当前位置:文档之家› ASTM D 648-2007 在挠曲负荷下塑料边缘位置弯曲温度的标准测试方法(中文版)

ASTM D 648-2007 在挠曲负荷下塑料边缘位置弯曲温度的标准测试方法(中文版)

ASTM D 648-2007 在挠曲负荷下塑料边缘位置弯曲温度的标准测试方法(中文版)
ASTM D 648-2007 在挠曲负荷下塑料边缘位置弯曲温度的标准测试方法(中文版)

ASTM D648-07

塑料侧立式弯曲负荷下变形温度的标准测试方法

1范围

1.1本试验方法适用于测试在特定的条件下试样发生特定变形时的温度。

1.2本试验方法适用于测试在常温下刚性或者半刚性的,厚度在3mm[1/8in]或以上的模具成型或者薄片的试样。

注1-薄片厚度少于3mm[0.125in]但大于1mm[0.040in]可以用几片薄片复合试样来测试,但最小厚度为3mm。一种制备复合试样的方式是用砂纸把薄片的面打磨平,用胶

水粘合。施加载荷的方向需垂直于每个薄片的边缘。

1.3在SI的单位的评估值将视为标准。给定值仅提供一些信息。

1.4本标准无意涉及所有使用过程中的安全问题。本标准是帮助用户建立适当的安全标准和卫生管理办法,并且在规定的期限内使用。

注2-这个测试方法描述为本测试办法的B方法,在技术上,方法Ae和Be分别与ISO75-1和ISO75-2,1993,等价。

2参考文献

2.1ASTM标准

D618测试用塑料调质实施规范。

D883塑料相关术语。

D1898塑料抽样实施规范。

D5947固体塑料试样外形尺寸测试方法。

E1在液体中的玻璃温度计ASTM说明。

E77温度计的检查和检验测试方法。

E608/E608M矿物隔热,金属屏蔽的基体金属热电偶。

E691为测定试验方法精密度开展的实验室间研究的实施规范。

E1137/E1137M工业用铂阻尼式温度计。

2.2ISO标准

ISO75-1塑料-负荷变形温度的测定-第1部分:通用试验方法。

ISO75-2塑料-负荷变形温度的测定-第2部分:塑料和硬橡胶。

2.3NIST文件

NBS特别出版250-22。

3术语

3.1通常-本测试方法定义的塑料是跟D883中标准一样,除非另外说明。

4检测方法简介

4.1将矩形截面的试样按侧立式方式,放在载荷作用在中间的简支梁上,载荷的最大压力为0.455Mpa[66psi]或1.82Mpa[264psi](注3)。将试样在有载荷的作用下,浸入升温速度为2士0.2℃/min的传热介质中。测试试样的变形量为0.25mm[0.010in]时介质的温度。记录下试样在弯曲载荷作用下的温度作为变形温度。

注3-轮流测试表明采用当前的仪器,用更大的载荷来测试当前塑料的变形温度并没有什么优势。

5意义和用途

5.1这种测试适合控制和改进工艺。本测试所获得的数据可能不适合用来预测高温下塑料行为的预测,除非在时间,温度,加载方式和压力都相似情况下。测得的数据不能用于高温下材料的设计和预测。

6测试干扰

6.1本测试方法一定程度上依赖于介质和试样的热传导速率和介质热传导性。

6.2本测试结果依赖于试样的宽度和厚度,以及变形温度决定的试样最终的变形。

6.3模具的种类和试样的成型方法影响测试结果。成型条件应根据该材料的标准或相应实验室的认可。

6.4测试设备的设计也会对测试的结果产生影响。测试跨度(100mm或101.6mm)会影响测试结果。装备了金属夹或其他种类辅助支架来维持试样与施加的载荷保持垂直,如果施加的压力足已限制试样在支架中间向下的运动,就会影响测试结果。

7设备

7.1设备应与图1显示的结构基本一致,其组件如下。

7.1.1试样支架,金属支架,允许载荷垂直压在试样上和支架的中间,支架的中间需要保留一定缝隙(定义为7.1.1.1或7.1.1.2)。施加载荷的支座接触头和加荷压头圆角半径为(3.0土0.2)mm[0.118土0.008in]。

7.1.1.1方法A-101.6土0.5mm[4.0土0.02in]。

7.1.1.2方法B-100.0土0.5mm[3.937土0.020in]。

7.1.2热浴-一种合适的热传导介质(注4),试样应浸入其中。在测试过程中,这种介

质应容易被搅动,其平均升温速度为2士0.2℃/min 。测试时每5min 试样附近的温度升高10士1℃的升温速度是合适的。

注4-应选择对试样无影响的液体热传导介质。矿物油在115℃点火是安全的。硅油可在

短期内加热到260℃。再高的温度需要特殊的加热介质。为了提高油的使用寿命,可以在油与大气的表面加入CO2或其他惰性气体。

注5-如果能达到相同的效果,循环空气也可以用来作加热介质。

7.1.3变形测量装置,测量试样的变形量,最小值0.25mm [0.010in]。分辨率为0.01mm

[0.0005in]或者更多。这个装置可以是指示表,或其他显示或记录设备,包括电位移敏感设备。

7.1.4重量-合适的重量使载荷的压力为0.455Mpa [66psi]土2.5%或1.82Mpa [264psi]土

2.5%。

加荷杆质量是试验力的一部分,也应作为总载荷的一部分。如果用指示表,弹簧的力也应该是总载荷的一部分(注7)。测试力和质量的计算如下:

F=2Sbd 2/3L

(1)

F 1=F/9.80665

m w =(F-F s )/9.80665-m

f

图1测定负荷变形温度的设备

式中:F=载荷,N,

F1=载荷,kgf,

S=作用在试样的压力(0.455MPa或1.82MPa),

b=试样宽度,mm,

d=试样厚度,mm,

L=跨度,(A方法101.6mm或B方法100mm),见7.1.1.1和7.1.1.2。

m w=附加砝码的质量,kg,

F s=所用仪器施荷弹簧产生的力,N;如果弹簧对着试样向下压,则F s值为正(如

向下);如果弹簧推力与加荷杆下降方向相反,则F s值为负(如与杆的下降方向

相反);如果没有使用这种仪器,则该力为零,

m r—施加试验力的加荷杆质量,kg。

注6-在这个装置中,指示表的弹簧力向上(与试样载荷的方向相反)会减少了作用于试样的净作用力。在其他的设计中,指示表的弹簧力向下(与试样载荷的方向相同)

会增加作用于试样的净作用力。作用于加荷杆附加砝码的质量必须相应调整(弹

簧力向上时增加砝码的质量,弹簧力向下时减少砝码的质量)。如果弹簧施加的力

大大超出了量程,这部分的力需要测量后才能应用。指示表弹簧的载荷是否正确

建议参照附录X1和X2。其余的结果可以应用。附录X3提供了一种确定弹簧力是否

在测试范围内的方法。

7.1.5温度测量系统

7.1.5.1数字显示系统-有热电偶,电阻温度计(RTD),和传感器,调节器,转换器,

读出装置,等等。传感器和相关的电子仪器至少要精确到士0.5℃,热电偶需符合E608/E 608M规范要求。电阻温度计需符合E1137和E1137M规范要求。

7.1.5.2温度计-在更老的系统中,用温度计来测量温度每个独立的测试点。温度计

需要符合如下要求或等价于E1标准规定中的温度计最小刻度为1℃或2℃,测量范围分别为-20到150℃或-5到300℃,两者都是合适的。玻璃水银温度计应该根据E77标准校准浸入的深度。

7.2测微计应该符合测试D5947测试方法,并需要用该方法校准。

8取样

8.1除非有特殊的说明,否则抽样应该根据抽样D1898条例。充足的统计抽样标准是可以接受的代替方法。

9测试样品

9.1每个压力下至少需测试两个试样。样品应该长127mm[5in],厚13mm[1/2in],宽在3mm

[1/8]到13mm[1/2in]均可。试样长度的尺寸公差(为了实验的可重复性)大约为土0.13mm [0.005in]。

注7-试样宽度接近13mm测得的变形温度比4mm或窄的试样要高2-4℃,因为试样内部的热传导较差。

9.2测试样品表面应光滑,无锯痕,气泡和飞边。

9.3成型情况应根据材料的说明或得到相应实验室的认可。在测试前对试样退火,可以使不同成型条件产生的差异最小。不同的材料需要不同的退火条件,只能采用材料的标准退火程序,或相应实验室认可的退火程序。

10设备的准备工作

10.1设备应是可将试样放置在如7.1.3中描述的变形测量装置。设备应能自动关闭加热,报警或记录到达变形量时的温度。充足的热传导介质覆盖指定位置的温度计,或7.1.5中提到的76mm[3in]的ASTM温度计。

