当前位置:文档之家› (完整word版)第1章复变函数习题答案习题详解

(完整word版)第1章复变函数习题答案习题详解

第一章习题详解

1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)

i

231

+ 解:

()()()13

2349232323231231i

i i i i i -=+-=-+-=+

实部:13

3

231=

???

??+i Re 虚部:132231-=??

?

??+i Im

共轭复数:1323231i

i +=

??

?

??+ 模:131

1323231

2

22=+=

+i

辐角:πππk arctg k arctg k i i Arg 232213

3132

2231231+?

?? ??-=+-=+??? ??+=??? ??+arg 2) i

i i --

131 解:

()()()2

532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--

实部:2

3131=???

??--i i i Re 虚部:25131-=??

?

??--i i i Im

共轭复数:253131

i i i i +=??

?

??-- 模:2

34

4342531312

22=

=+=

--i

i

i 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+??? ??-=+????

? ??-=+??? ??--=??? ??--arg

3)

()()i

i i 25243-+

解:

()()()2

26722672

72625243i

i i

i i

i i --=

-+=

--=

-+ 实部:()()2725243-=??

?

??-+i i i Re

虚部:()()1322625243-=-

=??

?

??-+i i i Im 共轭复数:()()226725243i

i i i +-=

??

?

??-+ 模:

()()

292522627252432

2

=??

? ??-+??? ??-=-+i

i i

辐角:()()ππk arctg k arctg i i i Arg 272622722625243+??? ??=+????? ?

?--=??? ??-+ 4) i i

i +-21

8

4

解:i i i i i

i 3141421

8-=+-=+-

实部:(

)1421

8=+-i i i Re 虚部:(

)3421

8-=+-i i

i Im

共轭复数:()

i i i i 314218+=+- 模:103142221

8

=+=+-i i

i

辐角:(

)()πππk arctg k arctg k i i i i i

i Arg 2321324421821

8

+-=+??

?

??-=++-=+-arg

2. 当x 、y 等于什么实数时,等式

()i i

y i x +=+-++13531成立?

解:根据复数相等,即两个复数的实部和虚部分别相等。有:

()()()i i i y i x 8235131+=++=-++

??

?=-=+8321y x ?

??==?111

y x 即1=x 、11=y 时,等式成立。

3. 证明虚数单位i 有这样的性质:i i i ==--1

证明:i i i i i

-===

-2

1

1 i i i i -=-=+=00 i i i ==-∴-1

4. 证明 1) z z z

=2

证明:设iy x z +=,则iy x z -=

()(

)22

2

2

22

2

y x

y

x iy x z +=+=

+=∴

()()22y x iy x iy x z z +=-+=

z z z =∴2

2) 2121z z z z ±=±

证明:设111iy x z +=,222iy x z +=,则有:

()()()()()()21212121221121y y i x x y y i x x iy x iy x z z ±-±=±+±=+±+=± ()()()()()()21212211221121y y i x x iy x iy x iy x iy x z z ±-±=-±-=+±+=± 2121z z z z ±=±∴

3) 2121z z z z = 证明:设1

11θi e

r z =,2

22θi e

r z =,则有:

()()21212121212121θθθθθθ+-+===i i i i e r r e r r e r e r z z ()21212121212121θθθθθθ+---==?=i i i i i e r r e r e r e r e r z z 2121z z z z =∴ 4) 022

121

≠=????

??z z z z z , 证明:设1

11θi e r z =,2

22θi e

r z =,则有:

()()21212

121212121θθθθθθ---===???

? ??i i i i e r r e r r e r e r z z

()

21212

12

1212121θθθθθθ----===i i i i i e r r e r e r e r e r z z 2121z z z z =∴ 5) z z =

证明:设iy x z +=,则有

z iy x iy x iy x z =+=-=+=

6) ()()()()

z z i

z z z z -=+=

21

21Im ,Re 证明:设iy x z +=,则iy x z -=

()

()()z x iy x iy x z z Re ==++-=+21

21 ()

()()[]()()z y y i i

iy x iy x i z z i Im ===--+=-221

2121 5. 对任何2

2,z z z =是否成立?如果是,就给出证明。如果不是,对哪些z 值才成立? 解:设iy x z +=,则有:

()2

22

22y xyi x iy x z -+=+= ()()222

2

2

y x iy x iy x z

+=+=+=

2

2

z z =Θ ???=-=+∴0

22

222xy y x y x ? 0=y

故当0=y ,即iy x z +=是实数时,2

2z z =成立。

6. 当1≤z 时,求a z n +的最大值,其中n 为正整数,a 为复数。 解:a z a z

a z n

n

n

+=+≤+

1≤z Θ 1≤∴n

z ? a a z n

+≤+1 即a a z n +≤+1

a z n

+的最大值是a +1

7. 判定下列命题的真假: 1) 若c 为实常数,则c c =;

解:真命题。因为实数的共轭复数就是它本身。 2) 若z 为纯虚数,则z z ≠;

解:真命题。设()0≠=y iy z ,则iy z -=,显然z z ≠。

3) i i 2<;

