当前位置:文档之家› 飞行器控制系统设计

飞行器控制系统设计

飞行器控制系统设计
飞行器控制系统设计

学号:

课程设计

题目飞行器控制系统设计

学院自动化学院

专业自动化

班级自动化1002班

姓名

指导教师肖纯

2012 年12 月19 日

课程设计任务书

学生姓名: 专业班级:自动化1003班

指导教师: 肖 纯 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件:飞行器控制系统的开环传递函数为:

)

2.361(4500)(+=

s s K

s G

要求设计控制系统性能指标为调节时间ts 008.0≤秒,单位斜坡输入的稳态误差000443.0≤,相角裕度大于75度。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写

等具体要求)

(1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图;

(3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统

的动态性能指标;

(4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析

计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。

时间安排:

任务

时间(天)

指导老师下达任务书,审题、查阅相关资

2 分析、计算 2 编写程序 1 撰写报告 2 论文答辩

1

指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

随着经济的发展,自动控制技术在国民经济中发挥着越来越重要的作用。自动控制就是在没有人的参与下,系统的控制器自动的按照人预订的要求控制设备或过程,使之具有一定的状态和性能。在实际中常常要求在达到制定性能指标的同时能更加节约成本、能具有更加优良的效果。本次飞行器设计中,采用频域校正的方法使系统达到指定的性能指标,同时采用matlab仿真软件更加直观的进行仿真分析和验证。

在此设计中主要采用超前校正的方法来对系统进行性能的改进,通过分析、设计、仿真、写实验报告书的过程,进一步加深了对自动控制原理基本知识的理解和认识,同时通过仿真系统的奈奎斯特图、bode图、单位阶跃响应曲线,进一步理解了系统的性能指标的含义,同时也加深了对matlab仿真的掌握,培养了认识问题、分析问题、解决问题的能力。

1理论分析与计算 (1)

1.1初始条件及设计要求 (1)

1.2 分析与计算 (1)

2 校正前后系统的matlab仿真 (3)

2.1校正前系统的仿真 (3)

2.1.1 校正前系统bode图 (3)

2.1.2 校正前系统奈奎斯特曲线 (3)

2.1.3 校正前系统单位阶跃响应曲线 (4)

2.2校正后系统matlab仿真 (6)

2.2.1校正后系统的bode图 (6)

2.2.2 校正后系统奈奎斯特曲线 (6)

2.2.3校正后系统单位阶跃响应曲线 (7)

3校正前后系统性能比较 (9)

3.1校正前后系统bode图比较 (9)

3.2校正前后系统那奎斯特曲线比较 (10)

3.3校正前后系统单位阶跃响应比较 (11)

4课程设计小结 (13)

5 参考文献 (14)

1理论分析与计算

1.1初始条件及设计要求

飞行器控制系统的开环传递函数为:

)2.361(4500)(+=

s s K

s G

主要性能指标:

调节时间ts=0.008秒,

单位斜坡输入下的稳态误差000443.0≤,

相角裕度大于75度。

1.2 分析与计算

由系统的开环传递函数以及系统需要达到的性能指标要求可知需对系统进行校正,采用频域矫正法对系统进行校正。

根据给定的稳态性能指标,首先确定符合要求的开环增益K 。设计要求中要求在单位斜坡信号作用下的系统稳态误差ss e 000443.0≤,故校正后的系统还是1型系统。

单位斜坡输入下系统稳态误差求法如下:

ss e =K 1

000433.0≤

又有:

2

.3614500k

K =

解得k 2.181≥,所以应取k =182

从而将系统开环传递函数化为:

)

2.361(819000

)(+=

s s s G

计算校正前系统的截止频率:

)()(c c jw H jw G =

)

2.316(81900

+jw jw =1

又有:

)()(180c c o jw H jw G ∠+?=γ

计算得出?=6.22o γ。

要求校正后的系统的相位裕度?≥75γ ,因此可知补充的相位裕度不超过

?65,因此可以采用超前校正的方法。

此时有:

=+=?εγγ?。-?=?+?-?4.6196.2275

取???=m ,则:

4.15sin 1sin 1=-+=

m

m

a ??

令:

-10lg15.4dB=20lg

(2.361jw jw 819000

+

计算得m c w w =1=1770,因此:

T =

a

w m 1=0.000144

所以得出超前校正环节为:

s

s

Ts aTs s G c 000144.0100222.0111)(++=

++=

得到校正后系统的传递函数为: )

1000144.0)(2.361()

00222.01(819000)()()(1+++==s s s s s G s G s G c

2 校正前后系统的matlab仿真

2.1校正前系统的仿真

2.1.1 校正前系统bode图

校正前系统Bode图源程序如下:

>> num=819000

>> den=[1,316.2,0]

>> bode(num,den)

图1 校正前系统bode图2.1.2 校正前系统奈奎斯特曲线

校正前系统奈奎斯特图源程序如下:

>> num=819000

>> den=[1,361.2,0]

>> nyquist(num,den)

图2 校正前系统奈奎斯特曲线

2.1.3 校正前系统单位阶跃响应曲线

校正前系统的闭环传递函数为:

819000

2.361819000

)()(2++=s s s R s C 校正前系统单位阶跃响应源程序如下: >> num=819000

>> den=[1,361.2,819000] >> step(num,den)

图3 校正前系统的单位阶跃响应曲线

由系统的响应曲线可知系统的调节时间为0.0217s远大于0.008s,系统的超调时间为0.00349s、超调量为0.527,都比较大。

2.2校正后系统matlab仿真

2.2.1校正后系统的bode图

校正后系统bode图源程序如下:

>>G=tf(819000*[0.00222,1],conv([1,361.2],[0.0001444,1,0]),bode(G)

G =

1818 s + 819000

-----------------------------------

0.0001444 s^3 + 1.052 s^2 + 361.2 s

图4 校正后系统bode图

由校正后系统bode图可以看出校正后系统相位裕度达到 9.