注8-给了一个测试后快速冷却热浴的方法。需要用到冷却旋管或另一个通过热油的热传输系统。在下一个测试开始前,引入冷却介质使得油的温度快速降低。

11调质

11.1调质-除非材料有特殊标准或相关机构认可,根据D618规范中A成型,测试样品应该在23士2℃[73.4士3.6℉],相对湿度50士5%的环境中放置至少40h。如果有差异,偏差为士1℃[1.8℉],相对湿度士2%。

注9-当测试结果显示调质无影响时,可以缩短调质周期。有些材料需要更长调质时间,需相应延长时间。

12操作步骤

12.1用合适的毫米尺准确量出样品沿跨度方向取几个点的宽度和厚度(见7.2)。取平均值作为试样的公称宽度和厚度。这些值来确定每个试样需要的压力(见7.1.4)。

12.2侧立试样在设备上的位置应与支座成一条直线,测试的压力与试样成型流动的方向垂直。如果试样支座有加荷压头或辅助支架维持试样与载荷垂直,阻止试样在循环油作用下移动,加荷压头或辅助支架只能有一个面与试样接触。任何加荷压头和辅助支架都不能阻止试样变形或产生额外的力,这都将增加达到变形需要的载荷。

注10-在0.45Mpa压力测试时,用加荷压头或辅助支架压住试样,保持试样在支座上平直,会改变变形温度。

12.3温度计的水银球或温度测量装置的敏感部位应尽可能靠近试样(10mm以内),但不能接触。液体热传导介质的搅拌应确保试样周围10mm任何位置的液体热传导介质的温差在

1.0℃以内。如果搅拌不充分不能满足1.0℃的要求,温度测量装置应安在加载试样10mm以内温度相同的位置。

12.4确保合适的热浴温度。测试开始时,热浴温度应与周围的温度相同,除非先前的测试显示对于特定材料用高的开始温度对测试结果无影响。

12.5将加载杆小心压到试样上后,将支座放入热浴。

12.6调节载荷至0.455MPa[66psi]或1.82MPa[264psi]。

注11-在放置测微计后或做任何影响载荷的改变后,检查所有新设备上的载荷。定期检查载荷,确保设备在校核期内(见附录X1,附录X2和附录X3)。根据测量弯曲设

备的种类,调节记录变形装置的位移范围。

12.7在加载5min后,调节弯曲测量装置归零或记录开始的位置。液体热传输介质的升温速度2.0士0.2℃/min。

注12-5min的等候期间是为了部分补偿一些材料在室温和公称压力下的蠕变。最初5min 的蠕变量占开始30min蠕变量的很大一部分。

12.8在试样受到称压力作用下变形量达到指定量时,记录液体热传输介质的温度。

注13-特定情况下,连续的记录变形量与温度的关系比只记录标准变形量更有用。

13试验报告

13.1试验报告应包括下列信息

13.1.1测试材料的鉴定;

13.1.2试样制备方法;

13.1.3调质过程;

13.1.4测试方法,如D648的A方法或D648的B方法;

13.1.5试样的宽度和厚度,精确到0.025mm;

13.1.6标准变形量,变形温度,每个试样受到的总压力;

表1统计信息

13.1.7浸润的介质,开始测试时的温度和实际温度;

13.1.8平均变形温度;

13.1.9试样在测试过程中或从支架上取下后的异常情况(如扭曲,不均匀的弯曲,变色和膨胀);

13.1.10设备类型:自动或手动。

14精度和偏差

14.1精度-在7个实验室开展的测试计划,手动和自动设备都有。计划中包括四种聚合物。表1汇总了统计信息。临界差极限用来考察限定观测值差。

14.21995年实行了第二次循环实验。表2是基于E691规范的循环测试,包括了15个实验室测试的三个材料。对于每个材料所有试样同一出处,但个别试样由实验室制备。每个测试结果是两个独立试样的平均值。(警告-如下r和R的说明(14.3-14.3.3)仅提供了一种可借鉴的大致精度的方法。表2的数据不能用来材料的验收或拒收,只能用来循环测试材料,不能代表其他批次,配方,条件,材料或实验室。这个方法的使用者应遵循E691规范在实验室测试数据(或在实验室间)。数据用14.3-14.3.3原则评价有效性。)

14.3r和R的概念见表2-如果S r和S R都是从大量的,足够的数据群体中计算得出的,则对试验结果能作出以下判断:

14.3.1重复性r-代表相同材料两次测试结果的临界差,测试结果在同一天,有相同

的操作者,在相同的实验室,用相同的设备测得。如两个试验结果之差超过材料的r 值,则应判断该两个试验结果不等价。

14.3.2再现性-R代表相同材料两次测试结果的临界差,测试结果可以不在同一天,

由不同的操作者,在不同的实验室,用不同的设备测得。如两个试验结果之差超过材料的R值,则应判断该两个试验结果不等价。

14.3.3任何根据14.3.1和14.3.2的判断,有95%的可信度。

表2精度,变形温度

14.4本测试方法还没有评价偏差公认的标准。

注14-基于循环测试数据,跨度为101.6mm [4.0in](A 方法)和100mm [3.937in](方法B )存在一定偏差,该值与材料有关,相同材料跨度为100mm 的变形温度要高1.0-4.5℃(见表3)。

15关键词

15.1变形温度;弯曲载荷;弯曲

附录(标准附录)

A1单(集成)温度探测设备的校正

A1.1如果操作单元是那种在热浴中只有一个温度传感器的,并且这个传感器是被监测来记录试样在整个过程中的变形温度的,那么需采用如下检查和校正来确保实验结果与每个点都有温度传感器实验结果的可比性。

A1.2设备规范必须至少每年校正温度范围,传感器和显示的准确度。

A1.3校准需要用到精确度0.1℃或更好的温度计和NIST 的传感器,秒表及其他打开和调节设备的工具。

A1.3.1设备的低温校准通过把NIST 探头放到距离试样10mm 以内,放入热浴的三个不同点。三点应在热浴的中间,左边和右边。打开设备,让探测器尽量靠近,在所有搅拌器打开的情况下,设备维持在一个20到50℃的常温。维持热浴的稳定状态至少5min ,读取和记录校准传感器和内部温度显示器的数据,精确到0.1℃。做必要的调节,确保系统温度和设定值之差在士0.1℃,在读数稳定后在保持至少5分钟。当校正传感器显示热浴的温度到指定温度,对中间传感器的显示做必要调整。

A1.3.1.1移动NIST 探头到其他两个距离试样10mm 以内的位置,稳定至少5min 后,读取和记录这些点的温度值。

A1.3.2高温校正采用设备程序的维持一个较高的温度,但不超过传热介质的最高允许温度,的程序升温。搅拌机持续运转,设备按正常测试放置。放入NIST 探头在距离试样10mm 以内,稳定热浴至少5min 。读取和记录校准传感器和设备内部的显示值,精确到0.1℃。做任何不要的调整使得设备温度控制器与设定值的差值在士0.1℃,调整后稳定至少5min

。为

表3跨度为100和101.6mm [3.937和4.0in]时测得的(平均)变形温度,℃

了校准传感器显示热浴温度和设定值一致,对传感器的显示值做任何调整必要的调整。

A1.3.2.1移动NIST探头到其他距离试样10mm的两个位置,稳定至少5min后读取和记录这些点的温度。

A1.3.3三个点的低温和高温数据的评价。如果任何点与设定点的差值大于士0.5℃,那么当测试试样变形时,温度感应装置必须测试每个位置。用电子改进设备和玻璃温度计(见7.1.5)放到每个点,在试样变形时,手动读取和记录数据。

A1.3.4如果先前的步骤成功完成,冷却热浴到正常的开始温度,维持热浴的稳定。如果先前的数据差别比较大,则把NIST探头放入热浴。这个测试时,两个读数有10到15s的偏差是允许的。当第一个温度记录时打开秒表。读取和记录设备和NIST探头的温度值,每延迟5min维持1h。

A1.3.5评估先前测试的数据。探头和其余选择的测试点都确保热浴正确的升温速度,如7.1.2。如果任何一个超出了升温速度的限制,在使用前,设备必须维修和重新检查。如果设备未能达到测试标准,设备必须维修或替换。在每个位置放置感温设备,若设备的升温速度超过了这个测试方法允许的范围,并不能纠正A1.3.4的问题。

A2多温控设备的校正

A2.1本校正用于设备制造时的校正和热浴温度控制或记录变形温度或两者都是的具有多温控设备HDT(DTUL)设备的校正。如果设备只有一个温度传感器请参考附录A1。

A2.2本校正执行的频率符合最终用户质量系统的需求。

A2.3所有本校正用到的测试设备(包括温度计,温度传感器,量块,秒表等)都必须根据NIST或其他认可的国际标准校准。温度测量装置的精度为0.1℃或更好。校准变形量的量块必须准确到0.001mm或更好。秒表必须精确到0.1s或更好。