解:假命题。两个不全为实数的复数不能比较大小。 4) 零的幅角是零

解:假命题。复数0的幅角是任意的,也是无意义的。 5) 仅存在一个数z ,使得

z z

-=1

; 解:假命题。有两个数i z i z -==,,使

z z

-=1

成立。 6) 2121z z z z +=+;

解:假命题。设有两个数i z i z -==21,,使2121z z z z +=+不成立。 7)

iz z i

=1

解:真命题。iz z i z i

=-=1

8. 将下列复数化为三角表示式和指数表示式: 1) i

解:1==i r ,()2

π

=

i arg

22

2

π

π

π

i

e i i =+=∴sin

cos

2) 1-

解:11=-=r ,()π=-1arg π

ππi e i =+=-∴sin cos 1 3) 31i +

解:231=+=i r ,()

3

1331π==+arctg

i arg 33

3

31π

π

π

i

e i i =+=+∴sin

cos

4) ()π???≤≤+-01sin cos i 解:()????

???22222111sin cos cos sin cos sin cos +-+=+-=

+-=i r

()????????? ?

?--=???

?????? ??+-=-=-=22122212122222??????sin cos cos cos cos

22242212222????sin sin sin cos ==?????

?

+-=

()22211?

π?π?????-=

??? ?

?-=??? ??=-=+-tg arctg arcctg arctg arctg

i cos sin sin cos arg ??

?

?

?-=??

?

???

??? ??-+??? ??-=+-∴22222221?π??π?π???i e i i sin sin cos sin sin cos

另:222222222112?????????cos sin sin sin cos sin cos i i i +=??

?

??++???

??+-=+-

2

222

2

222222?

π?

?π?

π????-=??

?

??-+-=??? ??

+=i

e

i i sin sin

cos

sin cos sin sin

另:()()??????sin sin cos cos sin cos sin cos sin cos ++-=+-+=+-00001i i i i

2

2

222222*********?

π????????-=??? ??+-=-++-+-=i

e

i i sin cos sin sin cos sin sin sin

5)

i

i

+-12

解:

()i i

i i i i -=-=--=+-12

2221212

21=-=i r ,()()4

111π

-

=-=-=-arg arg arg i

424421π

ππi e i i -=???

?????? ??-+??

? ??-=-∴sin cos

6)

()()3

23sin 3cos 5sin 5cos ????i i -+

解:()()

??

??102

52

55i i e e i ==+sin cos

()()()[]()i i e e i i ??????933333333--==-+-=-sin cos sin cos ()()()()?????????

19193355199103

2

sin cos sin cos sin cos i e e

e i i i i i +===-+∴

- 9. 将下列坐标公式写成复数的形式:

1) 平移公式:?

??+=+=111

1b y y a x x

解:将方程组中的第二个方程乘以虚数单位加到第一个方程,得:

()()1111ib a iy x iy x +++=+

即:A z z +=1 2) 旋转公式:??

?+=-=α

αα

αcos sin sin cos 1111y x y y x x

解:将方程组中的第二个方程乘以虚数单位加到第一个方程,得:

()()11111111ix y iy x iy y ix x iy x --+=+-+=+ααααααsin cos cos sin sin cos ()()()()()11111111iy x i iy x ix y i i iy x +++=---+=ααααsin cos sin cos ()()()αααi e iy x i iy x 1111+=++=sin cos ()αααi e z i z z 11=+=∴sin cos

10. 一个复数乘以i -,它的模与辐角有何改变? 解:设θ

i re z = 2

πi

e

i -=-

?

?? ?

?

--==-∴22

πθπθ

i i

i re

e re iz

即:一个复数乘以i -,它的模不变,辐角减小

2

π

。 11. 证明:(

)2

2

212

2

12

212z z z z z z +=-++,并说明其几何意义。

证明:()()()(

)

212121212

2

1z z z z z z z z z z ++=++=+

22212111z z z z z z z z +++=

()()()()

212121212

2

1z z z z z z z z z z --=--=-

22212111z z z z z z z z +--= (

)2

2

2122112

2

12

2

1222z z z z z z z z z z +=+=-++∴

几何意义:平行四边形的两条对角线的平方和等于它的相邻两边平方和的2倍。 12. 证明下列各题: 1) 任何有理分式函数()()()

z Q z P z R =

可以化为iY X +的形式,其中X 与Y 为具有实系数的x 与y 的有理

分式函数;

证明:设()y x z iy x z ,=+=,则:

()()()y x iv y x u z P ,,11+=, ()()()y x iv y x u z Q ,,22+=

其中,()y x u ,1,()y x u ,2,()y x v ,1,()y x v ,2皆为关于y x ,的实系数多项式。

()()()()()()()()()()iY X v u v u v u i v v u u v u iv u iv u y x iv y x u y x iv y x u z Q z P +=+-++=+-+=++=22

2221122121222222112211,,,, 其中:22222121v u v v u u X ++=

,2

2222112v u v u v u Y +-= ? ()()()

iY X z Q z P z R +== Y X ,为具有实系数的关于y x ,的有理分式函数。

2) 如果()z R 为1)中的有理分式函数,但具有实系数,那么()

iY X z R -=; 证明:因为()z R 为具有实系数的有理分式函数,所以 ()

()()()()()()()()()

()()2

22222112211v u iv u iv u y x iv y x u y x iv y x u z Q z P z Q z P z R z R -+-=--==????

