当前位置:文档之家› 采用集中绕组的内置式永磁同步电机转矩谐波数值分析

采用集中绕组的内置式永磁同步电机转矩谐波数值分析

采用集中绕组的内置式永磁同步电机转矩谐波数值分析
采用集中绕组的内置式永磁同步电机转矩谐波数值分析

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

永磁同步电机基础知识

(一)PMSM的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1)忽略电机的磁路饱和,认为磁路是线性的; 2)不考虑涡流和磁滞损耗; 3)当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4)驱动开关管和续流二极管为理想元件; 5)忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型山电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (1)电机在两相旋转坐标系中的电压方程如下式所示: 叫=RJd + Ld - — 3趴 at 此 dt 其中,Rs为定子电阻;ud、uq分别为d、q轴上的两相电压;id、iq分别为d、q轴上对应的两相电流;Ld、Lq分别为直轴电感和交轴电感;为电角速度;巾d、Wq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 / X cos 8 一sin。 (22 、 2 / \ = cos(。一—-sm(8— 3 3 宀 2 2 cos(& + -?r) 一sin(8 + - I 3 3丿 (2)d/q轴磁链方程: 其中,Wf为永磁体产生的磁链,为常数,,而◎=% 是机械角速度,P为同步电机的 极对数,3c为电角速度,eO为空载反电动势,其值为

永磁同步电机基础知识

(一) P M S M 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 (2)d/q 轴磁链方程: 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。 (3)转矩方程: 把它带入上式可得: 对于上式,前一项是定子电流和永磁体产生的转矩,称为永磁转矩;后一项是转 子突极效应引起的转矩,称为磁阻转矩,若Ld=Lq ,则不存在磁阻转矩,此时,转矩方程为: 这里,t k 为转矩常数,32 t f k p ψ=。 (4)机械运动方程: 其中,m ω是电机转速,L T 是负载转矩,J 是总转动惯量(包括电机惯量和负载惯量),B 是摩擦系数。 (二) 直线电机原理 永磁直线同步电机是旋转电机在结构上的一种演变,相当于把旋转电机的定子和动子沿轴向剖开,然后将电机展开成直线,由定子演变而来的一侧称为初级,转子演变而来的一侧称为次级。由此得到了直线电机的定子和动子,图1为其转变过程。

永磁同步电机学习笔记

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 3.功率因数角:外施相电压与定子相电流的夹角。 4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电

流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。 9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导

齿槽转矩测试的必要性和方法

齿槽转矩测试的必要性和方法 近年来随着永磁材料的发展,永磁电机成了电机行业的新宠。然而在永磁电机中,齿槽转矩的存在给电机的控制性能造成了很大的影响,那齿槽转矩到底是怎么产生的?我们又该怎么去测呢? 玩过永磁电机的朋友都有过类似的经历:我们在电机掉电的情况下去转电机的转子,发现会有一种卡顿的感觉,而不像传统直流电机那么顺畅的就能把转子徒手转起来。这种卡顿其实就是因为永磁电机存在齿槽转矩。永磁电机内部结构图如图1所示,齿槽转矩是永磁电机的固有的特征之一,它是在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向上产生的转矩。它其实是永磁体与电枢齿之间的切向力,使永磁电动机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩就是齿槽转矩。 图1 永磁同步电机结构图 齿槽转矩会使电机产生振动和噪声,出现转速波动,使电机不能平稳运行,影响电机的性能。在变速驱动中,当转矩脉动频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。所以做永磁电机研发的工程师希望把自己做的电机的齿槽转矩降到最小,使用永磁电机的工程师则希望了解手上这台电机的齿槽转矩,从而去优化他的控制算法。 在国标GBT/ 30549-2014里对齿槽转矩的测试有了明确的定义:电机绕组开路时,电机回转一周内,由电枢铁心开槽,有趋于最小磁阻位置的倾向而产生的周期性力矩。齿槽转矩的测试方法常用的有:杠杆测量法、转矩仪法。杠杆测量法比较简单,测量精度比较差,所以主要用于对精度要求不高的场合。转矩仪法架构图如图2所示,由于伺服电机的齿槽转矩非常小,所以测试时需要以一个非常低的转速来带动未上电的被测电机来完成测试,

永磁同步电机直接转矩控制及控制性能研究.

