当前位置:文档之家› 高中物理动能定理的综合应用解题技巧讲解及练习题(含答案)

高中物理动能定理的综合应用解题技巧讲解及练习题(含答案)

高中物理动能定理的综合应用解题技巧讲解及练习题(含答案)
高中物理动能定理的综合应用解题技巧讲解及练习题(含答案)

高中物理动能定理的综合应用解题技巧讲解及练习题(含答案)

一、高中物理精讲专题测试动能定理的综合应用

1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求:

(1)汽车所能达到的最大速度;

(2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】

(1)汽车匀加速结束时的速度

11120m /s v a t ==

由P=Fv 可知,匀加速结束时汽车的牵引力

1

1F P

v =

=1×104N 由牛顿第二定律得

11F f ma -=

解得

f =5000N

汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力

F=f =5000N

由P Fv =可知,汽车的最大速度:

v=P P

F f

==40m/s (2)汽车匀加速运动的位移

x 1=

1

140m 2

v t = 对汽车,由动能定理得

21121

02

F x Pt fs mv =--+

解得

s =480m

2.如图所示,轨道ABC 被竖直地固定在水平桌面上,A 距水平地面高H =0.75m ,C 距水平地面高h =0.45m 。一个质量m =0.1kg 的小物块自A 点从静止开始下滑,从C 点以水平

速度飞出后落在地面上的D 点。现测得C 、D 两点的水平距离为x =0.6m 。不计空气阻力,取g =10m/s 2。求

(1)小物块从C 点运动到D 点经历的时间t ; (2)小物块从C 点飞出时速度的大小v C ;

(3)小物块从A 点运动到C 点的过程中克服摩擦力做的功。 【答案】(1) t=0.3s (2) v C =2.0m/s (3)0.1J 【解析】 【详解】

(1)小物块从C 水平飞出后做平抛运动,由212

h gt = 得小物块从C 点运动到D 点经历的时间20.3h

t g

==s (2)小物块从C 点运动到D ,由C x v t = 得小物块从C 点飞出时速度的大小C x

v t

=

=2.0m/s (3)小物块从A 点运动到C 点的过程中,根据动能定理 得()2

102

f C m

g H

h W mv -+=

- ()2

12

f C W mv m

g H

h =

--= -0.1J 此过程中克服摩擦力做的功f f W W '=-=0.1J

3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为

=0.4m R 的圆轨道;

(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;

(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.

【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】

(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:

2

v mg m R

=

从A 到C 过程机械能守恒,由机械能守恒定律得:

()2122

mg h R mv -=

, 解得:

2.5 2.50.4m 1m h R ==?=;

(2)在C 点,由牛顿第二定律得:

2C

v mg mg m R

+=,

从A 到C 过程,由动能定理得:

()2

1202

f C m

g

h R W mv -+=

-, 解得:

0.8J f W =-;

4.某滑沙场的示意图如图所示,某旅游者乘滑沙橇从A 点由静止开始滑下,最后停在水平沙面上的C 点.设滑沙橇和沙面间的动摩擦因数处处相同,斜面和水平面连接处可认为是圆滑的,滑沙者保持一定姿势坐在滑沙橇上不动,若测得AC 间水平距离为x ,A 点高为h ,求滑沙橇与沙面间的动摩擦因数μ.

【答案】h/x 【解析】 【分析】

对A 到C 的全过程运用动能定理,抓住动能的变化量为零,结合动能定理求出滑沙橇与沙面间的动摩擦因数. 【详解】

设斜面的倾角为θ,对全过程运用动能定理得,

因为,则有

,解得

【点睛】

本题考查了动能定理的基本运用,运用动能定理解题关键选择好研究的过程,分析过程中有哪些力做功,再结合动能定理进行求解,本题也可以结合动力学知识进行求解.