79,满足系统设计要求。

2.2.2 校正后系统奈奎斯特曲线

校正后系统奈奎斯特图源程序如下:

>>G=tf(819000*[0.00222,1],conv([1,361.2],[0.0001444,1,0])), nyquist(G)

G =

1818 s + 819000

----------------------------------- 0.0001444 s^3 + 1.052 s^2 + 361.2 s

图5校正后系统奈奎斯特曲线

2.2.3校正后系统单位阶跃响应曲线

校正后系统闭环传递函数为:

819000

052.1000144.0819000

18.1818)()(2+++=s s s s R s C 校正后系统单位阶跃响应源程序如下: >>num=[1818.18,819000] >>den=[0.000144,1.052,2179.38,819000] step(num,den)

由校正后系统单位阶跃响应曲线可知系统调节时间ts 00303.0=s ,小于给定值0.008s ,能够满足系统动态性能指标要求。

图6 校正后系统单位阶跃响应曲线

3校正前后系统性能比较

3.1校正前后系统bode图比较

校正前后系统比较的bode图源程序如下,其中g1函数表示校正前系统,g2函数表示校正后系统:

>> num=819000

>>den=[1,361.2,0]

>>g1=tf(num,den)

g1 =

819000

-------------

s^2 + 361.2 s

>> g2=tf(819000*[0.00222,1],conv([1,361.2],[0.0001444,1,0])) g2 =

1818 s + 819000

-----------------------------------

0.0001444 s^3 + 1.052 s^2 + 361.2 s

>> bode(g1,g2)

由校正前后系统bode图可以看出,校正后系统截止频率变大,系统的相相位裕度变大,满足系统设计要求。

图7 校正前后系统bode图比较

3.2校正前后系统奈奎斯特曲线比较

校正前后系统比较的奈奎斯特图源程序如下,其中g1函数表示校正前系统,g2函数表示校正后系统:

>> num=819000

>> den=[1,361.2,0]

>> g1=tf(num,den)

g1 =

81900

-------------

s^2 + 361.2 s

>> g2=tf(819000*[0.00222,1],conv([1,361.2],[0.000144,1,0]))

g2 =

181.8 s + 81900

----------------------------------

0.000144 s^3 + 1.052 s^2 + 361.2 s

>> nyquist(g1,g2)

图8 校正前后系统奈奎斯特曲线比较

3.3校正前后系统单位阶跃响应比较

校正前后系统比较的单位阶跃响应源程序如下,其中g1函数表示校正前系统,g2函数表示校正后系统:

>> num=819000

>> den=[1,361.2,819000]

>> g1=tf(num,den)

g1 =

819000

---------------------

s^2 + 361.2 s + 819000

>> num1=[1818.18,819000]

>> den1=[0.000144,1.052,2179.38,819000]

>> g2=tf(num1,den1)

g2 =

1818 s + 819000

----------------------------------------

0.000144 s^3 + 1.052 s^2 +2179 s + 819000

>> step(g1,g2)

图9 校正前后系统单位阶跃响应比较

由响应曲线可以看出校正后系统的超调量大为减少,而且响应速度大大加快,基本满足系统设计要求。

4课程设计小结

课程设计对学生而言是其对所学课程内容掌握情况的一次自我验证,从而有着极其重要的意义。通过课程设计能提高学生对所学知识的综合应用能力,能全面检查并掌握所学内容。

伴随着课设说明书的完成为期两周的自动控制原理课程设计圆满完成。俗话说“功夫不负有心人,铁杵也能磨成绣花针”,通过自己的努力,我也在今天完成了,看着老师仔细的验收,并成功的完成任务,有种如释重负的感觉,同时,看到成功的运用所学知识独立完成课设要求,心中更多的是一种成就感。

当然,通过这次实践我也受益匪浅,从中学到了不少在书本中没有的东西,明白了实践与理论的结合是极其重要的,以及同学之间互相帮助的重要性,在遇到困难时运用学过的相关知识和恰当的方法尽力去解决各个难题,通过自己不懈的努力与搭档的配合来完成这项任务。

当然,在整个课程设计中,我也遇到了许多的难题。例如阶跃响应函数读取错误,刚开始我还以为是数据问题,经过仔细检查还是未得到解决,后来猜想可能是编程本身出错,经过认真检查后,重新输入数据,matlab 终于得到正确结果。致使问题得到了解决,同时也松了一口气。

过程是艰辛的,但结果是令人兴奋的,看着自己写的课设说明书,心理觉得非常有成就感,这几天的努力并没有付诸东流。虽然课设已经告一段落,但是我们学习的道路还很长。此次课设让我明白不论是在做实验还是在今后的学习中,都应该有一种坚定不移不达目的不罢休的信念,只有这样才能达到自己的最终目标!

5 参考文献

[1] 薛定宇. 控制系统计算机辅助设计. 北京:清华大学出版社,2006

[2] 胡寿松. 自动控制原理(第四版). 北京:科学出版社,2001

[3] 李道根. 自动控制原理. 哈尔滨:哈尔滨工业大学出版社,2007

[4] 吴晓燕,张双选. MATLAB 在自动控制中的应用. 西安:电子科技出

版社,2006

[5] 王万良.自动控制原理,北京:高等教育出版社,2008

本科生课程设计成绩评定表

姓名性别男

专业、班级自动化专业自动化1003班

课程设计题目:飞行器控制系统设计

课程设计答辩或质疑记录:

成绩评定依据:

评定项目评分成绩1.选题合理、目的明确(10分)

2.设计方案正确、具有可行性、创新性(20分)

3.设计结果(20分)

4.态度认真、学习刻苦、遵守纪律(15分)

5.设计报告的规范化、参考文献充分(不少于5篇)(10分)

6.答辩(25分)

总分

最终评定成绩(以优、良、中、及格、不及格评定)

指导教师签字:

年月日

飞行器总体设计试题

一、填空题(25分,每空1分) 1. 飞机设计可分为3个阶段,分别是 (1) 、 (2) 、 (3) 。 2. 最重要的三个飞机总体设计参数是 (4) 、 (5) 、 (6) 。 3. 飞机空机重量可分为3部分,分别是 (7) 、 (8) 、 (9) ,飞机空机重量系数随起飞重量的增加而 (10) 。 4. 在飞机重心的第一次近似计算中,如果飞机重心不在规定的范围内,则须对飞机重心进行调整。调整飞机重心最常用的2种方法是 (11) 、 (12) 。 5. 超音速进气道的压缩方式有3种,分别是: (13) 、 (14) 和 (15) 。 6. 喷气式飞机在 (16) 状态下达到最远航程,此时其翼载荷为 (17) ;螺旋桨飞机在 (18) 状态下达到最远航程,此时其翼载荷为 (19) (假设飞机的极曲线为)。 7. 要缩短飞机起飞/着陆滑跑距离,可以采用 (20) 翼载荷 的方法。 8. 亚音速飞机的最大升阻比取决于 (21) 。 9. 进气道总压恢复系数是 (22) 与 (23) 之比。 10. 从飞机设计的角度来看,对发动机的主要设计要求可归结为2个方面,即要求发动机的 (24) 大和 (25) 大。 二、选择题(20分,每题1分,正确的选择“+”,错误的选择“-”) 1. 减小翼载荷对飞机的巡航性能有利。 2 0y x x C A C C ?+=