第五章永磁同步电机直接转矩控制及控制性能研究 矢量控制和直接转矩控制是交流电机的两种高性能控制策略,在永磁同步电机驱动控制中的应用与研究己受到众多学者的广泛关注。为了能够更好研究永磁同步电机的控制性能,提高永磁同步电机调速系统的动静态性能,本章针对永磁同步电机直接转矩控制系统,从空间电压矢量出发,在第四章建立永磁同步电机不同的坐标系下的数学模型的基础上,研究永磁同步电机直接转矩控制和空间电压矢量调制直接转矩控制的理论和实现方法,并进行仿真实验研究,分析控制策略的正确性 [24][30] 。 本文研究的转鼓实验台的恒转矩控制方式和惯量模拟控制方式,均采用空间电压矢量调制直接转矩控制策略对交流测功机(即永磁同步电机进行模拟加载。 5.1 永磁同步电机直接转矩控制基本理论 5.1.1 永磁同步电机在x 、y 坐标系下的数学模型 将永磁同步电机在同步旋转坐标系中磁链、电流和电压矢量关系表示在图5-1(即图4-1中所示,图中定义δ为转矩角,即定子磁链和转子磁链之间的夹角。d 、q 为与转子磁场速度 r ω同步旋转的坐标系,d 轴指向转子永磁磁链f ψ方向;x 、y 为与定子磁场速度e ω同步旋 转的坐标系,x 轴指向定子磁链s ψ方向。假设x 轴超前d 轴时转矩角为正,在忽略定子电阻的情况下,转矩角即为功角。当电机稳态运行时,定、转子磁链都以同步转速旋转。因此,在恒定负载的情况下转矩角为恒定值。当电机瞬态运行时,转矩角则因定、转子旋转速度不同而不断变化[31][32]。

A 图5-1 永磁同步电机坐标系 由图5-1可推导出转矩角的表达式为( tan /(tan 1 1 f d d q q sd sq i L i L ψ ψ

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

永磁同步电机直接转矩控

摘要 直接转矩控制是近年来应用比较广泛的一种控制策略。它的优点包括控制原理直观明了,操作简单快捷,具有良好的转矩响应性。而另一方面,永磁同步电机因为其运行的可靠性高,结构简单,所以在交流伺服电机中所处的地位越来越高。基于这一发展趋势,本文重点研究了把直接转矩控制应用在永磁同步电机上的控制效果。为了更好地分析永磁同步电机直接转矩控制,本文介绍了直接转矩控制的原理和它的优缺点,还有永磁同步电机的分类、结构及其在不同坐标系下的数学模型。然后借助MATLAB 中的Simulink功能,搭建永磁同步电机直接转矩控制系统的模型,对仿真结果进行分析归纳,最后得出结论。结论表明,永磁同步电机直接转矩控制具有较好的转矩响应,基本能实现对永磁同步电机的快速可靠的控制,但是低速性能不佳,得不到快速的转矩响应。这就确定了改善永磁同步电机直接转矩控制在低速时候的转矩响应将成为今后的发展趋势。 关键词:直接转矩控制;永磁同步电机;仿真

目录 摘要Ⅰ 第一章选题背景 1.1 研究背景及研究意义 3 1.2 相关领域的发展情况 3 1.3 研究的主要内容 4 第二章直接转矩控制概述 2.1 直接转据控制原理 4 2.2 直接转矩控制的发展方向 5 2.3 本章小结 6 第三章永磁同步电机概述 3.1 永磁同步电机的分类 6 3.2 永磁同步电机的结构 7 3.4 本章小结 8 第四章永磁同步电机直接转矩控制 4.1 永磁同步电机直接转矩控制原理 8 4.2 逆变器与开关表 10 4.3 定子磁链与电磁转矩的测定 11 4.4 本章小结 13 第五章永磁同步电机直接转矩控制仿真 5.1 仿真软件 13 5.2 仿真模型 14 5.3 仿真结果分析 17 5.4 本章小结 18 第六章结论19参考文献20 第一章选题背景