5.如图光滑水平导轨AB 的左端有一压缩的弹簧,弹簧左端固定,右端前放一个质量为m =1kg 的物块(可视为质点),物块与弹簧不粘连,B 点与水平传送带的左端刚好平齐接触,传送带的长度BC 的长为L =6m ,沿逆时针方向以恒定速度v =2m/s 匀速转动.CD 为光滑的水平轨道,C 点与传送带的右端刚好平齐接触,DE 是竖直放置的半径为R =0.4m 的光滑半圆轨道,DE 与CD 相切于D 点.已知物块与传送带间的动摩擦因数μ=0.2,取g =10m/s 2.

(1)若释放弹簧,物块离开弹簧,滑上传送带刚好能到达C 点,求弹簧储存的弹性势能

p E ;

(2)若释放弹簧,物块离开弹簧,滑上传送带能够通过C 点,并经过圆弧轨道DE ,从其最高点E 飞出,最终落在CD 上距D 点的距离为x =1.2m 处(CD 长大于1.2m ),求物块通过E 点时受到的压力大小;

(3)满足(2)条件时,求物块通过传送带的过程中产生的热能. 【答案】(1)p 12J E =(2)N =12.5N (3)Q =16J 【解析】 【详解】

(1)由动量定理知:2102

mgL mv μ-=-

由能量守恒定律知:2

p 12E mv =

解得:p 12J E =

(2)由平抛运动知:竖直方向:2122

y R gt ==

水平方向:E x v t =

在E 点,由牛顿第二定律知:2

E v N mg m R

+=

解得:N =12.5N

(3)从D 到E ,由动能定理知:2211

222

D E mg R mv mv -?=- 解得:5m /s D v =

从B 到D ,由动能定理知2211

22

D B mv mg v L m μ--= 解得:7m /s B v =

对物块2

B D

v v L t +=

解得:t =1s ;

621m 8m s L vt ?=+=+?=相对

由能量守恒定律知:mgL Q s μ=??相对 解得:Q =16J

6.如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底端B 点后,沿水平的滑道再滑行一段距离到C 点停下来.如果人和滑板的总质量m =60kg ,滑板与斜坡滑道和水平滑道间的动摩擦因数均为μ=0.5,斜坡的倾角θ=37°(sin 37°=0.6,cos 37°=0.8),斜坡与水平滑道间是平滑连接的,整个运动过程中空气阻力忽略不计,重力加速度g 取10m/s 2. 求:

(1)人从斜坡上滑下的加速度为多大?

(2)若由于场地的限制,水平滑道的最大距离BC 为L =20.0m ,则人在斜坡上滑下的距离AB 应不超过多少?

【答案】(1)2.0 m/s 2; (2)50m 【解析】 【分析】

(1)根据牛顿第二定律求出人从斜坡上下滑的加速度.

(2)根据牛顿第二定律求出在水平面上运动的加速度,结合水平轨道的最大距离求出B 点的速度,结合速度位移公式求出AB 的最大长度. 【详解】

(1)根据牛顿第二定律得,人从斜坡上滑下的加速度为:

a1=

3737 mgsin

mgcos

m

μ

?-?

=gsin37°-μgcos37°=6-0.5×8m/s2=2m/s2.

(2)在水平面上做匀减速运动的加速度大小为:a2=μg=5m/s2,

根据速度位移公式得,B点的速度为:

2

22520/102/

B

v a L m s m s

??

===.

根据速度位移公式得:

2

1

200

50

24

B

AB

v

L m m

a

===.

【点睛】

本题考查了牛顿第二定律和运动学公式的基本运用,知道加速度是联系力学和运动学的桥梁,本题也可以结合动能定理进行求解.

7.如图甲所示,静止在水平地面上一个质量为m=4kg的物体,其在随位移均匀减小的水平推力作用下运动,推力F随位移x变化的图象如图乙所示.已知物体与地面之间的动摩擦因数为μ=0.5,g=10m/s2.求:

(1)运动过程中物体的最大加速度大小为多少;

(2)距出发点多远时物体的速度达到最大;

(3)物体最终停在何处?