??==,,,, ()()

iY X v

u v u v u i v v u u -=---+=

22

2

2

21122121

其中:22222121v u v v u u X ++=

,2

2

222

112v u v u v u Y +-= 3) 如果复数ib a +是实系数方程011

10=++++--n n n n a z a z a z a Λ的根,那么ib a -也是它的根。 证明:令()n n n n a z a z

a z a z f ++++=--11

10Λ 因为ib a +是方程()0=z f 的根,()0=+∴ib a f ? ()0=+ib a f 又因为的系数为实数, ()()

()ib a f ib a f ib a f -=+=+∴

因此()0=-ib a f 。即ib a -也是方程()0=z f 的根。即实系数多项式的复根必共轭成对出现。 13. 如果it

e z =,证明: 1) nt z z n

n

cos 21

=+

证明:it

e z =Θ ()()

()()nt nt i nt nt i nt e e e e z z n it n it n n cos sin cos sin cos int

int 211=-++=+=+=+

∴- 2) nt i z z n

n

sin 21

=-

证明:it

e z =Θ

()()

()()nt i nt i nt nt i nt e e e e z z n it n it n n sin sin cos sin cos int

int 211=--+=-=-=-

∴- 14. 求下列各式的值: 1)

(

)

5

3i -

解:6

23πi

e

i -=-Θ

(

)

i i e e i

i i 16316656532223655

5

6

5

--=??? ??-==???? ?

?=-∴

--πππ

πsin cos 2)

()61i +

解:421π

i

e i =

()

()i i e

e

e i i

i

i 82323882212

34

66

4

4

6

-=??

? ??

+===???

? ?

?=+∴πππππsin cos

3)

6

1-

解:π

i e

=-1Θ

()

ππn i e

261

6

1+=-∴ ()543210,,,,,=n

即:i w 21230+=,i w =1,i w 21232+-=,i w 21233--=,i w -=4,i w 2

1

235-= 4)

()311i -

解:4

21πi

e

i -=

()

??

?

??+-=-∴ππn i e

i 243163

1

21 ()210,,=n

即:??? ??-==

-1212226

12

6

0πππ

sin cos i e

w i

,??? ??+==12712722612761πππ

sin cos i e w i ,

??

? ??

+==45452264

562πππ

sin cos i e

w i

15. 若()()n

n

i i -=+11,试求n 的值。 解:()()n

n

i i -=+11Θ

()

()??

?

??+=

???

?????? ?

?+=+4

424421ππππn i n i i n

n

n

sin cos sin cos

()()??

?

??-=

????????? ?

?-=-4

424421ππππn i n i i n

n

n

sin cos sin cos

44ππn n sin sin

-=∴ ? 04

=πn sin ? ππ

k n =4 ? k n 4=()Λ,,,210±±=k

16.

1) 求方程083

=+z 的所有根; 解:083

=+z Θ 3388πi e z =-=Θ

3

22ππn i

e

z +=Θ()210,,=n

即:3123

0i e

z i

+==π

,221-==π

i e

z ,3123

52i e

z i

-==π

2) 求微分方程08'

''=+y y 的一般解。

解:微分方程08'''=+y y 的特征方程为:083

=+r 。由前题得:310i r +=,21-=r ,312i r -= 微分方程08'''=+y y 有三个线性无关的特解:()x i e y 310+=,x e y 21-=,()x i e y 312-=

微分方程08'''=+y y 有三个线性实数特解:x e x 3cos ,x e x

3sin ,x

e 2-

一般解为:()

x c x c e e c y x x 333221sin cos ++=-()R c c c ∈321,,

17. 在平面上任意选一点z ,然后在复平面上画出下列各点的位置:z

z

z z z z 1,1

,1,,,---

解:

18. 已知两点1z 与2z (或已知三点321,,z z z ),问下列各点z 位于何处? 1) ()212

1

z z z +=

; 解:z 位于1z 与2z 连线的中点。

2) ()211z z z λλ++=,其中λ为实数; 解:z 位于1z 与2z 连线上,其中2

12z z z z --=

λ。

3) ()3213

1

z z z z ++=

。 解:z 位于以1z ,2z ,3z 为顶点的三角形的重心上。

19. 设321,,z z z 三点适合条件0321=++z z z ,1321===z z z 。证明:321,,z z z 是内接于单位圆

1=z 的一个正三角形的顶点。

证明:(方法一)

1321===z z z Θ ? 1z ,2z ,3z 位于以原点为圆心的单位圆上。 令111??sin cos i z +=,222??sin cos i z +=,333??sin cos i z +=

其中π???π≤≤≤<-321。? π??2012<-≤,π??2023<-≤,π??2013<-≤ 0321=++z z z Θ ? 321z z z -=+∴ ??

?-=+-=+3

21321??????sin sin sin cos cos cos ()()??