A2.4温度校正按如下指导路线和设备制造时的校正一致。

A2.4.1校正两点的最小温度。一个是测试的开始温度或附近(士5℃),另一个是用户使用的最高温度或以上。但小心不要超过热传导介质的最大安全温度。

A2.4.2如果要移动传感器从热浴的一个位置到另一个位置,必须稳定至少5分钟读取温度值后才能移动传感器。

A2.4.3在校正过程中,所有的搅拌器打开,校正测试的位置应尽可能在正常测试时的位置。

A2.4.4基准温度的传感器探头部分应尽可能靠近在测试状态(UUT)的传感器或离试样10mm以内。

A2.4.5调节UUT,使UUT的显示与基准温度的差值小于士0.1℃。

A2.5当静温度标定完成,冷却设备到正常开始温度,稳定热浴温度。UUT的程序是以2℃/min(120℃/h)升高热浴温度。每5分钟读取和记录每个位置的温度直到UUT到达校正

的最高温度。在它们按上述步骤或用外部可追踪温度测量设备校正后,用内部温度传感器从UUT通过软件控制或数据获得,读取和记录这些温度。如果必要的话,可以在每个位置多次校正。

A2.5.1评估先前测试已获得的数据确保每个点的升温速度在允许的公差范围之内,见7.1.2。校正开始的十分钟允许超过允许的公差范围,因为正如很多加热设备用到了比例积分微分(PID)控制,为了便于控制调节自身步调,纠正功率和时间间隔以达到需要的校正速率。如果任何位置的温度在开始十分钟超过指定的公差范围,在修复或调节该位置的温度在公差范围内前,这个位置不能用来测试。

A2.6测试试样用到的每个位置如加荷杆,连接部位的材料有低的热膨胀系数。UUT校正温度范围是不可见的,最小在每20℃的升温速率有一个补偿值。如果这个补偿值大于0.013mm[0.0005in],记录其代数符号,每个测试试样变形时都应用代数的方法加入补偿值。完成连接部位的升温速度测试如A2.5。

A2.7测弯曲量的测微计和临界机械尺寸也必须用可追踪的校准工具校准/检验。设备制造厂商的合同和过程手册会为完成实际任务提供详细资料。给用户提供了公差和其他必要的指导方针如下。

A2.7.1测微计必须校准到士0.01mm。

A2.7.2按7.1.1中的临界机械尺寸必须与要求想符合。

A2.7.3检验重量,符合7.1.4的规范。

A2.7.4当测量加载杆的重量时,测微计作用在试样的弹簧力必须计算在内。设备用弹簧力向下(载荷的一部分),或向上(减少了施加的载荷),这个力必须加入或减去以便确定试样实际受到的载荷。

附录(提示附录)

X1使用加荷杆平衡称量装置对试样正确加载的测量规范

X1.1设备

X1.1.1设备基本结构见图X1.1,组成如下。

X1.1.1.1精度至少为0.1g的单盘或等臂实验天平。

X1.1.1.2天平上支撑测试设备的组合平台。

X1.1.1.3天平盘上支撑加荷杆的平台桥。

X1.2规程

X1.2.1根据公式1,计算需要的载荷。

X1.2.2使检测器顶部安装保持水平(如果必要可以加垫片或夹子使设备稳固)。

X1.2.3保持天平水平。

X1.2.4在校正过程中连续操作,打开测试器的油浴搅拌,加热至75到110℃。

X1.2.5确定桥的皮重。

X1.2.6天平盘上横杆测试单元的位置。

X1.2.7用轻油润滑杆和导销孔的表面。

X1.2.8提升加荷杆,在天平盘上放入桥以便支撑加荷杆(桥需要支撑13mm [1/2in]的杆,其水平高度高于试样支座)。

X1.2.9调节刻度盘面的指示表,使得针尖归零(轴不下沉)。

X1.2.10刻度盘量程的导向臂在适当的位置,降低杆到桥,直到能很轻松的释放。当天平达到平衡,调节刻度盘为0.89士0.05mm [0.035士0.002in](在零位置0.64mm [0.025in],附加正常测试时测试杆的变形量0.25mm [0.010in])。重复一次,在天平导向臂在0.89士0.05mm 时读取数据。

X1.2.11记录状态0.89士0.05mm [0.035士0.002in]

的偏转力。

图X1.1用单盘天平校准装置

X1.2.12调节加荷杆的重量或弹簧的力,使得载荷为公式1中0.89mm [0.035in]变形所需要的应力。

注X1.1-在校正精度和正常使用中,测试设备(杆,导轨面和指示表)必须干净,无任

何表面缺点。

X2用拉力试验机称量外加载荷校正试样受载测量规范

X2.1设备

X2.1.1设备基本结构见图X2.1,组成如下。

X2.1.1.1备有记录拉伸载荷和钳分离装置的钳恒速分离型拉力试验机。测试的机器应能够称量至少2000g 。钳分离速度应能调节到0.51mm [0.02in]/min 。

X2.1.1.2大约203×203mm [8×8in]方形的平台上装备拉伸机的更低的十字头来支撑变形温度测试设备。

X2.1.1.3加荷杆的支座,一个被拉伸机的上夹头夹住的鞍形装置,

延伸到加荷杆的

图X2.1拉力试验机校准装置

底部。

X2.2规程

X2.2.1放低的十字钳平台以便支撑装备支架平台。

X2.2.2调整加荷杆支座到盘制动螺旋,校准拉伸测试机。

X2.2.3保障支座平台的变形温度测试设备,调节加荷杆支座使得加荷杆顶部到试样支撑的顶部是12.7mm[1/2in]。

X2.2.4用轻油润滑杆和导销孔的表面。

X2.2.5调节指示表归零,顺时针调节加荷杆顶部的螺母直到导向臂几乎能与指示表的顶部接触。

X2.2.6打开下面的十字头,以0.51mm[0.02in]/min的速度向上。这样的效果在实际测试中是引起加荷杆向下移动。当指示表的指针显示移动,以1in/mm的速度开动记录纸驱动设备。

X2.2.7记录变形量在0.89士0.05mm[0.035士0.002in]时的力。

X2.2.8调节加荷杆的重量,使得载荷为公式1中所需要的最大应力。

图X3.1试样正确受载测量装置

X3称量原位外加载荷对试样加载的纠正测量规范

X3.1范围

X3.1.1本规范覆盖一个用于测量施加到变形温度试样中跨的净作用力候补技术。

X3.1.2试样支撑设备测量净作用力,按位置装备载荷,浸入热交换介质。

X3.1.3本技术允许用户说明实际应用于试样的载荷如弹簧力,摩擦力,浮力等的结果差异。

X3.2设备

X3.2.1设备基本结构见图X3.1,组成如下。

X3.2.1.1具有负载传感器的电子称量系统(例如数字秤或拉力试验机),最小称量能力2000g和精度0.1g的单盘天平或等臂实验天平。

X3.2.1.2组合平台,用于支撑变形温度热浴上的秤或天平。

X3.2.1.3砝码支座设备,当测量的力确定后用于支持加荷杆和砝码。

X3.2.1.4调整附件,用于连接砝码支座到负载传感器或天平。这个装配应容易调整测试设备,以便在需要的位置测量加载的力。

X3.3规程

X3.3.1用公式1计算出加载需要的压力。

X3.3.2在加荷杆上放置必要的砝码。

X3.3.3放低试样支撑设备,装备加载放入热浴。

X3.3.4打开循环器,循环器电机的振动不影响称量系统。

注X3.1-在组合平台用橡胶垫片能阻尼循环器的振动,或设计组合平台使其横跨热浴,优于靠在其顶部。

X3.3.5如果用秤或天平,组合平台的位置高于或水平于变形温度热浴。放置组合平台于秤或天平的顶部位置,校验其是否水平。

X3.3.6在负载传感器或天平的底部装上调节装置。

X3.3.7在调节装置的底部装上砝码支座。

X3.3.8如果用的是负载传感器,测量前应预热。砝码支座和调节装置增加了皮重。

X3.3.9调整试样支撑的位置以便能承受加荷杆和砝码的重量。

X3.3.10检验负载传感器或天平,调整装置,砝码支座和加荷杆是否成一线。确保测试装置没有给测试引入任何偏心负荷非常重要,因为这会导致力的不正确测量。

X3.3.11用调节装置调节装备载荷的位置,以便对应零变形位置。如果必要的话变形测量装置归零。指示表应按照X5调节一致。

X3.3.12记录在零变形位置显示的载荷,精确到0.1g。

X3.3.13用调节装置降低载荷装配到最终的变形位置,典型值0.25mm。

X3.3.14记录在最终变形位置显示的载荷,精确到0.1g。

注X3.2-这些力可以在任何方便的温度下的测量。温度对浮力的影响超过机器的许用范围,用硅油和载荷装配设计的通常可以忽略。油分散体积的增加弥补了油密度的

降低。如果需要的话,用户可以在两个不同的温度下校正负荷标准。

X3.3.15基于这些测量,根据X3.3.1计算力对应的施加力来调节质量。

X3.3.16在零变形位置(0.00mm )力和在最终变形位置的力(典型值0.25mm )的差值应如7.1.4在±2.5%以内。

注X3.3-如果力的差异超过了弯曲测量范围,用户应确认是哪个因素造成的,进行必要

的修正,重复规程,确保调整合适。在中间位置(例如0.12mm )调节设备以便计算载荷,因此允许在零变形位置的载荷(0.00mm )和最终变形位置(典型值0.25mm )到属于允许的公差范围内。