【答案】(1)20m/s2(2)3.2m(3)10m

【解析】

【详解】

(1)物体加速运动,由牛顿第二定律得:

F-μmg =ma

当推力F=100N时,物体所受的合力最大,加速度最大,代入数据得:

2

max

20m/s

F

a g

m

μ

=-=,

(2)由图象得出,推力F随位移x变化的数值关系为:

F =100 – 25x,

速度最大时,物体加速度为零,则

F=μmg=20N,

x = 3.2m

(3)F与位移x的关系图线围成的面积表示F所做的功,即

1

200J

2

F

W Fx

==

对全过程运用动能定理,

W F ?μmgx m =0

代入数据得:

x m =10m

8.如图,与水平面夹角θ=37°的斜面和半径R =1.0m 的光滑圆轨道相切于B 点,且固定于竖直平面内。质量m =0.5kg 的滑块从斜面上的A 点由静止释放,经B 点后沿圆轨道运动,通过最高点C 时轨道对滑块的弹力为滑块重力的5.4倍。已知A 、B 两点间的高度差h =6.0m 。(g =10m/s 2,sin37°=0.6,cos37°=0.8)求: (1)滑块在C 点的速度大小v C ; (2)滑块在B 点的速度大小v B ;

(3)滑块在A 、B 两点间克服摩擦力做功W f 。

【答案】(1)8m/s (2)10m/s (3)5J 【解析】 【详解】

(1)在C 点,由牛顿第二定律:

2C

C v mg F m R

+=

其中

5.4C F mg =

解得

v C =8m/s

(2)从B 到C 由机械能守恒:

22

11=(1cos37)22

B C mv mv mgR ++o 解得

v B =10m/s

(3)从A 到B 由动能定理:

2

12

f B mgh W mv -=

解得

W f =5J

9.遥控电动玩具车的轨道装置如图所示,轨道ABCDEF中水平轨道AB段和BD段粗糙,AB=BD=2.5R,小车在AB和BD段无制动运行时所受阻力是其重力的0.02倍,轨道其余部分摩擦不计。斜面部分DE与水平部分BD、圆弧部分EF均平滑连接,圆轨道BC的半径为R,小段圆弧EF的半径为4R,圆轨道BC最高点C与圆弧轨道EF最高点F等高。轨道右侧有两个与水平轨道AB、BD等高的框子M和N,框M和框N的右边缘到F点的水平距离分别为R和2R。额定功率为P,质量为m可视为质点的小车,在AB段从A点由静止出发以额定功率行驶一段时间t(t未知)后立即关闭电动机,之后小车沿轨道从B点进入圆轨道经过最高点C返回B点,再向右依次经过点D、E、F,全程没有脱离轨道,最后从F点水平飞出,恰好落在框N的右边缘。

(1)求小车在运动到F点时对轨道的压力;

(2)求小车以额定功率行驶的时间t;

(3)要使小车进入M框,小车采取在AB段加速(加速时间可调节),BD段制动减速的方案,则小车在不脱离轨道的前提下,在BD段所受总的平均制动力至少为多少。

【答案】(1)mg,方向竖直向下;(2);(3)mg

【解析】

【详解】

(1)小车平抛过程,有:2R=v F t…①

2R=gt2?②

由①②联立解得:v F=?③

在F点,对小车由牛顿第二定律得:mg﹣F N=m?④

由③④得:F N=mg

由牛顿第三定律得小车对轨道的压力大小为mg,方向竖直向下。

(2)小车从静止开始到F点的过程中,由动能定理得:

Pt﹣0.02mg5R﹣mg2R=mv F2?⑤

由③⑤得:t =

(3)平抛过程有: R =v F ′t 、2R =gt 2

要使小车进入M 框,小车在F 点的最大速度为v F ′

=?⑥

小车在C 点的速度最小设为v C ,则有:mg =m ?⑦

设小车在BD 段所受总的总的平均制动力至少为f ,小车从C 点运动到F 点的过程中,由动能定理得:

-f 2.5R =mv F ′2-mv C 2?⑧ 由⑥⑦⑧得:f =

mg

10.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值.

(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值.

(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的.

(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2m

t k

π=,求此过程中物块所受合力对时间t 的平均值.

【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π

=. 【解析】 【详解】

解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g

解得:1 1.0 2.0

N 1.0N 2.0

t mv F t ?=

== 物块在加速运动过程中,应用动能定理有:221

2

t F x mv =

g 解得:22

2 1.0 2.0N 0.8N 22 2.5

t mv F x ?===?