?→?+2

221 ()2112-=-??cos ()3212π??=

-∴或()3

412π

??=- 同理可得:()3223π??=-∴或()3423π

??=-

分析:如果()3412π??=-,()3223π??=-,则()π??213=-;如果()3

412π

??=-,

()3423π??=-,则()3813π??=-与π??2012≤-≤矛盾。()3

212π??=-∴。

同理()3

223π

??=-。

?321,,z z z 是内接于单位圆1=z 的一个正三角形的顶点。

(方法二)

1321===z z z Θ ? 1z ,2z ,3z 位于以原点为圆心的单位圆上。

()()()()

211221122

12

212122

122z z z z z z z z z z z z z z z z +-=+-+=--=-

0321=++z z z Θ ? 12

3

2

2

1=-=+z z z

()()()()

12211221122

12

212122

12=++=+++=++=+z z z z z z z z z z z z z z z z

12112-=+∴z z z z ? ()

()312221122

1

2=--=+-=-z z z z z z

同理:32

2

3=-z z ,32

13=-z z 。于是32

1

32

2

32

12=-=-=-z z z z z z

?321,,z z z 是内接于单位圆1=z 的一个正三角形的顶点。

(方法三)

1321===z z z Θ ? 1z ,2z ,3z 位于以原点为圆心的单位圆上。

0321=++z z z Θ ? 321z z z -=+

()2

12

22

122122z z z z z z +=-++Θ

(

)(

)()311122223

2

1

2

22

12

2

1

222

12=-+=--+=+-+=-∴z

z z z z

z z z z

?321,,z z z 是内接于单位圆1=z 的一个正三角形的顶点。

(方法四)

1321===z z z Θ ? 1z ,2z ,3z 位于以原点为圆心的单位圆上。

设k k k iy x z += ()321,,=k

0321=++z z z Θ ? ???=++=++00321321y y y x x x ? ???--=--=321

3

21y y y x x x

1321===z z z Θ ? 12

3232222

2121=+=+=+y x y x y x 而()()()()12

322

322

322

322

121=+++=--+--=+y y x x y y x x y x

()()()()()12323223232

2

222

322

32=+++++=+++∴y y x x y x y x y y x x ()123232-=+∴y y x x 同理?()121121-=+y y x x ,()123131-=+y y x x

()()()()()32212122222

1

212

212

21=+-+++=-+-∴y y x x y x y x y y x x 即321=-z z 同理? 332=-z z ,313=-z z

?321,,z z z 是内接于单位圆1=z 的一个正三角形的顶点。

(方法五)

设()()()0321=---z z z z z z ,则321,,z z z 是该方程的三个根。

而()()()()()3211332212

3213321z z z z z z z z z z z z z z z z z z z z z -+++++-=---

0321=++z z z Θ,1321===z z z

()()()()

123321122332113321133221z z z z z z z z z z z z z z z z z z z z z z z z ++=++=++ ()0321321133221=++=++∴z z z z z z z z z z z z

()()()03213321=-=---∴z z z z z z z z z z

所以321z z z ,,是的三个根,即321z z z ,,分别是复数321z z z 的三次方根。又因为1321===z z z ,所以321z z z ,,均匀地分布在单位圆1=z 上,即321,,z z z 是内接于单位圆1=z 的一个正三角形的顶点。

(方法六)

如右图所示:0321=++z z z Θ?321z z z -=+

()121321===-=--∴z z z z z

所以()21z O z -?为等边三角形。同理可知()23z O z -?为等边三角形,于是有:

3

23

3

13ππ

π

=

+

=

∠Oz z 同理 3221π=

∠Oz z ,3

232π=∠Oz z 1321===z z z Θ,所以321z z z ,,均匀地分布在单位圆1=z 上。命题得证。

20. 如果复数321,,z z z 满足等式

3

23

11312z z z z z z z z --=--,证明321312z z z z z z -=-=-,并说明这些等

式的几何意义。 证明:3

2311312z z z z z z z z --=--Θ

3231212

32221z z z z z z z z z ++=++∴ 且321z z z ≠≠

321z z z ?是等边三角形的充分必要条件是

()()[]()[]{}???

?

??±-+--=-=-?

????

?

±-23212323233232123i z z i z z z z e

z z z z z z i arg sin arg cos arg π ()????

??±-=-∴23212321i

z z z z ()()[]()[]{}???

?

??-+--=-=-?

????

?

-23212323233233123i z z i z z z z e

z z z z z z i μμarg sin arg cos arg π ()????

??-=-∴23212331i

z z z z μ ()()

()()()2

232

22322232

312

2123212321z z i z z i z z z z z z --=???

? ??-+???? ??±-=-+-∴μ 3231212

32221z z z z z z z z z ++=++∴

因此,满足3

23

11312z z z z z z z z --=--Θ

的点1z ,2z ,3z 为顶点的三角形是等边三角形,必有

321312z z z z z z -=-=-

21. 指出下列各题中点z 的轨迹或所在范围,并作图:

1) 65=-z ;

解:设iy x z +=,则65=-z Θ ? ()3652

2

=+-y x

即65=-z 是以5=z 为圆心,半径为6的圆周。 2) 12≥+i z ;

解:设iy x z +=,则12≥+i z Θ ? ()122

2

≥++y x

即12≥+i z 是以i z 2-=为圆心,半径为1的圆周及其外部。 3) ()12Re -=+z ;

解:设iy x z +=,则()12-=+z Re Θ ? 12-=+x 即()12Re -=+z 是平行于y 轴的通过3-=z 的直线。 4) ()

3Re =z i ;

解:设iy x z +=,则()

3=z i Re Θ ? 3=y 即()

3Re =z i 是平行于x 轴的通过i z 3=的直线。 5) i z i z -=+;

解:设iy x z +=,则i z i z -=+Θ ? ()()2

2

2

211-+=++y x y x ? 0=y

即i z i z -=+是平行于x 轴。 6) 413=+++z z ;

解:设iy x z +=,则413=+++z z Θ ?