(+) (-) 2. 将喷气式发动机安装到飞机上,需要考虑装机修正和推进装置阻力。(+) (-) 3. 进气道的功用是将流入进气道的空气减速增压。(+) (-) 4. 机身结构重量大致与机身浸湿面积成正比。(+) (-) 5. 现代战斗机上常使用高涵道比的涡扇发动机。(+) (-) 6. 飞机起飞重量一定时,增加飞机的航程和航时会降低飞机的机动性。(+) (-) 7. 飞机的寿命周期成本包括研制成本和使用维护成本两部分。(+) (-) 8. 如技术水平一定,则飞机设计要求都要以一定的重量代价来实现。(+) (-) 9. 飞机的载油量是根据飞机所执行任务的任务剖面要求确定的。(+) (-) 10. 超音速飞行时,涡轮风扇发动机的耗油率小于涡轮喷气发动机。(+) (-) 11. 前三点式起落架几何参数选择时,应考虑的主要因素之一是防止飞机翻倒和防止飞机倒立。(+) (-) 12. 飞机起落架的重量一般占该机起飞重量的15%左右。(+) (-) 13. 雷达隐身飞机要求减小镜面反射和角反射器反射。(+) (-) 14. 按面积律设计的飞机能减小跨音速波阻。(+) (-) 15. 满足设计要求的起飞重量最小的飞机是设计先进的。(+) (-) 16. 设计要求不变时,结构重量增加1千克使飞机起飞重量也增加1千克。(+) (-)

B747型飞机夹具样板设计方法研究

B747型飞机夹具样板设计方法研究 摘要:文章主要论述了B747型飞机夹具样板设计的两种方式,即传统的依据PCM图的设计方式与应用数字化三维数据集的设计方式。对于这两种设计方法的设计过程进行了详细的阐述,并对这两种设计方法的优点与缺陷进行了对比与分析。 关键词:夹具样板;三维数据集;PCM图 中图分类号:V267 文献标识码:A 文章编号:1006-8937(2016)15-0001-02 1 夹具样板的基本特征和主要用途 1.1 基本特征 凡用于制造安装和检验标准样件或装配工艺装备、检验夹具的样板统称为夹具样板。按工装设计部门所提供的夹具样板图及其技术要求制造。 1.2 主要用途 ①制造安装标准样件; ②安装装配夹具,检验夹具和装配型架等。 2 B747型飞机夹具样板的设计 B747型飞机夹具样板的设计依据一般分为两种,即PCM 图和三维数据集。在实际设计过程中,要根据不同情况采用

不同的设计依据。 2.1 依据PCM图的设计方法 由于B747型飞机的机型较老,项目持续时间较长,因 此该机型与其他新机型相比缺少数字化设计制造依据,例如三维数模、电子图纸等。但是该机型拥有大量外方提供的PCM图,均为以1:1比例绘制而成的胶版,这些PCM图可作为设计制造的依据,这也是B747型飞机最大的特点之一。在设计B747型飞机夹具样板时首先要考虑的,同时也是最 常用的设计依据就是PCM图。 首先,根据工装设计部门提供的夹具样板图找出该块夹具样板所涉及到的零件图号、站位(如:框、长桁)以及标记线(如:WL、LBL)和孔位(如:K孔、工具孔)等元素,如图1所示,然后根据零件图号查找该图号的图纸,此时可根据夹具样板图中提供的站位和长桁的信息在图纸上查找 相应位置的视图或剖视图,查到后检查在所需的视图或剖视图中是否包含了夹具样板图中涉及到的所有元素,如所需零件边缘、标记线、孔位等,若内容齐全则可按照该PCM图制造此夹具样板。 有些夹具样板中还含有一些尺寸标注,如图1中的“200”,这种情况表示该夹具样板除按照PCM图制造外还要按标注 的尺寸制造,上图中标记零件外缘的一侧为样板的工作边,按尺寸加工的一侧为非工作边。

飞行器总体设计报告1要点

大型固定翼客机分析报告 2014-4-28 学院:计算机科学与工程学院 201322060608 学号:马丽姓名:201322060629 号:学姓潘宗奎名: 目录

总结----马丽、潘宗奎............................................................ I 1 大型固定翼客机总体设计.................................................... - 1 - 1.1 客机参 数 ............................................................ - 1 - 1.2 飞机的总体布 局 ...................................................... - 1 - 1.2.1 飞机构型....................................................... - 1 - 1.2.2 三面图......................................................... - 2 - 1.2.3 客舱布置....................................................... - 2 - 2 客机的重量设计............................................................ - 4 - 3 大型固定翼客机的外形设计.................................................. - 6 - 3.1 翼 型 ................................................................ - 6 - 3.2 机翼平面形状的设 计 .................................................. - 7 - 3.3尾翼................................................................. - 8 - 4 重量分析................................................................. - 11 - 5 气动特性分析............................................................. - 13 - 6 性能分析................................................................. - 22 - 6.1 商载—航程 图 ....................................................... - 22 - 6.2 起飞距 离 ........................................................... - 23 - 6.3 进场速 度 ........................................................... - 24 - 6.4 着落距 离 ........................................................... - 24 -

哈工大飞行器结构设计大作业指导书_最终版

《飞行器结构设计》课程大作业指导书 哈尔滨工业大学航空宇航制造系 2015年4月16日

一、要求与说明 1. 学生必须按照相关规范,在规定的时间内完成两个备选题目之一的大作业,并提交纸质和电子版文件。 2. 要求每名学生独立完成作业内容,如有抄袭、伪造等作弊行为则取消成绩,大作业的分数计入期末考核成绩。 二、题目 三、内容要求及规范 (二)分离机构连接计算与结构设计 1、设计的目的与意义 连接于分离机构的计算与设计是飞行器结构与机构分系统设计的重要部分,连接分离机构直接影响分离面处的连接刚度,而连接分离面又是飞行器载荷较为严重的部位。因此,为保证连接的可靠性,必须对分离机构中的关重件进行计算与校核,特别是起到连接与分离作用的爆炸螺栓组件。本设计作业的主要目的是通过对典型连接分离机构的计算与设计,使学生掌握此类结构设计的基本原理和方法,同时加深对飞行器结构设计的具体认识,为开展相关技术领域的研究与设计奠定基础。 2、设计输入条件 假设某型号导弹在发射阶段,由于横向载荷的作用,在连接面A1-A2会产生M=1500Nm的弯矩,同时已知气动过载的等效轴向载荷为F=800N,以压力形式作用于一二级分离面上,分离舱段对接框为环形接触面,被连接件间均采用石棉垫片。图2所示为轴向连接式对接框结构尺寸,图3所示为卡环式对接框尺寸,