(2)物块在运动过程中,应用动量定理有:10Ft mv mv =- 解得:01()

m v v F t

-=

物块在运动过程中,应用动能定理有:22201122

F x mv mv =

- 解得:22

02()

2m v v F x

-=

当12F F =时,由上两式得:02

v v x v t +=

= (3)由图2可求得物块由0x =运动至x A =过程中,外力所做的功为:

211

22

W kA A kA =-=-g

设物块的初速度为0v ',由动能定理得:20

1

02

W mv '=-

解得:0

k

v A m

'= 设在t 时间内物块所受平均力的大小为F ,由动量定理得:0

0Ft mv -=-' 由题已知条件:2m t k

π

= 解得:2kA

F π

=

11.如图所示,静止放在水平桌面上的纸带,其上有一质量为m =0.1 kg 的铁块,它与纸带右端的距离为L =0.5 m ,铁块与纸带间、纸带与桌面间动摩擦因数均为μ=0.1.现用力F 水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为s =0.8 m .已知g =10 m/s 2,桌面高度为H =0.8 m ,不计纸带质量,不计铁块大小,铁块不滚动.求:

(1)铁块抛出时速度大小;

(2)纸带从铁块下抽出所用时间t 1; (3)纸带抽出过程全系统产生的内能E . 【答案】(1)2m/s (2)2s (3)0.3J 【解析】

试题分析:(1)对铁块做平抛运动研究

212h h=gt t=2g

由,得,t=0.4s

则0s v =t

=2m/s

(2)铁块在纸带上运动时的加速度为a , a =gμ=1m/s 2

由vo=at 得,t 1=2s x 1=2m

(3)摩擦力产生的热量包括上下两个面所产生, Q 上=mgμL=0.05J Q 下= mgμ(L+x 1)=0.25J 所以Q= Q 上+Q 下=0.3J

考点:考查了功能关系,平抛运动,牛顿第二定律的应用

点评:本题关键是先分析清楚物体的运动情况,然后运用平抛运动的分位移公式、牛顿运动定律和运动学公式联立列式求解;同时由功能关系及相对位移求产生的内能.

12.某学校探究性学习小组对一辆自制小遥控车的性能进行研究.他们让这辆小车在水平的地面上由静止开始运动,并将小车运动的全过程记录下来,通过数据处理得到如图所示的v -t 图象,已知小车在0~2 s 内做匀加速直线运动,2~10 s 内小车牵引力的功率保持不变,在10 s 末停止遥控让小车自由滑行,小车质量m =1 kg ,整个过程中小车受到的阻力大小不变.求:

(1)小车所受的阻力F f 是多大?

(2)在2~10 s 内小车牵引力的功率P 是多大? (3)小车在加速运动过程中的总位移x 是多少? 【答案】(1)2 N ;(2)12W (3)28.5 m ; 【解析】

(1)在10s 撤去牵引力后,小车只在阻力f F 作用下做匀减速运动, 设加速度大小为a ,则f F ma =,根据?=

?v a t

由图像可知22/a m s =,解得2f F N =;

(2)小车的匀速阶段即7s~10s 内,设牵引力为F ,则f F F = 由图像可知6/m v m s =,且12W m P Fv ==;

(3)小车的加速运动过程可以分为0~1.5s 和1.5s~7s 两段, 设对应的位移分别为1x 和2x ,在0~2s 内的加速度大小为1a , 则由图像可得12/a m s =,2

1111 2.252

x a t m =

=, 在1.5s~7s 内由动能定理可得22

22211122

f Pt F x mv mv -=-,2 5.5t s =, 解得226.25x m =, 由1228.5x x x m =+=

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)

最新高考物理动能定理的综合应用常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =250 17 N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x = 17 5 m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求: (1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小; (3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度. 【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】 对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】 (1)小球从A 到B 过程,由动能定理得:212 B Fx mv = 解得:v B =10 m/s (2)在C 点,由牛顿第二定律得mg +F N =2 c v m R 又据题有:F N =2.6mg 解得:v C =6 m/s. (3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =22 1122 c B mv mv - 解得克服摩擦力做的功:W f =12 J (4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h = 12 gt 2