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率 密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航 天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电 动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速 永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电 动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另 一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变 频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell 软件中的RMxprt 模块进行了一种调速永磁同步电 动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D 中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行 了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子 冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 永磁同步电动机的效率η、功率因数cos ?、起动转矩st T 和最大转矩max T 。本例所设计永磁同步电动机的额定数据及其性能指标如下: 额定数据 数值 额定功率 N 30kw P = 相数 =3m 额定线电压 N1=380V U 额定频率 =50Hz f 极对数 =3p 额定效率 N =0.94η 额定功率因数 N cos =0.95? 绝缘等级 B 级 计算额定数据:

永磁同步电机齿槽转矩分析与控制总结

永磁同步电机齿槽转矩分析与控制总结 齿槽转矩是永磁电机固有的特性,它会使电机产生转矩脉动,引起速度波动、振动和噪声,当转矩脉动的频率与电机定、转子或端盖的固有频率相等时,电机产生共振,振动和噪声会明显增大。齿槽转矩也会影响电机的低速性能和控制精度。 1.齿槽转矩定义:转子在旋转过程中,定子槽口引起磁路磁阻变化, 转子磁通与定子开槽引起的气隙磁导(磁阻的倒数)交互作用在圆周方向产生的转矩为齿槽转矩。 齿槽转矩也称定位转矩,它的产生来自永磁体与电枢齿间的切向力,使转子有一种沿着某一特定方向与定子对齐的趋势. 2.齿槽转矩影响因素:齿槽形状、磁极极弧系数、永磁体形状、极槽配合、气隙、磁场强度等. 3.齿槽转矩每机械周期齿槽转矩周期数:N co=LCM(Z,2p),Z为槽数,2p为极数,LCM表示最小公倍数. 4.齿槽转矩一个周期机械角度为:θsk=360°/N co 5.齿槽转矩基波频率为: f c=N co n s=N co f p n s=f p (r/s)为同步转速,p为极对数,f为电源频率. 6.齿槽转矩的通用表达式: T co=∑T n ∞ n=1 sin(nN coθ+?n) n=1时对应的齿槽转矩的基波幅值为T1, θ为转子机械角位置. 7.齿槽转矩的计算: 齿槽转矩可以通过计算响应区域的磁能积得到,T ec=dW c dθ ,式中,磁共能: W c=∫Bθ2 2μ0 d(υr)(J) 对气间隙区域应用麦克斯韦张力张量法计算齿槽转矩,有: T ec=L L gμ0∫rB n S g B t ds,

L为有效转子长度;L g为气隙长度;μ0为自由空间磁导率;r为虚拟半径;B n和B t为气间隙磁通的径向和切向分量;S g为气隙表面积. 8.降低齿槽转矩措施: 1)无槽绕组:采用无槽绕组可以完全消除齿槽转矩,但气隙磁通密度会降低, 需要增加永磁体的材料(高度). 2)定子斜槽:通常定子斜槽等于一个槽距,可将齿槽转矩降为零,但定子斜槽 减小电动势,电机性能会下降,转子偏心情况,斜槽有效性降低。 θco=θsk=2πN co 当定子叠片斜过这个角度时,齿槽转矩为: T sk= 1 θsk ∫T co θsk (θ)dθ= 1 θsk ∑∫T n 2π N co ∞ n=1 sin(nN coθ+?n)dθ= 1 θsk ∑[ ?T n cos(nN coθ+?n) nN co ] 2π N co ∞ n=1 =0 3)改变定子槽型:a.齿顶开辅助槽,辅助槽也产生齿槽转矩,辅助槽产生的齿槽 转矩与原定子槽产生的齿槽转矩会相互叠加,产生合成齿槽转矩,其相位差: φnc=2π s(N n+1) ,N n为每齿开的辅助槽数,谐波次数为(N n+1)及其倍数的齿槽转矩相互叠加后不为零且频率提高,而合成转矩的其他高次谐波则被消除。为使辅助槽能有效减小齿槽转矩,需要遵循一定的原则 (HCF[(N n+1),N p]=1, HCF表示最大公约数,N p为1个齿距内的周 期数,N p=2p HCF[Z,2p] ),否则齿槽转矩可能反而会增大。定子齿开槽对电机性能有一定影响,会降低反电动势. b.减少槽口的宽度,一般情况齿槽转矩随着槽口宽度增大而增大,优化槽宽与 槽距的比值可降低齿槽转矩,但转矩波动可能会增大. c.闭口槽,设计闭口槽时需要正确设计相邻齿的连接桥,连接桥太厚,定子槽 漏磁太大而不可接受. d.不等齿宽槽.