两个舱段的平均壁度为6mm。假设舱段承力结构材料均为TC4,在设计过程中不考虑横向载荷产生的剪力,为使分离面紧密贴合,取安全系数f=1.5。此外,假定轴向连接分离机构由6个爆炸螺栓连接,卡环式连接分离机构由2个爆炸螺栓连接,爆炸螺栓螺杆材料为45号钢,且尺寸、规格同C级六角头螺栓。 图1 导弹一二级分离面受力示意图 3、设计任务 1)根据设计的输入条件,选择轴向连接或外置卡环式连接分离方式中的一种进行计算分析与结构设计。要求详细计算用于连接和分离的爆炸螺栓所受的工作总拉力,以及螺栓最大预紧力,并根据爆炸螺栓材料的屈服极限条件确定螺栓尺寸和规格。 2)按照计算分析的结果以及选择的爆炸螺栓结构尺寸,设计连接分离装置的具体结构,画出装配草图。 2 a) 轴向连接式分离面结构尺寸

北航飞行器设计与应用力学系.doc

航空科学与工程学院 2016年研究生入学考试复试大纲 一、复试方式:笔试+面试 二、复试组织: 1、笔试:由航空学院统一组织,考试科目及复试大纲另见《航空科学与工程学院2013年考研复试安排》。 2、口试:以学科专业组为单位,由3-5位硕士生导师组成面试小组(组长为教授),每位考生的面试时间为20分钟。 三、复试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;考生可以提供有助于证明自己背景和能力的相关材料,证件和材料完备是面试的必要条件。 2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生用英文回答问题。 3)考生朗读一段考场指定的专业外语短文,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生用中文回答问题。 5)面试小组老师就专业知识提问,学生用中文回答问题。 面试结束后考生退场,在3-5个工作日后见航空学院网站“招生就业”栏目的“研究生招生”,会通知出学院的拟录取名单,在7层的研究生教学橱窗也会公布。 四、考场纪律 考生准时到达指定的复试考场,遵守考场秩序,尊重考试教师。 五、各学科专业组具体复试内容及参考书: 1、飞行力学与飞行安全系2016年硕士研究生入学复试程序 方式: 由3~6位硕士生导师组成面试小组,每位考生的面试时间为20分钟。 范围: 面试范围包括英语口语能力、专业英语阅读理解能力、专业基础理论知识和专业知识。具体环节如下: 1)对考生学习背景、心理、爱好和志愿等基本情况的了解。 2)考察考生的英语阅读和口头表达能力。

3)基础理论和专业知识面试。基础理论包括自动控制原理、理论力学和材料力学。专业知识包括飞行力学、飞行安全、飞行器总体设计、空气动力学等。 参考书: 基础理论可以选用任何一本考生熟悉的《自动控制原理》、《理论力学》、《材料力学》教材。专业课可以参考《飞机飞行动力学》(熊海泉编)或《飞机飞行性能》、《飞机的稳定与控制》等方面的参考书。 面试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;证件和材料完备是面试的必要条件。2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生回答问题。 3)读一段指定的专业外语,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生回答问题。 5)面试小组老师就专业知识提问,学生回答问题。 6)问答结束后,考生退场,面试老师根据考核要求和面试情况,对考生进行评分。 7)所有考生面试结束后,面试老师根据总体情况,对所有考生进行综合评估和比较,给出面试成绩。 2、人机与环境工程/制冷及低温工程2016年硕士研究生入学复试程序 方式: 由3~5位硕士生导师组成面试小组,每位考生的面试时间为20分钟。 范围: 1)英语阅读和口头表达能力。 2)对考生心理、基本情况的了解。 3)基础理论和专业知识面试。基础理论包括:自动控制原理,理论力学,流体力学;专业知识包括工程热力学,传热学,人机工程,低温制冷。考生可以选择其中1门基础理论和1门专业课作为面试内容,或者是综合知识。 参考书: 可以选用任何一本考生熟悉的《自动控制原理》、《理论力学》、《流体力学》教材。专业课可以选用考生熟悉的《工程热力学》,《传热学》,《人机工程》,低温制冷等方面的参考书。 面试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;证件和材料完备是面试的必要条件. 2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生回答问题。 3)读一段指定的专业外语,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生回答问题。 5)面试小组老师就专业知识提问,学生回答问题。 6) 问答结束后,考生退场,面试老师根据考核要求和面试情况,对考生进行评分。