(word完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题 例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。 例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。(g 取10m/s 2) 例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( ) A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220- 例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( ) A. mgl cos θ B. mgl (1-cos θ) C. Fl cos θ D. Flsin θ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力 作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的 拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大 拉力的过程中,绳的拉力对球做的功为________. 例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持 v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O P Q l h H 2-7-2

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次 (g取10m/s2) 2、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜 面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度 沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦 力,且每次与P碰撞前后的速度大小保持不变,斜面足 够长.求滑块从开始运动到最后停止滑行的总路程s. 3、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA 是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B 点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg 1、求小球在A点的速度v0 2、求小球由BFA回到A点克服阻力做的功 * 4、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O 点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v ,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率(2)若不计空气阻力,则初速度v0为多少 (3)若初速度v0=3gL,则在小球从A到B的过程中克服空气阻力做了多少功v0 E F… R

5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=,求:(sin37°=,cos37°=,g =10m/s 2 ) (1)物块滑到斜面底端B 时的速度大小。 (2)物块运动到圆轨道的最高点A 时,对圆轨道的压力大小。 { 6、质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( ) , 7\如图所示,AB 与CD 为两个对称斜面,其上部都足够长,下部 分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200 ,半径R=2.0m,一个物体在离弧底E 高度为h=3.0m 处,以初速度V 0=4m/s 沿斜面运动,若物体与两斜面的动摩擦因数均为μ=,则物体在两斜面上(不包括圆弧部分)一共能走多少路程 (g=10m/s 2 ). / 8、如图所示,在光滑四分之一圆弧轨道的顶端a 点,质量为m 的物块(可视为质点)由静止开始下滑,经圆弧最低点b 滑上粗糙水平面,圆弧轨道在b 点与水平轨道平滑相接,物块最终滑至c 点停止.若圆弧轨道半径为R ,物块与水平面间的动摩擦因数为μ, 则:1、物块滑到b 点时的速度为 2、物块滑到b 点时对b 点的压力是 3、c 点与b 点的距离为 θ A B O h A B C D O > E h

高中物理动能定理典型练习题含答案.doc

动能定理典型练习题 典型例题讲解 1.下列说法正确的是( ) A 做直线运动的物体动能不变,做曲线运动的物体动能变化 B 物体的速度变化越大,物体的动能变化也越大 C 物体的速度变化越快,物体的动能变化也越快 D 物体的速率变化越大,物体的动能变化也越大 【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D 2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力 的多少倍? 【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速 度为v ,根据动能定理有 02 12 -= mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有 22 1 0mv Fh mgh -=- ② 由①②两式解得 h h H mg F += 另解:研究物体运动的全过程,根据动能定理有 000)(=-=-+Fh h H mg 解得h h H mg F += 3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2) 【解析】设物体克服摩擦力 图5-3-5 H h 图5-3-4

图5-3-6 图5-3-7 所做的功为W ,对物体由A 运动到B 用动能定理得 22 1mv W mgh = - J mv mgh W 32612 1 51012122=??-??=-= 即物体克服阻力所做的功为32J. 课后创新演练 1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A ) A .0 B .8J C .16J D .32J 2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C ) A .1:3 B .3:1 C .1:9 D .9:1 3.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A ) A .4L B .L )12(- C .2L D .2 L 4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD ) A .fL =21Mv 2 B .f s =2 1mv 2 C .f s =21mv 02-21(M +m )v 2 D .f (L +s )=21mv 02-2 1mv 2 5.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2 B .mv 02