()13

4

222

=++y x 即413=+++z z 是以3-=z ,1-=z 为焦点,长的半轴为2,短半轴为3的椭圆。 7) ()2Im ≤z ;

解:设iy x z +=,则()2≤z Im Θ ? 2≤y

即()2Im ≤z 是过i z 2=的平行于x 轴的直线及其下半平面。

8)

12

3

≥--z z ;

解:设iy x z +=,则

123≥--z z ? ()()22

2223y x y x +-≥+- ? 2

5≤x ()2≠z 即

123≥--z z 是去掉过2=z 的半平面2

5

≤x 。 9) π<

解:满足π<

π

=

-i z arg 。

解:设iy x z +=,则()4

π

=-i z arg Θ ? ()[]4

=

-+y i x arg

即()4

π

=

-i z arg 是以i z =为端点的射线1+=x y ,0>x 。

22. 描出下列不等式所确定的区域或闭区域,并指明它是有界的还是无界的,单连通的还是多连通的: 1) ()0Im >z ;

解:设iy x z +=,则()0Im >z ?0>y ,表示不包含实轴的上半平面,是无界的单连通域。 2) 41>-z ;

解:设iy x z +=,由41>-z 得()1612

2

>+-y x ,表示以1=z 为圆心半径为4的圆(不含圆周)

的外部,是无界的多单连通域。 3) ()1Re 0<

解:设iy x z +=,则()1Re 0<

解:32≤≤z 表示介于圆2=z 与3=z 之间的圆环域(含两圆周),是有界的多连通域。 5) 31+<-z z ;

解:设iy x z +=,由31+<-z z ?1->x ,表示直线1-=x 右边的半平面区域(不含直线),是无界的单连通域。

6) π+-<<-1arg 1z ;

解:π+-<<-1arg 1z 表示由射线1-=?与π?+-=1所围成的角形区域(不含两射线),是无界的单连通域。

7) 141+<-z z ;

解:设iy x z +=,由141+<-z z ?2

2

21581517?

?

? ??>+??? ??+y x ,表示以1517-=z 为圆心半径为158的圆的外部(不含圆周),是无界的多连通域。 8) 622≤++-z z ;

解:622≤++-z z 表示以2=z 与2-=z 为焦点长半轴3=a 短半轴5=b 的椭圆及其内部,是有

界的单连通闭域。 9) 122>+--z z ;

解:122>+--z z 表示以2=z 与2-=z 为焦点实半轴2

1

=a 虚半轴215=b 的双曲线左边一支的

左侧,是无界的单连通域。 10) ()()422≤--+-z i z i z z 。

解:设iy x z +=,由()()422≤--+-z i z i z z ?()()2

2

2

312≤++-y x ,表示以点i z -=2为圆

心半径为3的圆及其内部,是有界的单连通闭域。

23. 证明复平面上的直线方程可写成:c z a z a =+,(0≠a 为复常数,c 为实常数)。 证明:设点iy x z +=在直线上,则直线方程可写成:c By Ax =+ ()R c B A ∈,,

又()

x z z =+21Θ

,()

y z z i =-21

()()

c z z B i

z z A =-++∴21

21 整理得:()()c z iB A z iB A =++-21

21

令()iB A a +=21,则()iB A a -=2

1

。因为B A ,不全为零,所以0≠a 。

? c z a z a =+ 是复平面上的直线方程(0≠a 为复常数,c 为实常数)。

24. 证明复平面上的圆周方程可写成:0=+++c z a z a z z (其中a 为复常数,c 为实常数)。 证明:设点iy x z +=在圆上任意一点,点000iy x z +=为圆心,半径为a ,则圆的方程为:

()()22020a y y x x =-+-

()x z z =+21Θ,()

y z z i =-21。代入上式,得:()

()

22

02

02121a y z z i x z z =??

????--+??????-+。 整理得:()()022*******=-+++---a y x z iy x z iy x z z 令c a y x =-+2

2020,()00iy x +-=α,()00iy x --=α

? 0=+++c z z z z αα 是复平面上的圆的方程(α为复常数,c 为实常数)。

25. 将下列方程(t 为实参数)给出的曲线用一个实直角坐标方程表出: 1) ()i t z +=1;

解:设iy x z +=,则()i t iy x z +=+=1 ? ???==t

y t

x ? x y =

2) t ib t a z sin cos +=,(b a ,为实常数);

解: 设iy x z +=,则t ib t a iy x z sin cos +=+= ? ???==t

b y t a x sin cos ? 122

22=+b y a x

3) t

i

t z +

=; 解:设iy x z +=,则t i t iy x z +=+= ? ??

?