北航-飞行器总体设计期末整理

1.飞机设计的三个主要阶段是什么?各有些什么主要任务? ?概念设计:飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能、方案评估、参数选择与权衡研究、方案优化 ?初步设计:冻结布局,完善飞机的几何外形设计,完整的三面图和理论外形(三维CAD模型),详细绘出飞机的总体布置图(机载设备、分系统、载荷和结构承力系统),较精确的计算(重量重心、气动、性能和操稳等),模型吹风试验 ?详细设计:飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产 2.飞机总体设计的重要性和特点主要体现在哪些方面? ?重要性:①总体设计阶段所占时间相对较短,但需要作出大量的关键决策②设计前期的失误,将造成后期工作的巨大浪费③投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本?特点(简要阐述) ①科学性与创造性:飞机设计要应用航空科学技术相关的众多领域(如空气动力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以由多种可行的设计方案。 ②反复循环迭代的过程 ③高度的综合性:需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调 3.B oeing的团队协作戒律 ①每个成员都为团队的进展与成功负责 ②参加所有的团队会议并且准时达到 ③按计划分配任务 ④倾听并尊重其他成员的观点 ⑤对想法进行批评,而不是对人⑥利用并且期待建设性的反馈意见 ⑦建设性地解决争端 ⑧永远致力于争取双赢的局面(win-win situations) ⑨集中注意力—避免导致分裂的行为 ⑩在你不明白的时候提问 4.高效的团队和低效的团队 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常、坦诚的和建设性的,不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题1. 氛围-互不关心/无聊或紧张/对抗 2. 少数团队成员居于支配地位 3. 旁观者难以理解团队的目标 4. 团队成员不互相倾听,讨论时各执一词 5. 分歧没有被有效地加以处理 6. 在真正需要关注的事情解决之前就贸然行动 7. 行动:不清晰-该做什么?谁来做? 8. 领导者明显表现出太软弱或太强硬 9. 提出批评的时候令人尴尬,甚至导致对抗 10. 个人感受都隐藏起来了 11. 集团对团队的成绩和进展不进行检查 5.飞机的设计要求有哪些基本内容? ①飞机的用途和任务 ②任务剖面 ③飞行性能 ④有效载荷⑤功能系统 ⑥隐身性能要求 ⑦使用维护要求 ⑦机体结构方面的要求 ⑦研制周期和费用 ⑦经济性指标 11环保性指标 6.飞机的主要总体设计参数有哪些? ①设计起飞重量W0 (kg)②动力装置海平面静推力T (kg)③机翼面积S (m2) 组合参数④推重比T/W0⑤翼载荷W0 /S (kg/m2) 7.毯式图的 步骤 ①保持推重比不变,改变翼载(x轴变量),获得总重曲线(y轴变量) ②推重比更改为另一个值后确定不变,改变翼载(x轴变量),获得总重(y轴变量)。同时需将y轴向左移动一任意距离。

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

飞机设计软件

正确使用软件能加快设计进度,提高设计质量。以下列出了几个可用于飞机设计教学的软件。这些教学软件大多可在南京航空航天大学飞机系获得,或通过网上下载。 初步确定客机主要参数的界限线绘制程序 为了有助于设计人员在初始设计阶段能快速地确定客机主要参数,开发了界限线图绘制计算机程序。该程序功能是:按照给定的性能要求,绘制出满足这些要求约束下的推重比和翼载的界限,形成界限线图;并标注出可行域。该程序有助于设计人员快速确定客机的推重比和翼载。界限线图绘制程序。 翼型气动特性分析与设计软件 ?Airfoil 该程序是余雄庆在原多段翼型分析程序M C AR FA基础上开发的,适用于亚声速翼型气动特性的分析。MC A RF A是根据位流理论与附面层理论相结合的方法,用Fortran语言编写的。Airfoil简化了原MC A F E输入文件的格式,并用M at l a b对计算结果进行后处理,可直观显示翼型外形和压力分布。可下载Airfoil的EX E文件、用于演示计算结果的Ma t la b 文件及使用说明书(英文)。 ?Pablo ( P otential flow around A irfoil with B oundary L ayer coupled O ne-way )该软件是由瑞典皇家理工学院Rizzi教授和他的学生Christian Wauquiez 开发的。他们应用面元法(Panel Method)和附面层理论,用Ma t la b语言编写了这个翼型分析软件。P a b lo具有良好的用户界面,使用方便,适用于亚声速翼型气动特性的分析。可免费下载P a b lo软件M at l ab 的源代码。 ?Airfoil Optimizer

飞机装配定位方法及其应用案例解析

一、飞机装配定位方法及其应用案例 飞机装配过程一般是由零件先装配成比较简单的组合件和板件,然后逐渐地装配成比较复杂的锻件和部件,最后将部件对接成整架飞机。 机翼和机身具有不同的功能,故结构不同,所以要设计成两个单独的部件,发动机装在机身内,为便于更换,维护和修理,将机身分为前机身和后机身,鸵面相对于固定翼作相对运动,故划分为单独部件,某些零件设计有可卸件,以便维护,检查及装填用。 在装配过程中首要问题是要按图纸及设计要求确定零件,组合件之间的相对位置,即进行装配定位。。定位方法是完成在装配过程中定位零件、组合件的手段,包括基准件定位法、画线定位法、装配孔定位法和装配型架定位法四种常用的定位方法: 1、用基准零件定位 待装配的零件、组合件以基准零件、组合件或者先装的零件、组合件来确定装配位置。这种装配定位方法简便易行,装配开放,协调性好,在一般机械产品中大量使用。基准零件一般是先定位或安装好的零件,零件要有足够的刚度及较高的准确度,在装配时一般没有修配或补充加工等工作。在飞机制造中,液压、气动附件以及具有如(图1-1)所示,连接框和长行用的角片可以预先装在长行上,然后按角片确定框的纵向位置,或者在骨架装配时按框和长珩定位角片。这种基准件定位法要求基准件位置准确、刚性强,多用于小零件和小组合件的定位,方法简单、方便。

2、用画线定位 即待装配的零件按画在零件上的线条确定装配位置,如(图1-2)所示,角材位置按腹板上划线定位。这种定位方法准确度较低,一般用于刚性较大,无协调要求和位置准确度要求不高的零件定位;还有此方法工作效率不高,容易产生差错,所以在飞机研制阶段为了减少工艺装配数量,采用这种方法定位零件,在成批生产中作为一种辅助的定位方法 3、用装配孔定位 即是把相互连接的零件、组合件分别按一定的协调手段,具体过程如下:装配以前,在各个零件的部分铆钉位置上(一般是每隔400mm左右钻一个装配孔,孔径比铆钉孔径小)预先按各自的钻孔样板分别钻出装配孔,装配时个零件之间的相对位置按这些装配孔设置。如图1-3所示。其中,孔称为装配孔。 装配孔的数量取决于零件的尺寸和刚度,一般不少于两个。在尺寸大、刚性弱的零件上取的装配孔数量应适当增加。这种定位方法在铆接装配中应用比较广泛。它适用于平面型和单曲面壁板型组合件装配。按装配孔定位的特点:(1)定位迅速、方便; (2)减少或简化装配型架;