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

动能定理典型基础例题

动能定理典型基础例题 应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程 ②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功 ③明确物体在始末状态的动能 ④根据动能定理列方程求解。 例1.质量M=×103 kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=×lO 2 m 时,达到起飞速度ν=60m/s 。求: (1)起飞时飞机的动能多大 (2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大 (3)若滑行过程中受到的平均阻力大小为F=×103 N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大 ~ 例2.一人坐在雪橇上,从静止开始沿着高度为 15m 的斜坡滑下,到达底部时速度为10m/s 。人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。 例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( ) 例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A . 4mgR B .3mgR C .2 mgR D .mgR 例5.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到 高 2 h 处速度变为零。求: (1)木块与斜面间的动摩擦因数 (2)木块第二次与挡板相撞时的速度 (3)木块从开始运动到最后静止,在斜面上运动的总路程 , 例6.质量m=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=停在B 点,已知A 、B 两点间的距离s=,物块与水平面间的动摩擦因数μ=,求恒力F 多大。(g=10m/s 2 ) 1、在光滑水平地面上有一质量为20kg 的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s 的速度。 2、汽车以15m/s 的速度在水平公路上行驶,刹车后经过20m 速度减小到5m/s ,已知汽车质量是,求刹车动力。(设汽车受到的其他阻力不计) 3、一个质量是的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是,求它落地时的速度。 4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始 到汽车停下来,汽车前进12m 。已知轮胎与路面之间的滑动摩擦系数为,求刹车前汽车的行驶速度。 5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为s 。汽车受到的摩擦阻力时车重的倍。求汽车的牵引力。 6、质量为2kg 的物体,静止在倾角为30o 的斜面的底端,物体与斜面间的摩擦系数为,斜面长1m ,用30N 平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。 7、质量为的铅球从离沙坑面高处自由落下,落入沙坑后在沙中运动了后停止,求沙坑对铅球的平均阻力。 ^ h m

高考物理动能与动能定理试题(有答案和解析)含解析

高考物理动能与动能定理试题(有答案和解析)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

戴维南定理典型例子_戴维南定理解题方法

戴维南定理典型例子_戴维南定理解题方法 什么是戴维南定理戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南定理。其内容是:一个含有独立电压源、独立电流源及电阻的线性网络的两端,就其外部型态而言,在电性上可以用一个独立电压源V和一个松弛二端网络的串联电阻组合来等效。在单频交流系统中,此定理不仅只适用于电阻,也适用于广义的阻抗。戴维南定理在多电源多回路的复杂直流电路分析中有重要应用。 戴维南定理(Thevenin‘stheorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。 和戴维南定理类似,有诺顿定理或亥姆霍兹-诺顿定理。按照这一定理,任何含源线性时不变二端网络均可等效为二端电流源,它的电流J等于在网络二端短路线中流过的电流,并联内阻抗同样等于看向网络的阻抗。这样,图1中的电流I(s)一般可按下式2计算(图

动能定理典型例题

动能定理典型例题

————————————————————————————————作者: ————————————————————————————————日期: ?

动能定理典型例题 【例题】 1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。求飞机受到的牵引力。 2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,在与 运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。 拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2 V滑上动摩擦因数为μ的粗糙水平面上,最后3、一个质量为m的物体以初速度 静止在水平面上,求物体在水平面上滑动的位移。

4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端 的速度。 拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少? 拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。 类型题 题型一:应用动能定理求解变力做功 1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为() A.mgLcos0 B.FLsinθ C.FLθ?D.(1cos). - mgLθ

2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光 V向右匀速运动的人拉着,设人从地面上由平台的滑的定滑轮由地面上以速度 边缘向右行至绳与水平方向成30角处,在此过程中人所做的功为多少? 3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R2过程中拉力对小球做的功多大? 4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S =3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