永磁同步电机学习笔记精编版

永磁同步电机学习笔记 精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

1.内功率因数角:定子相电流与空载反电势的夹角,定子相电流超前时为正。 2.功率角(转矩角):外施相电压超前空载反电势的角度,是表征负载大小的象征。 3.功率因数角:外施相电压与定子相电流的夹角。 4.内功率因数角决定直轴电枢反应是出于增磁还是去磁状态的因素。 5.实际的空载反电势由磁钢产生的空载气隙磁通在电枢绕组中感应产生,当实际反电势大于临界反电势时,电动机将处于去磁工作状态。空载损耗与空载电流是永磁电机出厂试验的两个重要指标,而空载反电势对这两个指标的影响尤其重大。空载反电势变动时空载损耗和空载电流也有一个最小值,空载反电势设计得过大或过小都会导致空载损耗和空载电流的上升,这是因为过大或过小都会导致空载电流中直轴电流分量急剧增大的缘故。还对电动机的动、稳态性能均影响较大。永磁机的尺寸和性能改变时,曲线定子电流I=f(E)是一条V形曲线。(类似于电励磁同步机定子电流和励磁电流的关系曲线) 6.由于永磁同步电动机的直轴同步电抗一般小于交轴同步电抗,磁阻转矩为一负正弦函数,因而矩角特性曲线上最大值所对应的转矩角大于90度,而不像电励磁同步电机那样小于90度。这是一个特点。 7.工作特性曲线: 知道了空载反电势、直轴同步电抗、交轴同步电抗和定子电阻后,给出一系列不同的转矩角,便可以求出相应的输入功率,定子相电流和功率因数,然后求出电动机在此时的损耗,便可以得到电动机出去功

率和效率,从而得到电动机稳态运行性能与输出功率之间的关系曲线,即为电动机工作曲线。 8.铁心损耗: 电动机温度和负载变化导致磁钢工作点改变,定子齿、轭部磁密也随之变化。温度越高,负载越大,定子齿、轭部的磁密越小,铁耗越小。工程上采用与感应电机铁耗类似的公式,然后进行经验修正。9.计算极弧系数: 气隙磁密平均值与最大值的比值。它的大小决定气隙磁密分布曲线的形状,因而决定励磁磁势分布的形状、空气隙的均匀程度以及磁路的饱和程度。其大小还影响气隙基波磁通与气隙总磁通比值,即磁钢利用率,和气隙中谐波的大小。 10.永磁电机气隙长度: 是非常关键的尺寸。尽管他对于永磁机的无功电流影响不如感应电机敏感,但对于交直轴电抗影响很大,继而影响电动机的其他性能。还对电动机的装配工艺和杂散损耗影响较大。 11.空载漏磁系数: 是很重要的参数,是空载时总磁通与主磁通之比,是个大于1 的数,反映空载时永磁体向外磁路提供的总磁通的有效利用程度。空载漏磁系数以磁导表示的表达式又正好是负载时外磁路应用戴维宁定理进行等效转换的变换系数,同时由于负载情况的不同,电枢磁动势大小不同,磁路的饱和程度也随之改变,气隙磁导、漏磁导和空载漏磁系数都不是常数。 一方面,空载漏磁系数大表明漏磁导大,磁钢利用率差。