飞行器总体设计教学大纲

《飞行器总体设计》教学大纲 学时数:64学时讲授 授课对象:飞行器设计工程专业大学本科 前期课程:理论力学、材料力学、结构力学、自动控制原理、空气动力学与 飞行性能计算 一、课程地位:本课程是飞行器设计工程专业必修的专业主干课,是一门综 合性、实践性很强的课程。它要求学生在学习本课程中总体设计知识的同时,紧 密结合前期课程中的基础理论,学习和掌握飞机总体设计的一般思路、原理和方法。促进学生把理论和知识、技能转化为飞机总体设计能力的结合点,是培养学 生分析工程实际问题和工程设计能力的重要环节。 二、课程任务:教授现代飞机总体的现代设计原理、综合设计思想理念和设 计技术;培养学生在综合运用广泛理论的基础上对工程实际问题的分析能力、分 析评价方法和设计能力,以及接受和适应深层次设计技术发展的能力;锻炼、培 养学生辩证逻辑思维、创造性思维和系统工程思维。 课程要求:在设计原理、概念、方法等基础方面强调系统全面、深刻精炼、 科学逻辑的有机结合,要使学生能真正掌握和运用;强调理论与实际的有机结合; 强调理论知识综合运用能力的培养,加强主动式教学,启发学生主观能动性,利 用现代技术的高信息含量使学生更多了解国内外飞机总体设计技术和前沿学科 的发展;最终使学生基本掌握现代飞机总体设计的先进设计思想、设计理论和设 计技术,着力于工程设计能力的培养。 三、课程内容: 第一章绪言(2) 1、理解“飞机总体设计”的基本含义,本课程的特点,以及学习本课程的 目的与任务。 2、初步建立如飞机设计阶段、特点等基本概念。 第二章设计的依据与参数选择(8) 1、了解飞机的设计要求 2、了解飞机的设计规范 3、熟悉飞机的总体技术指标 4、掌握飞机总体设计的参数选择

北航飞机总体设计第2次作业

1、飞机设计的三个主要阶段是什么?各有些什么主要任务? 答:飞机设计分为概念设计、初步设计、详细设计三个阶段;在概念设计阶段主要解决飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能,方案评估,参数选择与权衡研究,方案优化等问题;初步设计阶段进行飞机冻结布局,完善飞机的几何外形设计、完整的三面图和理论外形(三维CAD 模型),详细绘出飞机的总体布置图,机载设备,分系统,载荷和结构承力系统,较精确的计算,(重量重心、气动、性能和操稳等),模型吹风试验;详细设计阶段包括飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产。 2、飞机总体设计的重要性和特点主要体现在哪些方面? 答:飞机总体设计的重要性主要体现在:概念设计阶段就已经确定了整架飞机的布置;总体设计阶段所占时间相对较短,但需要作出大量的关键决策;设计前期的失误,将造成后期工作的巨大浪费;投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本。 其特点表现为:科学性与创造性(应用航空科学技术相关的众多领域(如空气动力学、结构力学、材料学、自动控制、动力技术、隐身技术)的成果);是一个反复循环迭代的过程;高度的综合性(综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调); 3、 Boeing的团队协作戒律有哪些? 答:1. 每个成员都为团队的进展与成功负责; 2. 参加所有的团队会议并且准时达到; 3. 按计划分配任务; 4. 倾听并尊重其他成员的观点; 5. 对想法进行批评,而不是对人; 6. 利用并且期待建设性的反馈意见; 7. 建设性地解决争端; 8. 永远致力于争取双赢的局面; 9. 集中注意力—避免导致分裂的行为; 10. 在你不明白的时候提问。 4、高效的团队和低效的团队各有什么表现? 答:高效的团队表现为 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常的、坦诚的和建设性的;不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题。 低效的团队 1. 氛围-互不关心/无聊或紧张/对抗

飞行器设计与工程专业毕业实习报告范文

飞行器设计与工程专业 毕 业 实 习 报 姓名:杜宗飞 学号:2011090118 专业:飞行器设计与工程 班级:飞行器设计与工程01班指导教师:赵建明 实习时间:XXXX-X-X—XXXX-X-X 20XX年1月9日

目录 目录 (2) 前言 (3) 一、实习目的及任务 (3) 1.1实习目的 (3) 1.2实习任务要求 (4) 二、实习单位及岗位简介 (4) 2.1实习单位简介 (4) 2.2实习岗位简介(概况) (5) 三、实习内容(过程) (5) 3.1举行计算科学与技术专业岗位上岗培训。 (5) 3.2适应飞行器设计与工程专业岗位工作。 (5) 3.3学习岗位所需的知识。 (6) 四、实习心得体会 (6) 4.1人生角色的转变 (6) 4.2虚心请教,不断学习。 (7) 4.3摆着心态,快乐工作 (7) 五、实习总结 (8) 5.1打好基础是关键 (8) 5.2实习中积累经验 (8) 5.3专业知识掌握的不够全面。 (8) 5.4专业实践阅历远不够丰富。 (8) 本文共计5000字,是一篇各专业通用的毕业实习报告范文,属于作者原创,绝非简单复制粘贴。欢迎同学们下载,助你毕业一臂之力。

前言 随着社会的快速发展,用人单位对大学生的要求越来越高,对于即将毕业的飞行器设计与工程专业在校生而言,为了能更好的适应严峻的就业形势,毕业后能够尽快的融入到社会,同时能够为自己步入社会打下坚实的基础,毕业实习是必不可少的阶段。毕业实习能够使我们在实践中了解社会,让我们学到了很多在飞行器设计与工程专业课堂上根本就学不到的知识,受益匪浅,也打开了视野,增长了见识,使我认识到将所学的知识具体应用到工作中去,为以后进一步走向社会打下坚实的基础,只有在实习期间尽快调整好自己的学习方式,适应社会,才能被这个社会所接纳,进而生存发展。 刚进入实习单位的时候我有些担心,在大学学习飞行器设计与工程专业知识与实习岗位所需的知识有些脱节,但在经历了几天的适应过程之后,我慢慢调整观念,正确认识了实习单位和个人的岗位以及发展方向。我相信只要我们立足于现实,改变和调整看问题的角度,锐意进取,在成才的道路上不断攀登,有朝一日,那些成才的机遇就会纷至沓来,促使我们成为飞行器设计与工程专业公认的人才。我坚信“实践是检验真理的唯一标准”,只有把从书本上学到的飞行器设计与工程专业理论知识应用于实践中,才能真正掌握这门知识。因此,我作为一名飞行器设计与工程专业的学生,有幸参加了为期近三个月的毕业实习。 一、实习目的及任务 经过了大学四年飞行器设计与工程专业的理论进修,使我们飞行器设计与工程专业的基础知识有了根本掌握。我们即将离开大学校园,作为大学毕业生,心中想得更多的是如何去做好自己专业发展、如何更好的去完成以后工作中每一个任务。本次实习的目的及任务要求: 1.1实习目的 ①为了将自己所学飞行器设计与工程专业知识运用在社会实践中,在实践中巩固自己的理论知识,将学习的理论知识运用于实践当中,反过来检验书本上理论的正确性,锻炼自己的动手能力,培养实际工作能力和分析能力,以达到学以致用的目的。通过飞行器设计与工程的专业实习,深化已经学过的理论知识,提高综合运用所学过的知识,并且培养自己发现问题、解决问题的能力 ②通过飞行器设计与工程专业岗位实习,更广泛的直接接触社会,了解社会需要,加深