X4用规块穿透测量装置的校验规范

X4.1本规范提供了一种校验典型的基于DTUL 测量工具的穿刺测量装置的方法。这不是一种校准法。如果使用者找到的测试设备有一种或更多试验框架,设备制造商或有资格校准的服务公司应该商量校正问题。本规范用于刻度盘指示器,LVDT 和编码器型穿刺测量装置。X4.2从热浴移除测试框架。擦掉框架上多余热传导介质,放到一个稳定的水平面。如果不可能从设备上移除测试框架,框架可以安置在设备的顶部,只要框架在检验过程中水平,

图X5.1弹簧力校正装置

便在测试过程中加荷杆应用其所有的载荷。在测试过程中,使用最小载荷时能接触。X4.3彻底清理试样正常放置时的加载孔和铁砧。

X4.4选择两个最小的规块,在高度上可比的典型的测试试样上做对比。至少一个规块在1.00mm 。如果1.00mm 的规块不可用,1.016mm [0.040in]的可替代。

X4.5当试样放置后在测试框架中放置规块。放下加荷杆以在滑块中间放置载荷前端支架的方式放到规块。模拟实验条件,加入杆应用于滑块力所必需的重量。指示表或显示的读数记录归零。

注X4.1-注意在用较重的载荷时,须避免破坏规块。

X4.6提升加荷杆,在杆的下面小心移动1.00mm ,保持不改变滑块的位置。放下杆仍到规块。记录指示表的读数。读书应等于1.00±0.02mm。

X4.7重复规范至少两次来确保可重复性。用不同的指示表以类似的方式可以检验中间读数。X4.8重复规范的所有测试步骤。

X5弹簧力和量程的测试规范

X5.1设备

X5.1.1设备基本装置如图X5.1,组成如下。

X5.1.1.1测试设备-装备有能记录载荷和十字头运动设备的恒速移动型测试设备。X5.1.1.2载荷测量设备-载荷测量设备精确到0.5g 。图

X5.2校准无问题时载荷与变形量的关系

图X5.3校准有问题时载荷与变形量的关系

X5.1.1.3事件检测器(可选)-事件检测器是用于标记沿图的特殊位置,表明指示表量规杆不同的变形。

X5.2规范

X5.2.1按照图X5.1组装测试设备。

X5.2.2拉力试验机的力和位置的校准和归零。

X5.2.3支撑设备和指示表放置在试验机的固定的底部或可动部件。指示表的位置在载荷铁砧以下的中间。

X5.2.4设置试验机的移动速度为0.3mm/min。设置记录纸的速度大约在60mm/min。

X5.2.5指示表归零。放置铁砧的位置以便与指示表的杆刚好接触,在图表记录仪上至少能显示1g的力。

X5.2.6打开十字头移动使指示表的杆偏转。图表上的载荷随着指示表内弹簧伸长而增加。每0.05mm变形在沿着载荷-变形曲线用事件记录或手动记录一个位置。

注X5.1-如果指示表有一个指针指向控制器的电信号,确保这个指针在测试过程中不与移动指针接触。接触会导致载荷增加,而读到错误的弹簧拉力。

X5.2.7图X5.2和X5.3是载荷变形曲线的例子。如果指示表正常工作,曲线与图X5.2类似。如果指示表有接触或其他问题,曲线如X5.3类似。

X5.2.8从载荷变形曲线求出在位移范围内指示表的由试验测量的平均弹簧力。从曲线的位移范围计算测试中最小和最大载荷。如果低值和高值的差值大于公式1计算总质量的5%,那么指示表需要重做或再加工,以便纠正这种不稳定的行为。

修改汇总

D20委员会标识了本标准最新版本的修改处,本标准与D648-04可能有冲突。(2007年3月1日)

(1)加入了1.4。

(2)修正了7.1.5.2关于温度计的描述。

D20委员会标识了本标准最新版本的修改处,本标准与D648-04可能有冲突。(2006年3月15日)

(1)加入了附录A2。

(2)加入了附录A2后删除了老的注4。

主营业务范围:ASTM、NAS、NASM、MIL、ISO、EN、DIN等技术标准翻译;技术资料翻译。

业务QQ:2298175560

汽车塑料制品通用试验方法-QC/T15—92-中华人民共和国汽车行业标准

中华人民共和国汽车行业标准QC/T 15—92 汽车塑料制品通用试验方法 1 主题内容与适用范围 本标准规定了汽车用塑料成型制品(以下简称制品)性能的通用试验方法。 本标准适用于汽车用各种塑料制品,但不适用于发泡制品、座垫、电镀制品 、涂装制品。 2 引用标准 GB 209 工业用氢氧化钠 GB 252轻柴油 GB 435汽油机油 GB 484车用汽油 GB 534工业硫酸 GB 2918塑料试样状态调节和试验的标准环境 GB 5671汽车通用钾基润滑脂 JB 3979汽车转向盘试验方法 QC/T 17汽车零部件耐候性试验一般规则 SY 4005 4604号合成刹车油 3 试验项目 试验项目包括如下11项: a.耐温度性试验: b.耐候性试验: c.耐水性试验; d.耐湿性试验;

e.耐化学介质性试验: f.耐振动性试验; g.耐冲击性试验; h.耐磨损性试验; i.耐擦伤性试验: j.刚性试验; k.综合试验。 4 试验的一般条件 4.1 标准环境 试验的标准环境应符合GB 2918的有关规定。 4.2 试样 供试验用的试样,取自实际装配使用状态下的制品,在不影响制品性能的情 况下,亦可采用试验片,试验时模拟制品在汽车上的实用状态。 4.3 试样预处理 试样应从制造后至少放置24h的制品中随机抽取,并在试验前将试样按 4.1规定的环境放置不少于4h,再进行试验:如果需要也可由供需双方协商规定其它条件。4.4 试样数量 在无特殊规定时,试样数量,按表1确定。 5 试验方法

5.1 耐温度性试验 耐温度性试验是检查制品在高温、低温和高低温交变情况下的实际性能。5.1.1 试验的分类 试验分类按表2规定 5.1.2 适用条件分类 根据制品在汽车上安装的部位及相应的温度状况,适用条件分为如下十种,如表3所示。 5.1.3 试验温度 试验箱的温度,分别按表4、表5、表6的规定进行控制。

基础实验-塑料弯曲强度-实验讲义

塑料弯曲强度实验 塑料弯曲实验常用作热固性脆性材料的力学性能评价。可以将其看做是冲击韧性的放大。本质上是拉伸和弯曲的复合,最终直接关系到材料的剪切强度。 【实验目的】 1.掌握塑料弯曲强度测量的基本原理 2.掌握简支梁弯曲性能的测量方法; 3.了解弯曲强度实验方法适用的材料范围。 【实验原理】 把试样支撑成横梁,使其在跨度中心以恒定速度弯曲,直到试样断裂或者变形达到预定值,测量该过程中对试样施加的压力。 4. 基本定义。 1.试验速度——speed of testing,支座与压头之间相对运动的速率,单位 mm/min 。 2.弯曲应力flexural stress Jf 试样跨度中心外表面的正应力, 按9.1 的(3) 式计算, 单位MPa 。 3.断裂弯曲应力flexural stress at break, σ fB试样断裂时的弯曲应力( 见图1 的曲线 a 和b), 单位MPa 。 4.弯曲强度flexural stretn gth, σ阳试样在弯曲过程中承受的最大弯曲应力( 见 国 1 的曲线 a 和b), 单位MPa 。 5.在规定挠度时的弯曲应力flexural stress at conventional deflection Jfc 达到 3.7 规定的挠度sc 时的弯曲应力( 见图1 的曲线C), 单位MPa 。 6.挠度deflection d 在弯曲过程中, 试样跨度中心的顶面或底面偏离原始 位置的距离, 单位mm 。 7.规定挠度conventionai deflection ,Sc规定挠度为试样厚度h 的1.5 倍, 单 位mm 。当跨度L=16h 时, 规定挠度相当于弯曲应变为 3.5% ( 见 3.8) 。 8.弯曲应变flexural strain, ε f试样跨度中心外表面上单元长度的微量变化, 用 无量纲的比或百分数(%) 表示。按9.2 的式(4) 计算。