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

基于ANSOFT的永磁同步伺服电机齿槽转矩分析

基于ANSOFT的永磁同步伺服电机齿槽转矩分析 第32 卷第4 期2014 年07 月佳木斯大学学报( 自然科学版) Journal of Jiamusi University ( Natural Science Edition) Vol.32 No.4 July 2014 文章编号: 1008 -1402( 2014) 04 -0559 -04 基于ANSOFT 的永磁同步伺服电机齿槽转矩分 析 1 2 1 黄金霖,易靓,曹光华 ( 1.安徽机电职业技术学院电气工程系,安徽芜湖241000; 2.江西理工大学电气工程与自动化学院,江西赣州341000) ① 摘要: 齿槽转矩是永磁电机的固有属性,引起电机的转矩波动,产生振动和噪声.为减小齿槽转矩,提高永磁伺服电机的控制精度,在研究永磁电机齿槽转矩产生机理的基础上,根据永磁电机齿槽转矩的解析式,研究定子齿部开辅助槽和转子磁极偏移对永磁电机齿槽转矩的影响; 利用有限元软件ANSOFT,建立36 槽8 极永磁伺服电机的有限元分析模型,计算不同尺寸辅助槽和磁极偏心距离时的齿槽转矩,分析辅助槽尺寸和磁极偏心距离对齿槽转矩的影响.研究结果表明,合理的辅助槽尺寸和磁极偏心距离可有效削弱永磁伺服电机的齿槽转矩.关键词: 齿槽

转矩; 磁极偏心; 辅助槽; 永磁电机 中图分类号: TM303 文献标识码: A 随着矢量控制算法、电力电子器件和计算机控制技术的不断发展,永磁伺服电机的应用越来越广.在数控机床、小型机器人、机械传动设备以及混合电动汽车等领域,永磁伺服电机已经代替传统的异步电机和直流电机成为许多领域必不可少的传[1], 动设备. 永磁伺服电机结构与普通异步电机相比,转子永磁体取代了传统的转子绕组,转子永磁体的存在,使得电机的效率和功率密度高; 与此同时,转子永磁体与定子槽相互作用,产生齿槽转矩,使得电机转矩波动增加,产生振动与噪声,影响伺服电机的控制精度.齿槽转矩是永磁电机特有的属性,因此,怎样减小永磁电机的齿槽转矩成为相关专家学者研究[2] 的重点之一. 其中,μ0 是空气磁导率. ( 2) 以及气隙磁密随着电机定转根据式( 1) 、 子相对位置角和沿气隙切向不同位置分布的解析表达式,得到齿槽转矩的表达式为: T cog = - 1 α

永磁同步电机直接转矩控制及控制性能研究

第五章 永磁同步电机直接转矩控制及控制性能研究 矢量控制和直接转矩控制是交流电机的两种高性能控制策略,在永磁同步电机驱动控制中的应用与研究己受到众多学者的广泛关注。为了能够更好研究永磁同步电机的控制性能,提高永磁同步电机调速系统的动静态性能,本章针对永磁同步电机直接转矩控制系统,从空间电压矢量出发,在第四章建立永磁同步电机不同的坐标系下的数学模型的基础上,研究永磁同步电机直接转矩控制和空间电压矢量调制直接转矩控制的理论和实现方法,并进行仿真实验研究,分析控制策略的正确性[24][30]。 本文研究的转鼓实验台的恒转矩控制方式和惯量模拟控制方式,均采用空间电压矢量调制直接转矩控制策略对交流测功机(即永磁同步电机)进行模拟加载。 5.1 永磁同步电机直接转矩控制基本理论 5.1.1 永磁同步电机在x 、y 坐标系下的数学模型 将永磁同步电机在同步旋转坐标系中磁链、电流和电压矢量关系表示在图5-1(即图4-1)中所示,图中定义δ为转矩角,即定子磁链和转子磁链之间的夹角。d 、q 为与转子磁场速度 r ω同步旋转的坐标系,d 轴指向转子永磁磁链f ψ方向;x 、y 为与定子磁场速度e ω同步旋 转的坐标系,x 轴指向定子磁链s ψ方向。假设x 轴超前d 轴时转矩角为正,在忽略定子电阻的情况下,转矩角即为功角。当电机稳态运行时,定、转子磁链都以同步转速旋转。因此,在恒定负载的情况下转矩角为恒定值。当电机瞬态运行时,转矩角则因定、转子旋转速度不同而不断变化[31][32]。 A 图5-1 永磁同步电机坐标系 由图5-1可推导出转矩角的表达式为