飞行器结构设计总复习

静强度设计:安全系数d e P f P d p 设计载荷 e p 使用载荷 u p 极限载荷 静强度设计准则:结构材料的极限载荷大于或等于设计载荷,即认为结构安全u p ≥d p 载荷系数定义:除重力外,作用在飞机某方向上的所有外力的合力与当时飞机重量的比值, 称为该方向上的载荷系数。 载荷系数的物理意义:1、表示了作用于飞机重心处除重力外的外力与飞机重力的比值关系; 2、表示了飞机质量力与重力的比率。 载荷系数实用意义:1、载荷系数确定了,则飞机上的载荷大小也就确定了; 2、载荷系数还表明飞机机动性的好坏。 着陆载荷系数的定义:起落架的实际着陆载荷lg P 与飞机停放地面时起落架的停机载荷lg o P 之 41.杆只能承受(或传递)沿杆轴向的分布力或集中力。 2.薄平板适宜承受在板平面内的分布载荷,包括剪流和拉压应力,不能传弯。没有加强件加 强时,承压的能力比承拉的能力小得多,不适宜受集中力。厚板能承受一定集中力等。 3.三角形薄板不能受剪。 刚度分配原则:在一定条件下(如机翼变形符合平剖面假设),结构间各个原件可直接按照 本身刚度的大小比例来分配它们共同承担的载荷,这种正比关系称为“刚度分配原则” P1l1/E1F1=P2l2/e2f2 K=EF/l p1/p2=k1/k2 p1=k1p/(k1+k2) (翼面结构的典型受力形式及其构造特点: 1.薄蒙皮梁式:蒙皮很薄,纵向翼梁很强,纵向长桁较少且弱,梁缘条的剖面与长桁相比要 大得多,当布置有一根纵梁时同时还要布置有一根以上的枞墙。常分左右机翼-----用几个集 中接头相连。 2.多梁单块式:蒙皮较厚,与长桁、翼梁缘条组成可受轴向力的壁板承受总体弯矩;纵向长 桁布置较密,长桁截面积与梁的截面积比较接近或略小;梁或墙与壁板形成封闭的盒段,增 强了翼面结构的抗扭刚度。为充分发挥多梁单块式机翼的受力特征,左右机翼一般连成整体 贯穿过机身,但机翼本身可能分成几段。 3.多墙厚蒙皮式:布置了较多的枞墙,厚蒙皮,无长桁,有少肋、多肋两种,但结合受集中 力的需要,至少每侧机翼上要布置3~5个加强翼肋。可以没有普通肋。) 大型高亚音速运输机或有些超音速战斗机采用多梁单块式翼面结构,Ma 较大的的超音速飞 机多采用多墙(或多梁)或机翼结构。 局部失稳问题:翼梁缘条受轴向压力时,由于在蒙皮平面内有蒙皮支持,在翼梁平面有腹板 支持,因此一般不会产生总体失稳,但需考虑其局部失稳问题。 翼梁的主要功用承受或传递机翼的剪力Q 和弯矩M 。 (各典型形式(梁式、单块式、多墙式)受力特点的比较: 机翼结构受力形式的发展主要与飞行速度的发展有关。速度的增加促使机翼外形改变并提高 了对结构强度、刚度、外形的要求。比较三者的受力特点可以发现,单纯的梁式、薄蒙皮和 弱长桁均不参加机翼总体弯矩的传递,只有梁的缘条承受弯矩引起的轴力。对于高速飞机, 由于气动载荷增大,而相对厚度减小又导致了机翼结构高度变小,只靠梁来承弯将使承弯构 件的有效高度减小;加之对蒙皮局部刚度和机翼扭转刚度要求的提高,促使蒙皮增厚,长桁 增多、增强。因此,在单块式、多墙式机翼中,蒙皮、长桁,乃至主要是蒙皮发展成主要的 承弯构件。由于蒙皮、长桁等受轴向力的面积较之梁缘条更为分散、更靠近外表面,故承弯 构件有效高度较大,因此厚蒙皮翼盒不仅承扭能力较高,抗弯特性也较好,因此,此种机翼

飞行器结构优化设计课程总结

《飞行器结构优化设计》 ——课程总结 专业航天工程 学号GS0915207 姓名

《飞行器结构优化设计》课程总结报告 通过这门课程的学习,大致了解无论是飞行器、船舶还是桥梁等工程项目的传统结构设计流程:首先是根据技术参数、经验和一些简单的分析方法进行初始的结构设计,然后用较为精确的分析方法对初始设计进行核验,根据核验结果,逐步调整设计参数,直到得到满意的设计方案。但是这种传统设计方法的产品性能优劣主要就取决于设计人员的水平,而且设计周期长,并要耗费大量的人力和物力。随着高速、大容量电子计算机的广泛使用和一些精度高的力学分析数值方法的建立和应用,使得复杂的结构分析过程变得更加高效、精确。 本课程重点就在于介绍结构优化的各种分析方法。这些分析方法都是以计算机为工具,将非线性数学规划的理论和力学分析方法相结合,使用于受各种条件限制的承载结构设计情况。 优化问题的数学意义是在不等式约束条件下,求使目标函数为最小或最大值的一组设计变量值,在实际工程应用中,优化问题所包含的函数通常是非线性的和隐式的。建立在数学规划基础上的优化算法,是依据当前设计方案所对应的函数值与导数值等信息,按照某种规则在多维设计变量空间中进行搜索,一步一步逼近优化解。随着计算机的发展和数学计算方法不断进步,结构分析。优化的方法也是随之水涨船高。 一、有限元素法 这是基于在结构力学、材料力学和弹性力学基础上的一种分析方法。研究杆、梁,经简化薄板组成的结构的应力、变形等问题。其方法是首先通过力学分析将结构离散化成单一元素,然后对单一元素进行分析,算出各单元刚度矩阵后,进行整体分析,根据方程组K·u=P求解。这种方法求解的问题受限于结构的规模、形式和效率。 二、敏度分析 结构敏度是指结构性状函数,如位移、应力、振动频率等对设计变量的导数。近似函数的构成,以及许多有效的结构优化算法,皆要利用这些参数的一阶导数,以至二阶导数信息。 结构敏度分析的基础是结构分析,对于复杂的结构,精确的结构分析工作是