塑胶热变形温度

常用塑料的耐热性能(未经改性的) 热变形温度----------维卡软化点------------马丁耐热 HDPE 80-------------------120 -----------------------\ LDPE 50--------------------95-------------------------\ EV A \-------------------- 64-------------------------\ PP 102-------------------150------------------------\ PS 85--------------------105----------------------- PMMA 100-------------------120------------------------\ PTFE 260-------------------110------------------------\ ABS 86--------------------160-----------------------75 PSF 185-------------------180----------------------150 POM 98--------------------141----------------------55 PC 134--------------------153----------------------112 PA6 58--------------------180-----------------------48 PA66 60--------------------217-----------------------50 PA1010 55---------------------159-----------------------44 PET 70-----------------------\-------------------------80 PBT 66---------------------177-----------------------49 PPS 240---------------------\-------------------------102 PPO 172---------------------\-------------------------110 PI 360-------------------300-------------------------\ LCP 315--------------------\---------------------------\ ABS塑料 特点: 1、综合性能较好,冲击强度较高,化学稳定性,电性能良好. 2、与372有机玻璃的熔接性良好,制成双色塑件,且可表面镀铬,喷漆处理. 3、有高抗冲、高耐热、阻燃、增强、透明等级别。 4、流动性比HIPS差一点,比PMMA、PC等好,柔韧性好。 ABS工程塑料具有优良的综合性能,有极好的冲击强度、尺寸稳定性好、电性能、耐磨性、抗化学药品性、染色性,成型加工和机械加工较好。ABS树脂耐水、无机盐、碱和酸类,不溶于大部分醇类和烃类溶剂,而容易溶于醛、酮、酯和某些氯代烃中。 ABS工程塑料的缺点:热变形温度较低,可燃,耐候性较差。 用途:适于制作一般机械零件,减磨耐磨零件,传动零件和电讯零件. ABS+PC, 俗称ABS加聚碳。是国内少数几种可能透用的合料之一,不能自燃,外火燃烧时,表面有象聚碳燃烧一样的小颗粒析出,黑色低于ABS,常见于电器件、机械零配件等

常见的塑料检测标准和方法

常见的塑料检测标准和方法 检测产品/类别检测项目/参数 检测标准(方法)名称及编号(含年号)序 号 名称 塑料1 光源暴露试验方 法通则 塑料实验室光源暴露试验方法第1部分:通则ISO 4892-1:1999 2 氙弧灯光老化 汽车外饰材料的氙弧灯加速暴露试验SAE J2527:2004 汽车内饰材料的氙弧灯加速暴露试验SAE J2412:2004 塑料实验室光源暴露试验方法第2部分:氙弧灯ISO 4892-2:2006 /Amd 1:2009 室内用塑料氙弧光暴露试验方法ASTM D4459-06 非金属材料氙弧灯老化的仪器操作方法ASTM G155-05a 塑料暴露试验用有水或无水氙弧型曝光装置的操作ASTM D2565-99(2008) 3 荧光紫外灯老化 塑料实验室光源暴露试验方法第3部分:荧光紫外灯ISO 4892-3:2006 汽车外饰材料UV快速老化测试SAE J2020:2003 塑料紫外光暴露试验方法ASTM D4329-05 非金属材料UV老化的仪器操作方法ASTM G154-06 4 碳弧灯老化 塑料实验室光源暴露试验方法第4部分:开放式碳弧灯 ISO 4892-4:2004/ CORR 1:2005 塑料实验室光源曝露试验方法第4部分:开放式碳弧灯 GB/T16422.4-1996 5 荧光紫外灯老化 机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法荧 光紫外灯GB/T14522-2008 6 热老化 无负荷塑料制品的热老化 ASTM D3045-92(2010) 塑料热老化试验方法GB/T7141-2008 7 湿热老化 塑料暴露于湿热、水溅和盐雾效应的测定ISO4611:2008 塑料暴露于湿热、水喷雾和盐雾中影响的测定GB/T12000-2003 塑料8 拉伸性能塑料拉伸性能的测定第1部分:总则GB/T1040.1-2006

塑料制品专业审核指导书 (职业健康安全认证)

密级: 识别号:CQM/SZY-04-05001 控制状态:受控 分发号: 方圆标志认证中心专业审核指导书 职业健康安全认证 塑料制品专业审核指导书 2003-01-15批准2003-01-15实施

方圆标志认证中心发布 1.适用范围 本审核指导书是《中国方圆委方圆标志认证中心》认证程序和审核工作规范的支持性文件,适用于对塑料制品专业生产企业的职业健康安全管理体系认证。 2. 适用的法规、标准目录 《中华人民共和国劳动法》 《中华人民共和国工会法》 《中华人民共和国安全生产法》 《中华人民共和国职业病防治法》 《中华人民共和国消防法》 《化学危险物品安全管理条例》 GBZ1-2002 《工业企业设计卫生标准》 GBZ2-2002 《工作场所有害因素职业接触限值》 GBJ87-1985 《工业企业噪声控制设计规范》 GBJ16-1987 《建筑防火设计规范》 GB50034-1992 《工业企业照明设计标准》 GB50057-1994 《建筑防雷设计规范》 GB5083-1999 《生产设备安全卫生设计总则》 GB4053.3-1993 《固定式工业防护栏杆安全技术条件》 GB/T4064-1983 《电器设备安全设计导则》 原劳动部1996年3号令 原劳动部1998年10号令 国家安全生产监督管理局2001(39)号文 国家技术监督局第13号令 质技监局锅发1999第154号文 3.专业特点、工艺流程、主要生产设备 3.1 塑料的分类 塑料有多种分类方法,一般来说按其使用特性可分为通用塑料、工程塑料和功能塑料,按其受热所呈现的基本行为可分为热塑性塑料和热固性塑料。 其中:热塑性塑料是指在特定温度范围内,能反复加热软化和冷却硬化的塑料。这类塑料基本是以聚合反应所得到的树脂为基础制成的,受热时不产生化学反应,因而当它再一次受热时具有可塑性。如聚乙烯、聚丙烯、聚苯乙烯,聚氯乙烯、聚碳酸脂等。 热固性塑料是指受热后能成为不溶性物质的塑料。这类塑料基本以缩聚反应所得到的树脂为基础制成,受热时发生化学变化使线性分子结构的树脂转变为体型结构的高分子化合物,当再一次受热时不再具有可塑性。如酚醛塑料、氨基塑料等。 3.2塑料配制及加工成型 塑料制品按其几何形状并结合用途,可分为管、膜、板、片、袋、容器、塑

ISO-178-2010塑料——弯曲性能的测定

ISO178-2010 塑料——弯曲性能的测定 1.范围 1.1本国际标准规定了在特定条件下测定硬质(见3.12)和半硬质塑料弯曲性能的方法。规 定了标准试样尺寸,同时对适合使用的替代试样也提供了尺寸参数。规定了试验速度范围。 1.2本标准用于在规定条件下研究试样弯曲特性,测定弯曲强度、弯曲模量和其他弯曲应力 /应变关系。本标准适用于两端自由支撑、中央加荷的试验(三点加载测试)。 1.3本标准适用于下列材料: ——热塑性模塑、挤出铸造材料,包括填充和增强复合物;硬质热塑性板材; ——热固性模塑材料,包括填充和增强复合物;热固性板材。 与ISO10350-1[5]和ISO10350-2[6]一致,本国际标准适用于测试以长度≤7.5mm纤维增强的复合物。对于纤维长度>7.5mm的长纤维增强材料(层压材料)的测试,见ISO14125[7]。 本标准通常不适用于硬质多孔材料和含有多孔材料的夹层结构材料。对这些材料的测试,可采用ISO1209-1[3]和/或ISO1209-2[4]。 注:对于某些纺织纤维增强的塑料,最好采用四点弯曲试验,见ISO14125。 1.4本方法中所用的试样可以是选定尺寸的模塑试样,用标准多用途试样中部机加工的试样 (见ISO20753),或者从成品或半成品入模塑件、挤出或浇铸板材经机加工的试样。1.5本标准推荐了最佳试样尺寸。用不同尺寸或不同条件制备的试样进行试验,其结果是不 可比较的。其他因素,如试验速度和试样的状态调节也会影响试验结果。 注:尤其是半结晶聚合物,由模塑条件决定的样品表层厚度会影响弯曲性能。 1.6本方法不适用于确定产品设计参数,但可用于材料测试和质量控制测试。 1.7对于表现出非线性应力/应变特性的材料,其弯曲性能只为公称值。给出的计算公式都 基于应力/应变为线性的假设,且对样品挠度小于厚度的情况下有效。使用推荐的试样尺寸(80mm X10mm X4mm),在传统的3.5%弯曲应变和跨距与厚度比L/h为16的情况下,挠度为1.5h。相比于非常柔软的和延性材料,弯曲测试更合适于测试具有较小断裂挠度的坚硬材料和脆性材料。 1.8与本国际标准的之前版本相反,本版本包含了方法A和方法B两个方法。方法A与本 国际标准的之前版本中的方法一致,即在试验中使用1%/min的变形速度。方法B使用两个不同的变形速度:弯曲模量测试中选用1%/min的速度,测量弯曲应力-应变曲线的剩余部分依材料延展性的不同而选用5%/min或50%/min的形变速度。 2.规范性引用文件 本文件中引用了以下的文件。对于标示日期的引用文件,只有引用的版本有效。对于未标示日期的文献,其最新版(包括任何修正)适用于本标准。 ISO291,塑料——状态调节与测试标准环境 ISO293,塑料——热塑性材料的压塑试样 ISO294-1:1996,塑料——热塑性材料注塑试样——第1部分:一般原理及多用途和长条试样的模塑成型。 ISO295,塑料——热固性材料的压塑试样 ISO2602,测试结果的统计处理和解释——均值估计——置信区间 ISO2818,塑料——机械加工制备试样 ISO7500-1,金属材料——静态单轴测试仪器验证——第1部分:张力/压缩测试机器——力测量系统的验证和校准 ISO9513,金属材料——单轴测试伸长计校正