)( tan )/(tan 11f d d q q sd sq i L i L ψψψδ+==-- (5-1) 式中: sd ψ、sq ψ:定子磁链在d 、q 坐标系下的分量(Wb ); f ψ:转子永磁磁链(Wb ); i d 、i q :定子电流 i s 在d 、q 坐标系下的分量(A ); L q :定子电感s L 的d 轴分量,即交轴电感(H ); L d :定子电感s L 的q 轴分量,即直轴电感(H )。 将d 、q 坐标系中物理量转换到x 、y 坐标系,可以得到 ??? ??????? ??-=??????q d y x F F F F δδ δδcos sin sin cos (5-2) 反变换为 ??? ?????????-=??????y x q d F F F F δδ δδ cos sin sin cos (5-3) 式中:F :可以代表电压、电流、磁链; 1.x 、y 参考坐标系下的转矩表达式[33][34] 由图5-1可知 s sq ψψδ= sin (5-4) s sd ψψδ= cos (5-5) 式中:s ψ:定子磁链幅值。 又由第四章的电磁转矩T e 的矢量形式表达式 s s p e i n T ?= ψ2 3 式中:i s :定子电流(A ); s ψ:定子磁链(Wb )。 综合式(5-2)、(5-4)、(5-5),将(5-2)代入电磁转矩T e 的矢量表达式可以得到x 、y 轴系的转矩表达式 )]sin cos ()cos sin ([2 3δδψδδψy x sq y x sd p e i i i i n T --+= ][2322 s sq y s sq sd x s sd y s sq sd x p i i i i n ψψψψψψψψψψ+-+=y s p i n ψ23= (5-6)

2 永磁同步电机的公式推导

2 永磁同步电机的公式推导 2.1 永磁同步电机的能量转换过程推导 永磁同步电机电压平衡方程: (2-1) 其中,t θ = Ω ,θ为转子机械角位移,Ω为转子机械角速度,电机稳定运行时为常数,即const Ω=。则有 d d i L u Ri L i t θ?=++Ω? (2-2) 其中,Ri 为电阻压降,d d i L t 表示感应电动势,L E i θΩ?=Ω?成为运动电动势。 转矩平衡方程: 22d d m mec J R mec T T T T d T J R dt t θθ Ω =++=++ (2-3) 其中,m T 为电机电磁转矩,mec T 为输出机械转矩,22J d T J dt θ =为惯性转矩, d d R T R t θ Ω=为阻力转矩;理想情况下,电机阻力力矩近似为常数,稳定运行时机 械加速度为零,所以输出的机械转矩mec m R T T T =-,由于电机阻力力矩近似为常数,电磁功率可近似看作输出机械功率。 磁能的表达式: '1112n n m m j jk k j k W W i L i ====∑∑ (2-4) 由磁能与电磁转矩之间的关系m m W T d θ=?,则: 111122n n jk m m j k t j k L W L T i i i i θθθ ==???===???∑∑ (2-5) 其中,t i 表示电流矩阵的转置。 则电磁功率为:

1122 m m t t L P T i i i E θΩ?=Ω= Ω=? (2-6) 由公式两边同时乘以t i ,则: d d 1d 12d 2t t t t t t t t i i u i Ri i L i E t i i Ri i E i L i E t ΩΩΩ=++?? =+++ ? ?? (2-7) 由式(2.7)可知,等式左边t i u 为电机输入功率;等式右边t i Ri 为电阻损耗 功率,1 2 t i E Ω是电磁功率,即电功率转换成机械功率输出的那一部分,表明从电 磁耦合场中获得的一半能量转换成了机械能输出;d 1 d 2 t t i i L i E t Ω+是输入功率除去 输出的和内阻损耗功率之后的功率,即为磁场功率。稳态运行时,一个周期内磁场功率应为零,即一个周期内磁场转化的功率与释放的功率相同。 2.2 坐标变换 (1)0abc dq -变换(Clark 变换) 设三相绕组和两相绕组每相的绕组匝数分别为N 1,N 2,将两组磁动势分别投影到α轴和β轴上: 121211 () 22) a b c b c N i N i i i N i N αβ=--=- (2-8) 前后保持功率不变, 可进一步推倒出此时 21N N = ,所以,三相静止坐标系到两相静止坐标系(3s/2s )的“等功率”变换矩阵为: 3/2111220s s C ?--?=? (2)0dq αβ-变换(Park 变换) 同样遵照磁效应等效原则,同一时刻、同一方向上的瞬时磁动势相等,再由

永磁同步电机的直接转矩控制(中文)外文翻译

在永磁同步电机直接转矩控制系统中的模拟研究 摘要-为了提高永磁同步电机的动态性能,提出了永磁同步电机( PMSM )的直接转矩控制( DTC )方案。基于永磁同步电机的数学模型和DTC 系统的工作原理的深入分析,在Matlab / Simulink 中建立这个系统的仿真模型,来进行模型的广泛研究。大量的仿真结果表明永磁同步电机的DTC 系统具有较快的响应速度和良好的动态性能,验证了这个系统的正确性和可行性。 关键词-永磁同步电机;磁链估计;直接转矩控制; 空间矢量脉宽调制 I.引言 在过去的几年里永磁同步电机( PMSM )在越来越多的广泛应用中被熟悉,由于它的特性,例如体积小、重量轻、效率高、惯性小、转子无散热问题等[ 1]。 直接转矩控制( DTC )是矢量控制之后的一种新的控制方法。它摈弃了矢量解耦思想控制,并使用该定子磁链直接控制磁链和电动机的转矩。因此,该系统的动态反应是非常快的[2]。 DTC 控制策略应用于永磁同步电动机,以提高电机的转矩特性,其目前已经引起了人们的广泛关注。 传统的DTC 通常采用开关控制策略来实施。但这种控制策略不能同时满足系统在转矩和磁链上的要求,这导致由系统生成的磁链和转矩有很大的波动并导致脉冲电流的问题和更高的开关频率变化引起的开关噪声。空间矢量脉宽调制( SVPWM )控制策略已广泛用于电机速度控制领域,由于其潜在的优点,例如小电流波形畸变,直流电压的高利用率,易于数字实现,恒定的开关逆变器的频率,从而有效地降低电机转矩和磁链的脉动等等。 本文研究的对象是永磁同步电机。在应用中, 基于空间矢量脉宽调制的DTC 策略被用来模拟。结果表明,该系统具有响应速度快的优势,良好的动态性能等[3] [4]。 II.永磁同步电机的直接转矩控制技术 永磁同步电机的定子磁链不仅包括由定子电流产生的,而且还包括由永磁转子产生的,这取决于定子和转子的参考系之间的位置角度r θ。因此定子磁链可以表示为: r j s s s PM L i e θ ψψ=+ (1) 其中,下标s 是静态的参考坐标系, s L 是定子自感, PM ψ是转子永磁磁链。 基于定子参考框架的永磁同步电机定子电压方程可以被表示为以下等式: s s s s d u R i dt ψ=+ (2) 因此