北京航空航天大学飞机总体设计期末试卷1答案

北京航空航天大学飞机总体设计期末试卷1 参考答案 一、填空题………………………………………………………(每空0.5分,共15分) 1. 按照三个主要阶段的划分方式,飞机设计包括概念设计, 初步设计, 详细设计; 其中第一个阶段的英文名称为Conceptual Design。 2. 飞机的主要总体设计参数是设计起飞重量, 动力装置海平面静推力, 机翼面积.相对参数是推重比,翼载荷. 3. 在机翼和机身的各种相对位置中,二者之间的气动干扰以中单翼的气动干扰最小,从结构布置的情况看上单翼,下单翼的中翼段比较容易布置。 4. 对于鸭式飞机而言,机翼的迎角应小于前翼的迎角。 5. 机翼的主要平面形状参数中的组合参数为展弦比, 根梢比(或尖削比、梯形比)。 6. 假设某型战斗机的巡航马赫数为1.3,若使其在巡航时处于亚音速前缘状态,则机翼前缘后掠角的范围应为大于39.7°。 7. 武器的外挂方式包括(列举4种)__________,___________,____________, ____________。 答案:机身外挂、机翼外挂、翼尖悬挂、保形运载、半埋式安装中任意4种。 8. 根据衡量进气道工作效率的重要参数,一个设计良好的进气道应当总压恢复高, 出口畸变小, 阻力低,工作稳定。 9. 布置前三点式起落架时应考虑的主要几何参数包括擦地角,防倒立角,防侧翻角,前主轮距,主轮距,停机角。 二、简答题:………………………………………………………………………( 65分) 1. 飞机总体设计有什么主要特点(需简要阐述)? 6分 答: 1)科学性与创造性 飞机设计要应用航空科学技术相关的众多领域(如空气动力学、结构力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以有多种可行的设计方案,即总体设计没有“标准答案”。 2)飞机设计是反复循环迭代的过程。 3) 高度的综合性:飞机设计需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调。 评分标准:2分/点,第一点中对“众多领域”的举例不必完全列出。 2. 飞机型式选择的主要工作有哪几个方面? 9分 答:飞机型式选择的主要工作集中到以下几个方面: 1) 总体配平型式的选择; 2) 机翼外形和机翼机身的相互位置; 3) 尾翼的数目、外形及机翼机身的相互位置; 4) 机身形状,包括座舱、使用开口及武器布置等; 5) 发动机和进气道的数目和安装位置,包括燃油的大致装载位置等; 6) 起落架的型别、收放型式和位置。 评分标准:1.5分/点 3. 简述鸭式布局的设计特点 5分 答:

北航专业简介

1、材料科学与工程学院 现设二个本科专业、六个硕士点、六个博士点和一个博士后流动站。每年招收本科生150余名,硕士生160余名(包括本、硕、博连读),博士生40余名,博士后10余名,近年来还招收来华留学生20余名。 低年级除执行学校统一的教学计划外,还开设材料学科大类平台课。高年级按金属与陶瓷材料、特种功能材料与器件、高分子及复合材料、材料加工工程与自动化、腐蚀与防护等五个培养方向组织教学,为高质量的本科人才培养提供了可靠保证。拥有从本科生到博士后的全过程培养条件。 学院下设材料科学、材料物理与化学、材料加工工程与自动化、高分子及复合材料共四个系,拥有以中国工程院院士、著名失效分析专家钟群鹏教授。 材料学院重视人才培养,锐意加强教学改革,教授给本科生上课的比例超过了85%。学院重视学生思想政治工作和学生全面素质培养的结合,实行教授班主任制度,注重加强育人环境的建设,学风好,学生出国留学与上研的比例为全校最高的院系之一,2010年应届毕业生上研和出国的比例达到了70%,学生就业率达100%。 材料学院与英国曼切斯特大学材料系、英国伦敦大学QueenMary学院、英国拉夫堡大学实行联合办学,凡在学院就读的学生,均可采用3+2(国内三年,国外两年)或2+3(国内两年,国外三年)两种模式到上述学校就读,毕业合格后授予上述学校工学硕士学历学位证书。 2、电子信息工程学院 每年招收本科生270余名,硕士生240余名,博士生50余名,博士后10余名,来华留学研究生10余名。

学院下设信息与通信工程系、电子科学与技术系、光电与信息工程系。拥有以中国工程院院士张彦仲教授;学院具有信息与通信工程、电子科学与技术、交通工程、光学工程、生物医学工程5个一级学科博士授予权,拥有通信与信息系统、电磁场与微波技术两个国家重点学科。学院目前共设有13个硕士点,9个博士点、4个自主建设博士点,3个博士后流动站。 与英国诺丁汉大学实行联合办学,与瑞典皇家工学院开展了科研项目与人才培养合作协议。 3、自动化科学与电气工程学院 北航自动化科学与电气工程学院具有从本科到博士的一体化的高级人才培养体系,拥有7个博士点、9个硕士点和1个工程硕士专业学位点,控制科学与工程是国家一级学科博士点,在全国重点一级学科评审中名列前茅。导航制导与控制、控制理论与控制工程、机械电子工程、检测技术与自动化装置、模式识别与智能系统5个二级学科为全国重点学科。 学院设有自动化大类本科专业,为国防重点专业,其口径宽、航空航天特色突出、学科资源优势明显,在自动控制、信息技术与电气工程领域为国家培养高级工程技术人才和管理人才。学生入学后自主选择自动化(自动控制与信息技术)和电气工程及其自动化两个专业进行专业培养。其中,自动化专业,以电为主、机电结合,适应数字化、信息化、综合化、网络化和智能化的发展趋势,以自动控制和计算机信息获取、信息处理与仿真为基础进行专业教育。该专业于2008年被再次评定为国防重点专业;电气工程及其自动化专业,根据电能的产生、传输、变换、检测与控制技术的发展,以电子技术、信息技术和

相关主题
文本预览
相关文档 最新文档