高一物理动能、动能定理练习题

动能、动能定理练习 1、下列关于动能的说法中,正确的是( )A、动能的大小由物体的质量和速率决定,与物体的运动方向无关 B、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同 C、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大 D、物体所受的合外力越大,其动能就越大 2、一质量为2kg的滑块,以4m/s的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A、0 B、8J C、16J D、32J 3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A、质量大的物体滑行距离小 B、它们滑行的距离一样大 C、质量大的物体滑行时间短 D、它们克服摩擦力所做的功一样多 4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min速度达到10m/s.那么该列车在这段时间内行的距离( ) A、一定大于600m B、一定小于600m C、一定等于600m D、可能等于1200m 5、质量为1.0kg的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s2)( ) A、物体与水平面间的动摩擦因数为0.30 B、物体与水平面间的动摩擦因数为0.25 C、物体滑行的总时间是2.0s D、物体滑行的总时间是4.0s 6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E,则有( ) A、返回斜面底端的动能为E B、返回斜面底端时的动能为3E/2 C、返回斜面底端的速度大小为2υ D、返回斜面底端的速度大小为2υ 7、以初速度v0急速竖直上抛一个质量为m的小球,小球运动过程中所受阻力f大小不变,上升最大高度为h,则抛出过程中,人手对小球做的功() A. 1 20 2 mv B. mgh C. 1 20 2 mv mgh + D. mgh fh + 8、如图所示,AB为1/4圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R,一质量为m的物 体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A从静止开始下落,恰好运动到C处停止,那么物体在AB段克服摩擦力所做的功为 A. 1 2 μmgR B. 1 2 mgR C. mgR D. () 1-μmgR 9、质量为m的物体静止在粗糙的水平地面上,若物体受水平力F的作用从静止起通过位移s时的动能为 E1,当物体受水平力2F作用,从静止开始通过相同位移s,它的动能为E2,则: A、E2=E1 B、E2=2E1 C、E2>2E1 D、E1<E2<2E1 10.质量为m,速度为V的子弹射入木块,能进入S米。若要射进3S深,子弹的初速度应为原来的(设子弹在木块中的阻力不变)( ) h/2 h 图5-17

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

戴维南定理的解析与练习

戴维宁定理 一、知识点: 1、二端(一端口)网络的概念:二端网络:具有向外引出一对端子的电路或网络。无源二端网 络:二端网络中没有独立电源。有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理任何一个线性有源二端网络都可以用一个电压为联的等效电路来代替。 如图所示:U OC 的理想电压源和一个电阻R0 串

L 等裁巴路J 等效电路的电压U OC是有源二端网络的开路电压,即将负载R-断开后a、b两端之间 的电压。 等效电路的电阻R o是有源二端网络中所有独立电源均置零(理想电压源用短路代替, 理想电流源用开路代替)后,所得到的无源二端网络a、b两端之间的等效电阻。

二、 例题:应用戴维南定理解题: 戴维南定理的解题步骤: 1?把电路划分为待求支路和有源二端网络两部分,如图 1中的虚线。 2?断开待求支路,形成有源二端网络(要画图) ,求有源二端网络的开路电压 UOG 3?将有源二端网络内的电源置零,保留其内阻(要画图) ,求网络的入端等效电阻 Rab 。 4?画出有源二端网络的等效电压源,其电压源电压 US=UOC (此时要注意电源的极性), 内阻 R0=Rab= 5?将待求支路接到等效电压源上,利用欧姆定律求电流。 例1:电路如图,已知 5= 40V , U2=20V ,R1=R2=4,R3=13,试用戴维宁定理求电流 b 。 解:(1)断开待求支路求开路电压 UOC U 1 U 2 40 20 4 4 2.5A UOC =U2 + IR2 = 20 + 4 = 30V 或:UOC = U1 -I R1 = 40 - 4 30V UOC 也可用叠加原理等其它方法求。 (2) 求等效电阻R0 将所有独立电源置零(理想电压源 用短路代替,理想电流源用开路代替) R R ^~R L 2 R R 2 ]:师 画出等效电路求电流I 3 U OC R 。 R 3 2 13

【物理】物理动能定理的综合应用题20套(带答案)