中文astmd648塑料热变形温度

ASTM D 648-07 塑料侧立式弯曲负荷下变形温度的标准测试方法 1 范围 1.1本试验方法适用于测试在特定的条件下试样发生特定变形时的温度。 本试验方法适用于测试在常温下刚性或者半刚性的,厚度在 3mm[1/8in]或以上的模具成型或者薄片的试样。 注1:薄片厚度少于3mm []但大于1mm []可以用几片薄片复合试样来测试,但最小厚度为3mm。一种制备复合试样的方式是用砂纸把薄片的面打磨平,用胶水粘合。施加载荷的方向需垂直于每个薄片的边缘。 在SI的单位的评估值将视为标准。给定值仅提供一些信息。 本标准无意涉及所有使用过程中的安全问题。本标准是帮助用户建立适当的安全标准和卫生管理办法,并且在规定的期限内使用。 注2:这个测试方法描述为本测试办法的B方法,在技术上,方法Ae和Be分别与ISO 75-1 和ISO 75-2,1993,等价。 2 参考文献 ASTM标准 D 618 测试用塑料调质实施规范。 D 883 塑料相关术语。 D 1898 塑料抽样实施规范。 D 5947 固体塑料试样外形尺寸测试方法。 E1 在液体中的玻璃温度计ASTM说明。 E77 温度计的检查和检验测试方法。 E608/E608M 矿物隔热,金属屏蔽的基体金属热电偶。 E691 为测定试验方法精密度开展的实验室间研究的实施规范。 E1137/E1137M 工业用铂阻尼式温度计。 ISO标准 ISO 75-1 塑料-负荷变形温度的测定-第1部分:通用试验方法。 ISO 75-2 塑料-负荷变形温度的测定-第2部分:塑料和硬橡胶。 NIST文件 NBS特别出版250-22。 3 术语 通常-本测试方法定义的塑料是跟D 883 中标准一样,除非另外说明。 4 检测方法简介 将矩形截面的试样按侧立式方式,放在载荷作用在中间的简支梁上,载荷的最大压力为 [66psi] 或[264psi](注3)。将试样在有载荷的作用下,浸入升温速度为2 士℃/min的传热介质中。测试试样的变形量为 []时介质的温度。记录下试样在弯曲载荷作用下的温度作为变形温度。

塑料水杯制品的国家标准

塑料水杯制品的国家标准 前言 本标准是首次制订版。 本标准的编写根据GB/T1.1-2000及其相关规定,着眼于与ISO标准的接轨。其中部分参照了JIS Z 1707:1997“食品包装用塑料薄膜通则”及EN788:1994“适用于食品流通的包装袋——由复合膜制造的包装袋”,而主要依据则是我国包装用复合膜、袋的实际现状。 本标准是包装用复合膜、袋应共同遵循的基本原则,各类已定结构和有特殊要求的包装用复合膜、袋在制订相应产品标准时,不得与本标准中的相应规定发生抵触。另,符合国家标准并不意味可割免法律义务。 本标准由全国复合膜制品专业委员会提出 本标准由全国塑料制品标准化技术委员会归口 包装用复合膜、袋通则 1. 范围 本标准规定了由不同材料用不同方法制成的包装用复合膜、袋的共同事项。 注1:材料指各种不同类型的树脂、塑料薄膜、涂层薄膜、纸张、金属箔等; 注2:方法指干法复合、湿法复合、挤出复合、共挤出复合等; 注3:复合膜由二种或二种以上材料组成。 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包装勘误的内容)或修改版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 191 包装储运图示标志 GB/T1038 塑料薄膜和薄片气体透过性试验方法、压差法 GB1410 固体绝缘材料体积电阻率和表面电阻率试验方法 GB2410 透明塑料透光率和雾度试验方法 GB/T2828 逐批检查计数抽样程序及抽样表 GB/T2918 塑料试样状态调节和试验的标准环境 GB/T5009.60 食品包装用聚乙烯、聚苯乙烯、聚丙烯成型品卫生标准的分析方法GB6672 塑料薄膜和薄片厚度测定、机械测量法 GB6673 塑料薄膜和薄片长度和宽度的测定 GB 7707 凹版装潢印刷品 GB 7718 食品标签通用标准 GB8808 软质复合塑料材料剥离试验方法 GB8809 塑料薄膜抗摆摆锤冲击试验方法 GB9683 复合食品包装袋卫生标准 GB9685 食品容器、包装材料用助剂使用卫生标准 GB/T10004 耐蒸煮复合膜、袋 GB/T10005 双向拉伸聚丙烯/低密度聚乙烯复合膜、袋 GB10006 塑料薄膜和片材摩擦系数测定方法

塑料力学性能测试标准大全-

塑料力学性能测试标准 GB/T 1039-1992塑料力学性能试验方法总则 plastics--General rules for the test method of mechannlcal properties GB1040 塑料拉伸试验方法 Plastics--Determination of tensile properties GB/T_1041-1992 塑料压缩性能试验方法 Plastics--Determination of compressive properties GB/T 1043-93 硬质塑料简支梁冲击试验方法 Plastics--Determination of charpy impact strength of rigid matericals GB/T 14153-1993硬质塑料落锤冲击试验方法通则 General test method for impact resistance of rigid plastics by means of falling weight GB/T 14484-1993 塑料承载强度试验方法 Test method for bearing strength of plastics GB/T 14485-1993 工程塑料硬质塑料板材及塑料件耐冲击性能试验方法、落球法Standard methods of testing for impact resistance of plats and pats made from englneering plastics by a ball(falling ball GB/T 15047-1994 塑料扭转刚性试验方法 Test method for stiffness proporties in tirsion of plastics GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法 Cellular plastics,rigid--Determination of compressive creep GB/T 12027-2004 塑料-薄膜和薄片-加热尺寸变化率试验方法 Plastics--film and sheeting-Determination of dimensional change on heating GB/T 2013525-1992 塑料拉伸冲击性能试验方法 Test method for tensile-impact property of plastics GB/T 11999-1989塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法 Plastics--Film and sheeting--Determination of tear resistance--Elmendorf method GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法 Cellular plastics--Tear resistance test for flexible materials

国家标准塑料及塑料制品性能检测方法标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料 31 GB/T 1636-1979 模塑料表观密度试验方法 32 GB/T 1843-1996 塑料悬臂梁冲击试验方法 33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能 34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料 35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂 36 GB/T 2035-1996 塑料术语及其定义 37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法 38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法 39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法 40 GB/T 2409-1980 塑料黄色指数试验方法 41 GB/T 2410-1980 透明塑料透光率和雾度试验方法 42 GB/T 2411-1980 塑料邵氏硬度试验方法 43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和

塑料制品国家标准

塑料制品国家标准 1.GBn84-80 聚乙烯成型品卫生标准 2.GBn85-80 聚丙烯成型品卫生标准 3.GBn86-80 聚苯乙烯成型品卫生标准 4.GBn87-80 三聚氰胺成型品卫生标准 5.GB3806-83 聚氯乙烯塑料凉鞋 6.GB3807-83 聚氯乙烯微孔塑料拖鞋 7.GB3830-83 软聚氯乙烯压延薄膜(片) 8.GB4085-83 半硬质聚氯乙烯块状塑料地板 9.GB4217-84 热塑性塑料管材的公称外径和公称压力 10. GB4219-84 化工用硬聚氯乙烯管材 11. GB4220-84 化工用硬聚氯乙烯管件 12. GB4454-84 硬聚氯乙烯板材 13. GB4455-84 农业用聚乙烯吹塑薄膜 14. GB4456-84 包装用聚乙烯吹塑薄膜 15. GB5664-85 高密度聚乙烯单丝 16. GB5736-85 农药用钙塑瓦楞箱 17. GB5737-85 食品塑料周转箱 18. GB5738-85 饮料塑料周转箱 19. GB5739-85 啤酒塑料周转箱 20. GB5836-86 建筑排水用硬聚氯乙烯管材和管件 21. GB6668-86 聚氯乙烯针织布基发泡人造革 22. ZBY28001-85 硬聚氯乙烯楼梯扶手 23. ZBY28002-85 酚醛胶布轴瓦 24. ZBY28003-85 食品包装用压延聚氯乙烯硬片 25. SG 8-67 聚氯乙烯塑料鞋底 26. SG 22-73 电缆工业用办聚氯乙烯塑料 27. SG 78-74 硬聚氯乙烯管材 28. SG 79-74 软聚氯乙烯管材 29. SG 80-75 聚乙烯管材 30. SG 83-75 聚氯乙烯人造革 31. HG2-821-75 珠光有机玻璃板材 32. SG124-77 珠光有机玻璃纽扣 33. SG125-77 塑料纽扣 34. JB1256-77 6020聚酯薄膜 35. SG187-80 聚四氟乙烯薄膜 36. SG188-80 聚四氟乙烯棒 37. SG189-80 聚四氟乙烯管 38. SG190-80 聚四氟乙烯板 39. SG212-80 硬质聚氯乙烯泡沫板材 40. SG213-80 聚丙烯纺织袋 41. SG214-80 混凝土轨枕用聚氯乙烯垫片 42. LY218-80 塑料贴面板 43. SG224-81 高压聚乙烯重包装袋(膜) 44. SG232-81 聚苯乙烯泡沫塑料板材 45. SG233-81 聚苯乙烯泡沫塑料包装材料 46. SG234-81 塑料打包带

