵读入数据Ground 接地模块,将一个未连接的输入端接地In1 输入端口模块 Pulse Generator 脉冲信号发生器模块,产生固定间隔的脉冲 Ramp 斜坡信号输入模块,产生一个以常数斜率增加或者减小的信号 Random Number 产生正态分布的随机数 Repeating Sequence 产生一个可重复的任意信号 Signal Generator 产生多种多样的普通信号 Signal Builder 自定义信号发生器 Sine Wave 产生正弦波信号 Step 阶跃信号模块,产生一个单步函数Uniform Random Number 产生均匀分布的随机数 Sinks库 Display 实时数字显示模块,显示其输入信号的值Floating Scope 浮动示波器模块 Out1 输出端口模块

Scope 示波器模块,显示在仿真过程产生的信号的波形 Stop Simulation 仿真终止模块,当它的输入信号非零时,就结束仿真 Terminator 信号终结模块,结束一个未连接的输出端口To File 写数据到文件 To Workspace 把数据写进工作空间里定义的矩阵变量XY Graph 用一个MATLAB图形窗口来显示信号的X-Y坐标的图形 Continuous库主要用于连续系统的仿真 Derivative 微分模块,输出为输入信号的微分。无 需设置参数 Integrator 积分模块,输出时输入信号的积分,可设定初始条件(比如混沌系统的仿真),通常情况下初始条件不用考虑Memory 输出来自前一个时间步的模块输入 State-Space 状态空间模块,主要应用应用于现代控制理论中多输入多输出系统的仿真,双击模块可设置的主要参数有:系数矩阵A,B,C,D以及初始条件 Transfer Fcn 传递函数多项式模型,实现现行传递系统,双击可设置分子多项式和坟墓多项式的系数 Transport Delay 时间延迟模块,通过模块内部参数设定延迟时间 Variable Transport Delay 将输入延迟一可变的时间 Zero-Pole 传递函数零、极点模型,实现一个用零极点标明的传递函数,双击设置零点、极点、增益 Disontinuous库主要用于非线性系统仿真 Backlash 磁滞回环特性模块 Coulomb & Viscous Friction 库伦摩擦与黏性摩擦特性模块 Dead Zone 死区特性模块 Hit Crossing 检测输入信号的零交叉点模块 Quantizer 阶梯状量化处理模块

常用Simulink模块简介

常用Simulink模块简介 Sources库中模块 Band-Limited white Noise 给连续系统引入白噪声 Chirp Signal 产生一个频率递增的正弦波(线性调频信号) Clock 显示并提供仿真时间 Constant 生成一个常量值 Counter Free-Running 自运行计数器,计数溢出时自动清零Counter Limited 有限计数器,可自定义计数上限 Digital Clock 生成有给定采样间隔的仿真时间 From File 从文件读取数据 From Workspace 从工作空间中定义的矩阵中读取数据 Ground 地线,提供零电平 Pulse Generator 生成有规则间隔的脉冲 In1 提供一个输入端口 Ramp 生成一连续递增或递减的信号 Random Number 生成正态分布的随机数 Repeating Sequence 生成一重复的任意信号 Repeating Sequence Interpolated 生成一重复的任意信号,可以插值Repeating Sequence Stair 生成一重复的任意信号,输出的是离散值Signal Builder 带界面交互的波形设计 Signal Generator 生成变化的波形 Sine Wave 生成正弦波 Step 生成一阶跃函数 Uniform Random Number 生成均匀分布的随机数 Sink库中模块 Display 显示输入的值 Floating Scope 显示仿真期间产生的信号,浮点格式 Out1 提供一个输出端口 Scope 显示仿真期间产生的信号 Stop Simulation 当输入为非零时停止仿真 Terminator 终止没有连接的输出端口 To File 向文件中写数据 To Workspace 向工作空间中的矩阵写入数据 XY Graph 使用Matlab的图形窗口显示信号的X-Y图 Discrete库中的模块 Difference 差分器 Difference Derivative 计算离散时间导数 Discrete Filter 实现IIR和FIR滤波器 Discrete State-Space 实现用离散状态方程描述的系统 Discrete Transfer Fcn 实现离散传递函数 Discrete Zero-Pole 实现以零极点形式描述的离散传递函数Discrete-time Integrator 执行信号的离散时间积分 First-Order Hold 实现一阶采样保持 Integer Delay 将信号延迟多个采样周期

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

单闭环直流调速系统simulink仿真课程设计

目录 一、摘要.......................................................... - 3 - 二、课程设计任务 .................................................................................................... - 3 - 三、课程设计内容 .................................................................................................... - 3 - 1、PID控制原理及PID参数整定概述.................................................................... - 3 - 2、基于稳定边界法(临界比例法)的PID控制器参数整定算法 ............................ - 5 - 3、利用Simulink建立仿真模型............................................................................ - 8 - 4、参数整定过程 .................................................................................................- 12 - 5、调试分析过程及仿真结果描述.........................................................................- 16 - 四、总结 ...................................................................................................................- 17 - 五、参考文献 ...........................................................................................................- 17 -