【物理】物理动能定理的综合应用题20套(带答案) 一、高中物理精讲专题测试动能定理的综合应用 1.北京老山自行车赛场采用的是250m 椭圆赛道,赛道宽度为7.6m 。赛道形如马鞍形,由直线段、过渡曲线段以及圆弧段组成,圆弧段倾角为45°(可以认为赛道直线段是水平的,圆弧段中线与直线段处于同一高度)。比赛用车采用最新材料制成,质量为9kg 。已知直线段赛道每条长80m ,圆弧段内侧半径为14.4m ,运动员质量为61kg 。求: (1)运动员在圆弧段内侧以12m/s 的速度骑行时,运动员和自行车整体的向心力为多大; (2)运动员在圆弧段内侧骑行时,若自行车所受的侧向摩擦力恰为零,则自行车对赛道的压力多大; (3)若运动员从直线段的中点出发,以恒定的动力92N 向前骑行,并恰好以12m/s 的速度进入圆弧段内侧赛道,求此过程中运动员和自行车克服阻力做的功。(只在赛道直线段给自行车施加动力)。 【答案】(1)700N;(2)2;(3)521J 【解析】 【分析】 【详解】 (1)运动员和自行车整体的向心力 F n =2(m)M v R + 解得 F n =700N (2)自行车所受支持力为 ()cos45N M m g F += ? 解得 F N 2N 根据牛顿第三定律可知 F 压=F N 2N (3)从出发点到进入内侧赛道运用动能定理可得

W F -W f 克+mgh = 212 mv W F =2 FL h = 1 cos 452 d o =1.9m W f 克=521J 2.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径 R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求: (1)参赛者运动到圆弧轨道B 处对轨道的压力; (2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能. 【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】 (1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12 m 2B v 解得v B =4m /s 在B 处,由牛顿第二定律 N B -mg =m 2B v R 解得N B =2mg =1 200N 根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理 -μ2mgL 2=0- 12 m 2C v 解得v C =6m /s B 到 C 过程,由牛顿第二定律μ1mg =ma

高中物理动能定理的综合应用试题经典及解析

高中物理动能定理的综合应用试题经典及解析 一、高中物理精讲专题测试动能定理的综合应用 1.一辆汽车发动机的额定功率P =200kW ,若其总质量为m =103kg ,在水平路面上行驶时,汽车以加速度a 1=5m/s 2从静止开始匀加速运动能够持续的最大时间为t 1=4s ,然后保持恒定的功率继续加速t 2=14s 达到最大速度。设汽车行驶过程中受到的阻力恒定,取g =10m/s 2.求: (1)汽车所能达到的最大速度; (2)汽车从启动至到达最大速度的过程中运动的位移。 【答案】(1)40m/s ;(2)480m 【解析】 【分析】 【详解】 (1)汽车匀加速结束时的速度 11120m /s v a t == 由P=Fv 可知,匀加速结束时汽车的牵引力 1 1F P v = =1×104N 由牛顿第二定律得 11F f ma -= 解得 f =5000N 汽车速度最大时做匀速直线运动,处于平衡状态,由平衡条件可知, 此时汽车的牵引力 F=f =5000N 由P Fv =可知,汽车的最大速度: v=P P F f ==40m/s (2)汽车匀加速运动的位移 x 1= 1 140m 2 v t = 对汽车,由动能定理得 21121 02 F x Pt fs mv =--+ 解得 s =480m 2.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B

点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求: (1)物块与传送带间的动摩擦因数; (2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】(1) 3 5 (2) -3.75 J 【解析】 解:(1)由图象可知,物块在前0.5 s 的加速度为:21 11 a =8?m/s v t = 后0.5 s 的加速度为:222 22 2?/v v a m s t -= = 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得: 1mgsin mgcos ma θμθ+= 物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得: 2mgsin mgcos ma θμθ-= 联立解得:3μ= (2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:11 12 v t x = 则摩擦力对物块做功:11· W mgcos x μθ= 在后0.5 s ,物块对地位移为:12 122 v v x t += 则摩擦力对物块做功22· W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J 3.如图的竖直平面内,一小物块(视为质点)从H =10m 高处,由静止开始沿光滑弯曲轨道AB 进入半径R =4m 的光滑竖直圆环内侧,弯曲轨道AB 在B 点与圆环轨道平滑相接。之后物块沿CB 圆弧滑下,在B 点(无动量损失)进入右侧的粗糙水平面上压缩弹簧。已知物块的质量m =2kg ,与水平面间的动摩擦因数为0.2,弹簧自然状态下最左端D 点与B 点距离L =15m ,求:(g =10m/s 2)

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

相关主题
文本预览
相关文档 最新文档