塑料测试方法(中文版)

拉伸强度和拉伸模量 ASTM D 638, ISO R527, DIN 53455, DIN53457 了解材料对负载的响应程度是了解材料性能的基础。通过测试在一定应力下材料的变形程度(应变),设计者可以预测材料在其工作环境下的应用(如图1)。 图1 拉伸应力-应变曲线 A:弹性形变的极限值 B:屈服点 C:最大强度 O-A:屈服区域,发生弹性形变 超过A点:塑性变形 图2:ASTM D 6, 拉伸试样的尺寸 模量:应力/应变 Mpa

屈服应力:开始发生塑性变形的应力 Mpa 断裂应力发生断裂时的应力 Mpa 断裂伸长率材料发生断裂时的应变% 弹性极限开始发生弹性形变的终点 弹性模量发生在塑性变形时的模量 Mpa 测试速度: A速度:1mm/mm 拉伸模量 B速度:5mm/mm 填充材料 的拉伸应力/应变 C速度:50mm/mm 为填充材料的拉伸应力/应变 弯曲强度和弯曲模量 ASTM D 790, ISO 178, DIN 53452 弯曲强度是用来测量材料抵制挠曲变形的能力或者是测试材料的刚性。与拉伸负载不同的是,在测试弯曲时,所有的应力加载在一个方向上。用压头压在试样的中部使其形成一个3点的负载,在标准测试仪上,恒定的压缩速度为2mm/mm. 通过计算机收集的数据,测绘出试样的压缩负荷-变形曲线,来计算压缩模量。在曲线的线性区域至少取5个点的负载和变形。 弯曲模量(应力与应变的比值)是表征材料弯曲性能的重要指标。压缩模量是指在应力-应变的曲线的线性范围内,压缩应力与压缩应变之比。 压缩应力与压缩应变的单位都是Mpa。 图3:弯曲测试示意图 耐磨性能测试

常用塑料注塑工艺参数表:资料

常用塑料注塑工艺参数表:

常用塑料注塑工艺参数(2) 2010-06-16 20:02:13| 分类:个人日记| 标签:|字号大中小订阅 聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料,Tg为149~150℃;Tf为215~225℃;成型温度为250~310℃; 2、热稳定性较好,并随分子量的增大而提高。但PC高温下遇水易降解,成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前,PC树脂必须进行充分干燥(并且应当充分注意防止干燥过的物料再吸湿)。干燥效果的快速检验法,是在注塑机上采用“对空注射”。 3、熔体粘度高,流动性较差,其流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,在适宜的成型加工温度范围内调节加工温度,能有效地控制PC的粘度。4、由于粘度高,注射压力较高,一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品,为使熔体顺利、及时充模,注射压力要适当提高至120~150MPa。保压压力为80~100MPa。 5、成型时,冷却固化快,为延迟物料冷凝,需控制模温为80~120℃。6、PC分子主链中有大量苯环,分子链的刚性大,注塑中易产生较大的内应力,使制品开裂或影响制品的尺寸稳定性;(在100℃以上作长时间热处理,它的刚硬性增加,内应力降低)。PC的典型干燥曲

线台湾奇美典型牌号加工参数:十、PA及玻纤增强PA注塑工艺特性与工艺参数设定 1、常用品种及其熔点:q 品种:尼龙-66;尼龙-610;尼龙-1010;尼龙-1212;尼龙-46尼龙-6;尼龙-7;尼龙-9;尼龙-11;尼龙-12;尼龙-66/6、尼龙-66/610;尼龙-6∕66∕1010;尼龙-66/6/610q 熔点:尼龙n系列:尼龙-6 215~220℃;尼龙-12为178℃;尼龙m,n系列:尼龙-46 295 ℃;尼龙-66 255~265℃;尼龙-610 215~223℃;尼龙-1010 200℃;共缩聚尼龙:由于分子链的规整性较差,结晶性和熔点一般较低,如尼龙-6∕66∕1010的熔点仅为155~175℃,但其有较好的透明性和弹性。2、熔点高,熔化范围窄(约10℃)。考虑到PA熔点高、热稳定性较差,故加工温度不宜太高,一般高于熔点30℃左右即可。3、吸湿性大,且酰胺基易于高温水解,引起分子量严重降低;(须严格干燥至含水量低于0.05%,尤其是回料使用时更应严格干燥,必要时可添加“增粘剂”。)4、熔体粘度低,表观粘度对温度敏感,由于熔体的冷却速率快,要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流,螺杆头应装有止逆环;另外,为防止喷嘴处熔体的“流涎”现象,应选用自锁式喷嘴。5、注射PA时不需高的注射压力,一般选取范围为70~100MPa,通常不超过120MPa。注射速率宜略快些,这样可防止因冷却速率快而造成波纹及充模不足等问题。 6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。 7、酰胺基在高温下对氧敏感,容易发生氧化变色(必要时可添加尼龙专用的热稳定剂); 8、高结晶性,成型收缩率大,易产生结晶应力,并且明显随制品的厚度增大而增加;9、成型后制品的缓慢吸湿易引起尺寸精度的较大变化。这点也被利用来进行调湿处理,通常可在沸水或醋酸钾水溶液(醋酸钾与水的比例为1.25∶1,沸点为121℃)中进行。 10、熔体着色所适用的有机颜料品种较少(酰胺基具有还原性,加之成型温度高)。尼龙吸水率尼龙及玻纤增强尼龙成型温度PA46安全加工温度-时间组合图玻璃纤维增强尼龙(GF-PA)工艺特性1、GF-PA中由于含大量玻纤,注塑中存在四大问题:(1)流动性差。(2)收缩率小,且各向异性明显。(3)制品性能易出现波动。(4)制品表面粗糙度数值大。 2、由于流动性差,且加入玻纤后的熔体冷凝硬化快,需要比未加玻纤时提高温度约10-30 ℃;3、应采用较大的注射速率和较高的注射压力; 4、由于大量玻纤引起的高粘度,增强尼龙可用通用喷嘴;5、对机筒的磨损大;6、为使增强尼龙制品有较高的强度,需要注意尽可能地保护玻纤的长度,减少玻纤损伤;(从螺杆、喷嘴、浇口等装备因素到注塑工艺条件)7、玻纤增强料成型加工中最常有缺陷:“浮纤”或称“玻纤外露”;玻纤取向引起的各向异性;熔接痕处强度特低;纤维取向不同厚度处的取向状况皮-芯效应与熔接痕前锋料遇到障碍后分流-合流-熔接玻纤含量与熔接痕强度十一、PMMA注塑工艺特性与工艺参数的设定 PMMA树脂俗称“压克力”,国内著名商品牌号有372#(实为MS)1、PMMA无定形聚合物,Tg为105℃,熔融温度大于160℃,而分解温度高达270℃以上,成型的温度范围较宽;2、PMMA树脂颗粒易吸收水份,而这些水分的存在,在成型过程中由于受热挥发,导致熔体起泡、膨胀、使制品出现银丝、气泡、透明度变差、有糊斑等问题。PMMA在热风循环干燥设备上的干燥,其干燥工艺参数:温度为70~80℃,时间为2~4h;3、 PMMA熔体粘度对温度变化比较敏感。注射温度的改变对熔体流动长度的影响要比注射压力与比注射速率明显些,更比模具温度显著得多。故在成型时改变PMMA的流动性主要是从注射温度着手。但选用高料温时易受其它工艺参数影响而给制品表面带来变色等问题;4、PMMA熔体粘度较大,流动性比较差,因此,需要较大的注射压力,通常宽浇口、易流动的厚壁制品所选取的注射压力为80~100MPa 之间,而熔体流动较为困难的制品所需的压力要大于140MPa,110~140MPa则适用于大多数制品的成型; 5、注塑PMMA制品时,高速注射往往会使制品的浇口周围模糊不清,从而使制品的透光性大为降低,故在一般情况下最好不要采用高速注射,6、由于透明度高是PMMA的特点,任何杂质的存在都会因光折射关系而在制品上暴露无遗,故要求在加工该材料时必须做好环境的清洁工作。7、温范围为40~60℃,最高不得超过80℃台湾奇美典型牌号PMMA加工参数:十二、PBT的注塑工艺特性与工艺参数的设定 1、PBT是结晶型材料,具有明显的熔点,熔点约为225℃左右; PBT的分解温度为280℃;实际生产中注射温度一般选择在240~265℃之间,未增强品级用较低温度,增强品级用较高温度。2、 PBT在高温下易水降解。注塑前要进行干燥,要将水分含量控制在0.02%以下。采用热风循环干燥时,当温度为105℃、120℃或140℃时,所对应的时间不超过8h、5h、3h;3、 PBT在熔融状态下流动性好,粘度低,仅此于尼龙,在成型易出“流延”现象; 4、由于良好的流动性,一般采用较到中等的注射压力,PBT的注射压力一般为50~100MPa;5、PBT