Matlab中SIMULINK的模块库以及比较常用的模块

Matlab中SIMULINK的模块库以及比较常用的模块 2009年04月18日星期六 13:41 SIMULINK的模块库介绍 SIMILINK模块库按功能进行分为以下8类子库: Continuous(连续模块) Discrete(离散模块) Function&Tables(函数和平台模块) Math(数学模块) Nonlinear(非线性模块) Signals&Systems(信号和系统模块) Sinks(接收器模块) Sources(输入源模块) 连续模块(Continuous)continuous.mdl Integrator:输入信号积分 Derivative:输入信号微分 State-Space:线性状态空间系统模型 Transfer-Fcn:线性传递函数模型 Zero-Pole:以零极点表示的传递函数模型 Memory:存储上一时刻的状态值 Transport Delay:输入信号延时一个固定时间再输出 Variable Transport Delay:输入信号延时一个可变时间再输出 离散模块(Discrete) discrete.mdl Discrete-time Integrator:离散时间积分器 Discrete Filter:IIR与FIR滤波器 Discrete State-Space:离散状态空间系统模型 Discrete Transfer-Fcn:离散传递函数模型 Discrete Zero-Pole:以零极点表示的离散传递函数模型 First-Order Hold:一阶采样和保持器 Zero-Order Hold:零阶采样和保持器 Unit Delay:一个采样周期的延时 函数和平台模块(Function&Tables) function.mdl Fcn:用自定义的函数(表达式)进行运算 MATLAB Fcn:利用matlab的现有函数进行运算 S-Function:调用自编的S函数的程序进行运算 Look-Up Table:建立输入信号的查询表(线性峰值匹配) Look-Up Table(2-D):建立两个输入信号的查询表(线性峰值匹配) 数学模块( Math ) math.mdl Sum:加减运算 Product:乘运算 Dot Product:点乘运算 Gain:比例运算 Math Function:包括指数函数、对数函数、求平方、开根号等常用数学函数

基于MATLAB的数字基带传输系统的仿真-课程设计报告书

通信工程专业《通信仿真综合实践》研究报告 基于MATLAB的数字基带传输系统的仿真设计 学生:*** 学生学号:20***** 指导教师:** 所在学院:信息技术学院 专业班级:通信工程 中国 2016 年 5月

信息技术学院 课程设计任务书 信息技术院通信工程专业 20** 级,学号 201***** **** 一、课程设计课题: 基于MATLAB的数字基带传输系统的仿真设计 二、课程设计工作日自 2016 年 5 月 12 日至 2016 年 5 月 24 日 三、课程设计进行地点:图书馆 四、程设计任务要求: 1.课题来源: 指导教师指定题目 2.目的意义:. 1)综合应用《掌握和精通MATLAB》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念 2)培养学生系统设计与系统开发的思想 3)培养学生独立动手完成课程设计项目的能力 3.基本要求: 1) 数字基带信号直接送往信道: 2)传输信道中的噪声可以看作加性高斯白噪声 3)可用滤波法提取定是信号 4)对传输系统要有清楚的理论分析 5)把整个系统中的各个子系统自行构造,并对其性能进行测试 6)最终给出信号的仿真结果(信号输出图形) 课程设计评审表

基于MATLAB 的数字基带传输系统的仿真 概述 :本课程设计主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB 软件仿真设计数字基带传输系统。首先介绍了本课题的理论依据及相关的基础知识,包括数字基带信号的概念,数字基带传输系统的组成及各子系统的作用,及数字基带信号的传输过程。最后按照仿真过程基本步骤用MATLAB 的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 第一部分 原理介绍 一、数字基带传输系统 1)数字基带传输系统的介绍 未经调制的数字信号所占的频谱是从零频或很低频率开始,称为数字基带信号。在某些具有低通特性的有线信道中,特别是在传输距离不太远的情况下,基带信号可以不经载波调制而直接传输。这种不经载波调制直接传输数字基带信号的系统,称为数字基带传输系统。 数字基带系统的基本结构可以由图1 的模型表示.其中包括发送滤波器、传输信道、接收滤波器、抽样判决等效为传输函数为H (w) 基带形成网络,对于无码间干扰的基带传输系统来说, H (w) 应满足奈奎斯特第一准则, 在实验中一般取H (w) 为升余弦滚降特性.在最佳系统下, 取C(w) = 1,GT (w) 和GR(w) 均为升余弦平方根特性.传输信道中的噪声可看作加性高斯白噪声, 用产生高斯随机信号的噪声源表示. 位定时提取电路,在定时精度要求不高的场合, 可以用滤波法提取定时信号,滤波法提取位定时的原理可用图2表示。 图1 基带传输系统模型 设发送滤波器的传输特性 , 则 ω ωπ d e H t g jwt R ? ∞ ∞ -= )(21 )()(ωT G

相关主题
文本预览
相关文档 最新文档