永磁同步电动机电流环矢量控制文档

永磁同步电动机的数学模型和矢量控制 1.坐标变换原理 (1)坐标系介绍 三种:三相静止坐标系(abc)、两相静止坐标系(αβ)以及同步旋转坐标系(dq)(2)坐标变换 主要目的是为了将交流电机的物理模型等效地变成直流电机的物理模型,使控制大大简化。不同电机模型等效的原则是:在不同坐标系下产生的磁动势相同。 三相静止坐标系与两相静止坐标系之间转换 为方便起见,取α轴与A轴重合,设三相系统每相绕组的有效匝数为N 3 ,两 相系统每相绕组的有效匝数为N 2 ,各相磁动势均为有效匝数及其瞬时电流的乘积。交流电流的磁动势大小随时间耳边,图中磁动势矢量的长短是任意画的。设磁动势波形是正弦分布,当三相磁动势与两相磁动势相等时,两套绕组瞬时磁动势在α、β上的投影应当相等。 为了便于求反变换,最好将变换阵表示成可逆的方阵。为此,在两相系统上人为 地增加一相零轴磁动势N 2i ,并定义为 将以上三式合在一起,写成矩阵形式,得 式中 是三相坐标系变换到两相坐标系的变换阵。满足功率不变条件时应有

显然,两矩阵的乘积应该为单位阵, 由此求得 这就是满足功率不变约束条件时的参数关系。由此得到 在实际电机中并没有零轴电流,因此实际的电流变换式为 如果三相绕组是星形不带零线接法则 整理得

●两相静止/两相旋转变换 ●由三相静止坐标系到任意两相旋转坐标系上的变换

2.永磁同步电动机的数学模型 当永磁同步电动机的定子通入三相交流电I时,电枢电流在定子绕组电枢电阻 R 上产生电压降IR。由三相交流电流I产生的旋转电枢磁动势Fa,及建立的电S 枢磁场aφ,一方面切割定子绕组并在定子绕组中产生感应反电动势a E,另一方面以电磁力拖动转子以同步转速n 旋转。电枢电流I还会产生仅与定子绕组相交 s 链的定子绕组漏磁通。并在定子绕组中产生感应漏电动势Eσ。此外转子永磁极 产生的磁场0φ以同步转速切割定子绕组,从而产生空载电动势0E。因此永磁同步电动机运行时的电磁关系如下所示:

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钻永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机

永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转子的转速总是小于旋转磁场(由定子绕组电流产生)的转速。因此,转子看起来与定子绕组的电流频率总是“不一致”,这也是其为什么叫异步电机的原因。 相比于永磁同步电机,异步电机的优点是成本低,工艺简单;当然其缺点就是其功率密度与转矩密度要低于永磁同步电机。而特斯拉Models为何选用异步电机而不是永磁同步电机,除了控制成本这个主要原因之外,较大的Models车体能够有足够空间放的下相对大一点的异步电机,也是一个很重要的因素。 永磁同步电动机怎样产生动力? 在交流异步电动机中,转子磁场的形成要分两步走:第一步是定子旋转磁场先在转子绕组中感应出电流;第二步是感应电流再产生转子磁场。在楞次定律的作用下,转子跟随定子旋转磁场转动,但又“永远追不上”,因此才称其为异步电动机。如果转子绕组中的电流不是由定子旋转磁场感应的,而是自己产生的,则转子磁场与定子旋转磁场无关,而且其磁极方向是固定的,那么根据同性相斥、异性相吸的原理,定子的旋转磁场就会拉动转子旋转,并且使转子磁场及转子与定子旋转磁场“同步”旋转。这就是同步电动机的工作原理。 根据转子自生磁场产生方式的不同,又可以将同步电动机分为两种: 一是将转子绕组通上外接直流电(励磁电流),然后由励磁电流产生转子磁场,进而使转子与 定子磁场同步旋转。这种由励磁电流产生转子磁场的同步电动机称为励磁同步电动机。 二是干脆在转子上嵌上永久磁体,直接产生磁场,省去了励磁电流或感应电流的环节。这种由永久磁体产生转子磁场的同步电动机,就称为永磁同步电动机。

相关主题
相关文档 最新文档