塑料性能解析

塑料性能解析 橡塑包括PE、PP、PVC、ABS、PC、PA、POM、PBT、PET、TPE、TPO、TPR、TPU等材料;这些材料,一般都需要进行常规或特定的测试:如老化测试,其中包括:人工气候老化试验(氙弧灯、碳弧灯、紫外灯)、自然气候暴晒试验、盐雾试验、湿热试验、高低温试验、臭氧试验、热氧老化试验等; 力学性能、电学性能方面的测试,包括:拉伸、撕裂、弯曲、压缩、冲击、热变形温度、维卡软化温度、熔融指数、氧指数、表面电阻、体积电阻、击穿电压、光泽、透光率、雾度、燃烧性能等。 但真正系统完整的资料,能找到的估计并不多,所以就有了这篇文章的目的。这篇文章对于销售而言,可以快速了解塑料的基本性质;对于做品质的朋友,能加深对于自己工作的一认识;对于研发的朋友,也有一些参考性的建议。 机械力学性能 1.密度与比重 塑料的比重是在一定的温度下,秤量试样的重量与同体积水的重量之比值,单位为 g/cm3,常用液体浮力法作测定方法. 在质量相同的条件下,密度越轻,根据ρ=m/V,比重越小,在等体积,价格相同的情况下,比重越小的材料可以制造的产品越多,单个产品的材料成本也就越低,而且可以减少产品的重量,节省运输等费用。所以,比重是非常重要的属性。特别是在塑料代替金属等材料的时候,是特别大的一个优势。 2. 拉伸/弯曲 在拉伸性能的测试中,通常的测试项目为拉伸应力、拉伸强度、拉伸屈服强度、断裂伸长率、拉伸弹性模量,弯曲模量/弯曲强度等。 拉伸测试:测定高聚物材料的基本物性,对材料施加应力后,测出变形量,求出应力,应力应变曲线是最普通的方法。将样条的两端用器具固定好,施加轴方向的拉伸荷重,直到遭破坏时的应力与扭曲。 弹性模量:E=( F/S)/(dL/L)(材料在弹性变形阶段,其应力和应变成正比例关系)弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。 弹性模量的意义:弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反应。 强度:材料在载荷作用下抵抗塑性变形或被破坏的最大能力。 屈服强度:材料发生明显塑性变形的抗力 拉伸强度:在拉伸试验中,试样直至断裂为止所承受的最大拉伸应力。

塑料制品禁限管理细化标准(2020年版)

附 塑料制品禁限管理细化标准(2020年版) 根据国家发展改革委、生态环境部《关于进一步加强塑料污染治理的意见》(发改环资〔2020〕80 号)相关规定,分地区、分领域、分阶段对部分塑料制品实行禁限管理,2020年涉及的禁限部分品类细化标准如下: 一、厚度小于0.025毫米的超薄塑料购物袋 用于盛装及携提物品且厚度小于0.025毫米的超薄塑料购物袋;适用范围参照GB/T 21661《塑料购物袋》标准。 二、厚度小于0.01毫米的聚乙烯农用地膜 以聚乙烯为主要原料制成且厚度小于0.01毫米的不可降解农用地面覆盖薄膜;适用范围和地膜厚度、力学性能指标参照GB 13735《聚乙烯吹塑农用地面覆盖薄膜》标准。 三、一次性发泡塑料餐具 用泡沫塑料制成的一次性塑料餐具。 四、一次性塑料棉签 以塑料棒为基材制造的一次性棉签,不包括相关医疗器械。 五、含塑料微珠的日化产品 为起到磨砂、去角质、清洁等作用,有意添加粒径小于5毫米的固体塑料颗粒的淋洗类化妆品(如沐浴剂、洁面乳、磨砂膏、洗发水等)和牙膏、牙粉。 六、以医疗废物为原料制造塑料制品 禁止以纳入《医疗废物管理条例》《医疗废物分类目录》等管理的医疗废物为原料生产塑料制品。 七、不可降解塑料袋

商场、超市、药店、书店、餐饮打包外卖服务、展会活动等用于盛装及携提物品的不可降解塑料购物袋,不包括基于卫生及食品安全目的,用于盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等。 八、一次性塑料餐具 餐饮堂食服务中使用的一次性不可降解塑料刀、叉、勺,不包括预包装食品使用的一次性塑料餐具。 九、一次性塑料吸管 餐饮服务中用于吸饮液态食品的一次性不可降解塑料吸管,不包括牛奶、饮料等食品外包装上自带的塑料吸管。 十、其他 细化标准将根据实际执行情况进行动态更新调整。在应对自然灾害、事故灾害、公共卫生事件和社会安全事件等重大突发公共事件期间,用于特定区域应急保障、物资配送、餐饮服务等的一次性塑料制品免于禁限使用。

塑料薄膜的性能测试方法

塑料薄膜的性能测试方法 塑料薄膜、复合膜具有不同的物理、机械、耐热以及卫生性能。当塑料薄膜应用为包装材料时,需要根据包装物以及应用环境的不同,选择合适的材料来使用。如何评价包装材料的性能呢?国内外测试方法有很多。我们应优先选择那些科学、简便、测量误差小的方法,优先选择ISO、ASTM、以及我国国家标准、行业标准,如BB/T 标准、QB/T标准、HB/T标准等等。 GBT 2918-1998 《塑料试样状态调节和试验的标准环境》等同国际标准ISO 291:1997《塑料一状态调节和试验的标准环境》,提出了各种塑料及各类试样在相当于实验室平均环境条件的恒定环 境条件下进行状态调节和试验的规范,并给出标准实验环境定义,是大部分塑料性能测试方法引用的标准。 1.规格、外观测试方法 塑料薄膜作为包装材料,它的尺寸规格要满足内装物的需要;外观直接影响商品形象;其厚度则又是影响机械性能、阻隔性的因素之一,需要在质量和成本上找到最优化的指标。因此这些指标就会在每个产品标准的要求中作出规定,相应的要求检测方法一般有: 1.1厚度测定 塑料一般具有一定的弹性,因此其厚度测定一般需要施加一定的接触负荷。 GB/T6672-2001《塑料薄膜和薄片厚度测定机械测量法》等同采用ISO4593:1993《塑料-薄膜和薄片-厚度测定-机械

测量法》。规定了机械法测量法即接触法测量塑料薄膜或薄片样品厚度的试验方法,但不适用于压花材料的测试。 1.2.长度、宽度 塑料材料的尺寸受环境温度的影响较大,解卷时的操作拉力也会造成材料的尺寸变化。测量器具的精度不同,也会造成测量结果的差异。因此在测量中必须注意每个细节,以求测量的结果接近真值。 GB/T 6673-2001《塑料薄膜与片材长度和宽度的测定》非等效采用国际标准ISO 4592:1992《塑料-薄膜和薄片-长度和宽度的测定》。该标准规定了卷材和片材的长度和宽度的基准测量方法。标准中规定了卷材在测量前应先将卷材以最小的拉力打开,以不超过5m的长度层层相叠不超过20层作为被测试样,并在这种状态下保持一定的时间,待尺寸稳定后在进行测量。 1.33.外观 塑料薄膜的外观检验一般采取在自然光下目测。 外观缺陷在GB/T 2035 《塑料术语及其定义》中有所规定。 2.物理机械性能测试方法 2.1拉伸性能 塑料的拉伸性能试验包括拉伸强度、拉伸断裂应力、拉伸屈服应力、断裂伸长率等试验。采用拉力试验机进行测试。 GB/T 1040-1992 《塑料拉伸性能试验方法》一般适用于厚度大于1mm的材料热塑性、热固性材料,这些材料包括填充和纤维增强的塑料材料以及塑料制品。

相关主题
相关文档 最新文档