??==t y t

x 1 ? x y 1=

4) 22

t

i

t z +

=; 解:设iy x z +=,则22

t i t iy x z +=+= ? ??

???==2

2

1

t y t x ? ()001≥≥=y x x y , 5) ibsht acht z +=,(b a ,为实常数);

解:设iy x z +=,则ibsht acht iy x z +=+= ? ???==bsht

y acht x ? 12222=-b y a x 12

2=-t sh t ch Θ

6) it

it

be

ae z -+=;

解:设iy x z +=,则it

it

be

ae iy x z -+=+=?()()?

??-=+=t b a y t b a x sin cos ? ()()12

2

22=-++b a y b a x 7) t

e z α=,(bi a +=α为复数)。

解:设iy x z +=,则()t

bi a t

e e

iy x z +==+=α??????==bt e y bt e x at

at

sin cos ? ?????==+bt

x

y e y x at

tan 222 ? ??

???==+x y b t e y x at arctan

1222 ? x

y

b a e

y x arctan 222=+

26. 函数z

w 1

=

把下列z 平面上的曲线映射成w 平面上怎样的曲线? 1) 42

2

=+y x ;

解:设iy x z +=,iv u w +=,则z w 1=Θ ? ???

?

???

+-=

+=2222y x y v y x x u

422=+y x Θ ? 4

1

2

2=

+v u 是w 平面上的圆。 2) x y =;

解:设iy x z +=,iv u w +=,则z w 1=Θ ? ???

?

???

+-=

+=2222y x y v y x x u

y x =Θ ? v u -=且0≠z 是w 平面上的直线。 3) 1=x ;

解:设iy x z +=,iv u w +=,则z w 1=Θ ? ???

?

???+-=

+=2222y x y v y x x u

1=x Θ ? 2

2

v u u += ? 412122

=+??? ?

?

-v u 是w 平面上的圆。

4)

()112

2=+-y x 。

解:设iy x z +=,iv u w +=,则z w 1=Θ ? ???

?

???

+-=

+=2222y x y v y x x u

()1122

=+-y x Θ ? x y x 22

2=+ ? 2

1

=

u 是w 平面上的直线。 27. 已知映射3

z w =,求: 1) 点i z =1,i z +=12,i z +=

33在w 平面上的象;

解:i i z w -===3

311 ()i i z w 2213

322+-=+==

(

)

i i i

z w 82233

3

33=+-=+=

=

2) 区域3

<

解:3

<

0?<

<∴π

w arg ? π<<∴w arg 0

28. 证明§6定理二与定理三。

定理二 如果()A z f z z =→lim 0

,()B z g z z =→lim 0

,那么

1) ()()[]B A z g z f z z ±=±→lim 0

2)

()()[]AB z g z f z z =?→lim 0

3) ()()()00

≠=→B B

A

z g z f z z lim

证明:

1) ()A z f z z =→lim 0

Θ

,()B z g z z =→lim 0

,则0>?ε

01>?δ,使100δ<-

ε

<-A z f 02>?δ,使200δ<-

ε

<

-B z g

取()21δδδ,m in =,则当δ<-<00z z 时,必有

()()[]()()()εε

ε

=+

<-+-≤±-±2

2

B z g A z f B A z g z f 成立。

故()()[]B A z g z f z z ±=±→lim 0

2) ()B z g z z =→lim 0

Θ

,则01

>?δ

及0>M ,使100δ<-

0>?ε,()A z f z z =→lim 0

Θ

,02>?∴δ,使200δ<-

M A z f +<

又()B z g z z =→lim 0

Θ

,故存在03>δ,使300δ<-

M B z g +<

取()321δδδδ,,m in =,则当δ<-<00z z 时,必有

()()()()()()εε

ε

=+++≤

-+-=-A

M A

M A

M AB z Ag z Ag z g z f AB z g z f

()()[]AB z g z f z z =?→lim 0

3) ()()00

≠=→B B z g z z lim Θ,则01>?δ及0>M ,使100δ<-

B z g <

0>?ε,()A z f z z =→lim 0

Θ

,()B z g z z =→lim 0

02

>?∴δ

,使200δ<-

()()

B A B A z f +<

-22ε

03>?δ,使300δ<-

B A B B z g +<-22ε

取()321δδδδ,,m in =,则当δ<-<00z z 时,必有

()()()()()()()()()[]()[]()B

z g B z g A A z f B B z g AB z Ag AB z Bf B z g z Ag z Bf B A

z g z f ?---=?+--=?-=- ()()()()()

εε

ε=+++=

?-+-≤

2

222

22B B A B A B A B B B

z g B

z g A A z f B

()()()00

≠=→B B

A

z g z f z z lim

。 定理三 函数()()()y x iv y x u z f ,,+=在000iy x z +=处连续的充要条件是:

()y x u ,和()y x v ,在点()00y x ,处连续。

证明:()()()y x iv y x u z f ,,+=在000iy x z +=处连续,()()0

z f z f z z =∴→lim ,即

()()[]()()0

y x iv y x u y x iv y x u z z ,,,,lim +=+→ ?

()()0

0y x u y x u y y x x ,,lim ,=→→,()()0

0y x v y x v y y x x ,,lim ,=→→

即()y x u ,和()y x v ,在点()00y x ,处连续。

29. 设函数()z f 在0z 连续且()00≠z f ,那么可找到0z 的小邻域,在这邻域内()0≠z f 。 证明:()00≠z f Θ ()00>∴z f 函数()z f 在0z 连续,即()()0

z f z f z z =→lim

可取()02

1

>=

z f ε,存在()0>εδ,使得当()εδ<-0z z 时,有 ()()()002

1

z f z f z f =<-ε 又()()()()00z f z f z f z f -<- ? ()()()002

1

z f z f z f <- ()()()()02

1

21000>=->∴z f z f z f z f

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数试题及答案

1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 22 22= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11--的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得 z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数

4、根式31-的值之一是( ) A i 2321- B 2 23i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =-12 3z z dz B ? =-1 2 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β C )1(>--=a a z a z e w i β D )1(<--=a a z a z e w i β 三、判断题(每小题2分)

复变函数第二章标准答案

复变函数第二章答案

————————————————————————————————作者:————————————————————————————————日期:

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

最新复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

复变函数第二章习题答案精编版.doc

第二章解析函数 1-6 题中: (1)只要不满足 C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导u x, u y, v x, v y,只要一阶偏导存在且连续,同时满足C-R 条件。 (3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。 (4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。 解析函数求导: f ( z) u x iv x 4、若函数f ( z)在区域 D上解析,并满足下列的条件,证明 f ( z) 必为常数。 (1)f z 0 z D 证明:因为 f ( z) 在区域上解析,所以。 令 f (z) u( x, y) iv ( x, y) ,即 u v , u v f (z) u i v 0 。 x y y x x y 由复数相等的定义得:u v u v x y 0, 0 。 y x 所以, u( x, y) C1(常数),v( x, y) C2(常数),即 f (z) C1 iC2为 常数。 5、证明函数在z 平面上解析,并求出其导数。 (1) e x ( xcos y y sin y) ie x ( y cos y x sin y).

证明:设 f z u x, y iv x, y = e x ( x cos y y sin y) ie x ( y cos y xsin y). 则 u , y x ( x cos y y sin y ) , v x, y x x e e ( y cos y x sin y) u e x ( x cos y ysin y) e x cos y v e x cos y y sin ye x x cos ye x x ; y u e x ( x sin y sin y y cos y) ; v e x ( y cos y x sin y sin y) y x 满足 u v , u v 。 x y y x 即函数在 z 平面上 ( x, y) 可微且满足 C-R 条件,故函数在 z 平面上 解析。 f (z) u i v e x (x cos y y sin y cos y) ie x ( y cos y x sin y sin y) x x 8、(1)由已知条件求解析函数 f ( z) u iv u x 2 y 2 xy f (i ) 1 i 。 , , 解: u x 2x y, u y 2 y x 由于函数解析,根据 C-R 条件得 u x v y 2x y 于是 y 2 v 2xy (x) 2 其中 ( x) 是 x 的待定函数,再由 C —R 条件的另一个方程得 v x 2y ( x) u y 2y x , x 2 所以 (x) x ,即 (x) c 。 2 于是 v y 2 x 2 c 2xy 2 2 又因为 f (i ) 1 i ,所以当 x 0, y 1 ,时 u 1 1 1 , v c 1得 c 2 2

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

复变函数课后部分习题解答

(1)(3-i) 5 解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°] (3-i)5 =25[cos(30°?5)-isin(30°?5)] =25(-3/2-i/2) =-163-16i

(2)(1+i )6 解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2 tan θ=x y =1 Θx>0,y>0 ∴θ属于第一象限角 ∴θ= 4 π ∴1+i=2(cos 4π+isin 4 π ) ∴(1+i )6=(2)6(cos 46π+isin 4 6π ) =8(0-i ) =-8i 1.2求下式的值 (3)61-

因为 -1=(cos π+sin π) 所以 6 1-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6). 习题一 1.2(4)求(1-i)3 1的值。

解:(1-i)3 1 =[2(cos-4∏+isin-4 ∏ )]31 =62[cos(12)18(-k ∏)+isin(12 ) 18(-k ∏)] (k=0,1,2) 1.3求方程3z +8=0的所有根。 解:所求方程的根就是w=38- 因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2

其中ρ=3r=38=2 即 w=2[cosπ/3+isinπ/3]=1—3i 1 w=2[cos(π+2π)/3+isin(π+2π)/3]=-2 2 w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i 3 习题二 1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。 (1) Im(z)>0 解:设z=x+iy 因为Im(z)>0,即,y>0

复变函数及积分变换试题及答案

第一套 第一套 一、选择题(每小题3分,共21分) 1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。 A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。 2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。 A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C + 3. 2|2|1(2)z dz z -==-?( ) 。 A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。 A. 1 01 ()2()n n f d c i z ξξ πξ+= -? B. 0()!n n f z c n = C. 2 01()2n k f d c i z ξξπξ= -? D. 210! ()2()n n k n f d c i z ξξ πξ+= -? 5. z=0是函数z z sin 2 的( )。 A.本性奇点 B.极点 C. 连续点 D.可去奇点 6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。 A.1 z z w -= B. z 1z w -= C. z z 1w -= D. z 11 w -= 7. sin kt =()L ( ),(()Re 0s >)。 A. 22k s k +; B.22k s s +; C. k s -1; D. k s 1 . 二、填空题(每小题3分,共18分) 1. 23 (1)i += [1] ; ---------------------------------------- 装 --------------------------------------订 ------------------------------------- 线 ----------------------------------------------------

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数试题及答案

一、填空题(每小题2分) 1、复数i 212-- 的指数形式是 2、函数w =z 1将Z S 上的曲线()1122=+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 2222= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续

B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 232 1- B 2 23i - C 223i +- D i 2 3 21+ - 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1 cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =- 1 2 3 z z dz B ?=- 1 2 1 z z dz C ?=++12 42z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-0 2121n n n n z (z <1) B () ∑∞ =+-0 1 221n n n n z (z <1) C ()∑∞ =++-0 1 2121n n n n z (z <1) D () ∑∞ =-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1

复变函数与积分变换试题及答案(2)

复变函数与积分变换试题与答案 1.(5)复数z与点(,) x y对应,请依次写出z的代数、几何、三角、指数表达式和z的3次方根。 2.(6)请指出指数函数z e w=、对数函数z w ln =、正切函数=的解析域,并说明它们的解析域是哪类点集。 z w tan 3.(9)讨论函数2 2i =的可导性,并求出函数)(z z f+ ) (y x f在可导点的导数。另外,函数) f在可导点解析吗?是或否请说明 (z

理由。 4.(7)已知解析函数v u z f i )(+=的实部y x y u 233-=,求函数 v u z f i )(+=的表达式,并使0)0(=f 。 5.(6×2)计算积分: (1)?+-C n z z z 1 0) (d ,

其中C 为以0z 为圆心,r 为半径的正向圆周, n 为正整数; (2)?=+-3||2d ) 2()1(e z z z z z 。 6.(5×2)分别在圆环 (1)1||0<

7.(12)求下列各函数在其孤立奇点的留数。 (1) 3 sin )(z z z z f -=; (2) z z z f sin 1)(2=; (3) 11 e )(-=z z z f . 8.(7)分式线性函数、指数函数、幂函数的映照特点各是什么。

9.(6分)求将上半平面 0)Im( z 保形映照成单位圆 1|| w 的分式线性函数。 10.(5×2)(1)己知 F )()]([ωF t f =,求函数)52(-t f 的傅里叶变换; (2)求函数) i 5)(i 3(2 )(ωωω++= F 的傅里叶逆变换。

复变函数测试题及答案-精品

第一章 复变函数测试题及答案-精品 2020-12-12 【关键字】条件、充分、关系、满足、方向、中心 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数D卷答案

湖南科技学院二○○ 年 学期期末考试 专业 年级 试题 考试类型:闭卷 试卷类型:D 卷 考试时量: 120 分钟 一(共7分,每小题1分) 1.nLnz Lnz n =(n 为正整数) ( ) 2.),(),()(y x iv y x u z f +=在区域D 内解析,则在区域D 内),(y x u 是),(y x v 的共轭调 函数。 ( ) 3.函数在可去奇点处的留数为0。 ( ) 4.0是2sin )(z z z f = 的一阶极点。 ( ) 5.复数0的辐角主值为0。 ( ) 6.在复变函数中,0cos ,0sin ,1|cos |,1|sin |2 2 ≥≥≤≤z z z z 同样成立。 ( ) 7.解析函数),(),()(y x iv y x u z f +=的实部),(y x u 和虚部),(y x v 都是其解析区域内的调 和函数。 ( ) 二 、填空题(共28分,每小题4分) 1. i i -1=_________. 2.? =-2 |1|2 z z dz = 。 3. dz z c ?=__________。 (其中c 是从1到的直线段) 4.幂级数n n n z n ∑ +∞ =1 的收敛半径R =

5.0为 )1()(2-=z e z z f 的 阶零点。 6.2 ||2(1)(3)z dz z z =--?=____________ 7. )1(Re z z s z +∞== 。 8.1z =+arg z =_______________。 三 、计算题(共39分) 1. 已知),(),()(y x iv y x u z f +=在z 平面上是解析函数,且2 33),(xy x y x u -=,求解)(z f , 使得i f 2)0(=。(12分) 2. 求 ) 1(1 -z z 在10<z 内的展开式。(15分) 3. 利用留数求定积分20 1 .51sin 82 I d π θθ=-? (12分) 四、证明题(共12分) 若函数)(),(z f z f 在区域D 内都解析,证明在D 内)(z f 为常数。

《复变函数与积分变换》期末考试试卷及答案[1]

一.填空题(每小题3分,共计15分) 1. 2 31i -的幅角是( 2,1,0,23 ±±=+- k k ππ ) ; 2.)1(i Ln +-的主值是( i 4 32ln 21π + ); 3. 2 11)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4 sin z z z -的( 一级 )极点; 5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数 ),(),()(y x iv y x u z f +=的导函数为(B ) ; (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周 3=z ,如果函数=)(z f ( D ) ,则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C ) 2)2()1(3--z z ; (D ) 2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在(C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C ) i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数 )(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果 )(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、) ,(y x v

相关主题
文本预览
相关文档 最新文档