当前位置:文档之家› 函数与导数综合练习题

函数与导数综合练习题

函数与导数综合练习题
函数与导数综合练习题

函数与导数数学专题练习 21.14二卷(本小题满分12分)

已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.

(1)求a ;

(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点. 21.15二卷(本小题满分12分)

已知函数()ln (1)f x x a x =+-。

(1)讨论()f x 的单调性;

(2)当()f x 有最大值,且最大值大于2a - 2时,求a 的取值范围。 21.13二卷(本小题满分12分)

己知函数f(X) = x 2e -x

(I)求f(x)的极小值和极大值;(II)当曲线y = f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.

21. 12二卷(本小题满分12分)

设函数f (x )= e x -ax -2

(Ⅰ)求f (x )的单调区间(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值。

21.11二卷(本小题满分l2分)

已知函数()32()3(36)+124f x x ax a x a a R =++--∈

(Ⅰ)证明:曲线()0y f x x ==在处的切线过点(2,2);

(Ⅱ)若00()f x x x x =∈在处取得最小值,(1,3),求a 的取值范围。

21. 14一卷(12分) 设函数()()21ln 12

a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0

(1)求b;

(2)若存在01,x ≥使得()01a f x a <-,求a 的取值范围。

(整理)基本初等函数求导公式

基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1= 复合函数求导法则

设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx =g 或()()y f u x ?'''=g 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A

高中数学函数与导数综合复习

高二数学函数与导数综合复习 一、知识梳理: 1.基本初等函数的导数公式和导数的四则运算法则: 常用函数导数公式:='x ; =')(2 x ;=')(3 x ;=')1 (x ; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ; =')(x a ; =')(x e ;=')(log x a ;=')(ln x ; 导数运算法则:(1)/ [()()]f x g x ±= ;(2))]'()([x g x f ?= ; (3)/ ()[ ]() f x g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________; (2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间 4. 利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二.巩固练习: 1.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时 速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒 2. 在0000()() ()lim x f x x f x f x x ?→+?-'=?中,x ?不可能 ( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 3. 已知曲线3 2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( ) A .2 B .4 C .6+6x ?+2(x ?)2 D .6 4. 设)(x f y =存在导函数,且满足12) 21()1(lim 0 -=??--→?x x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线 斜率为( ) A .2 B .-1 C .1 D .-2

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

(完整版)导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

基本初等函数的导数公式及导数运算法则综合测试题(附答案)

基本初等函数的导数公式及导数运算法则综合测试题(附答案) 选修2-21.2.2第2课时基本初等函数的导数公式及导数运算法则 一、选择题 1 .函数y = (x+ 1)2(x—1)在x= 1处的导数等于() A.1B.2 C. 3 D. 4 答案]D 解析]y = (x+1)2]'—x1 )+(x+ 1)2(x—1)' =2(x + 1)?(x—1) + (x+ 1)2= 3x2 + 2x—1, y‘ =1= 4. 2.若对任意x€ R, f‘ =)4x3, f(1) = —1,则f(x)=() A. x4 B. x4— 2 C. 4x3—5 D. x4+ 2 答案]B 解析]丁f‘(=4x3.f(x) = x4+c,又f(1) = — 1 ? ? ? 1 + c= — 1 ,? ? ? c= —2,—f(x) = x4 — 2. 3 .设函数f(x) = xm + ax 的导数为f‘ =)2x+1,则数列{1f(n)}(n € N*) 的前n 项和是() A.nn+1 B.n+2n+1 C.nn—1 D.n+1n 答案]A 解析]T f(x) = xm+ ax 的导数为f‘(x)2x + 1,

/. m = 2, a= 1,二f(x) = x2+ x, 即f(n) = n2+n=n(n+ 1), 二数列{1f(n)}(n € N*)的前n项和为: Sn= 11 X2 12X3 13 x+…+ 1n(n+ 1) =1 —12+ 12—13+…+ 1n —1n + 1 =1 —1n+ 1= nn+ 1, 故选 A. 4.二次函数y = f(x)的图象过原点,且它的导函数y= f‘的)图象是过第 一、二、三象限的一条直线,贝卩函数y= f(x)的图象的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案]C 解析]由题意可设f(x)= ax2 + bx, f' (=2ax + b,由于f‘(的图象是过第一、二、三象限的一条直线,故2a>0, b>0,则f(x) = ax+ b2a2—b24a, 顶点—b2a,—b24a 在第三象限,故选 C. 5 .函数y = (2 + x3)2的导数为() A. 6x5+ 12x2 B. 4+ 2x3 C. 2(2+ x3)2 D. 2(2+ x3)?3x 答案]A 解析]t y= (2+ x3)2= 4+ 4x3+ x6, /. y = 6x5 + 12x2.

合理构造函数解导数问题

合理构造函数解导数问题 从近几年的高考命题分析,高考对导数的考查常以函数为依托的小综合题,考查函数、导数的基础知识和基本方法.近年的高考命题中的解答题将导数内容和传统内容中有关不等式和函数的单调性、方程根的分布、解析几何中的切线问题等有机的结合在一起,设计综合试题。在内容上日趋综合化,在解题方法上日趋多样化. 解决这类有关的问题,有时需要借助构造函数,以导数为工具构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。 例1:(2009年宁波市高三第三次模拟试卷22题) 已知函数()()ax x x ax x f --++=2 3 1ln . (1) 若 3 2 为()x f y =的极值点,求实数a 的值; (2) 若()x f y =在[)+∞,1上增函数,求实数a 的取值范围; (3) 若1-=a 时,方程()()x b x x f = ---3 11有实根,求实数b 的取值范围。 解:(1)因为3 2= x 是函数的一个极值点,所以0)32 (='f ,进而解得:0=a ,经检验是 符合的,所以.0=a (2)显然(),2312a x x ax a x f --++='结合定义域知道01>+ax 在[)+∞∈,1x 上恒成立,所以0≥a 且01≥+ax a 。同时a x x --232此函数是31x 时递增, 故此我们只需要保证()0231 1≥--++= 'a a a f ,解得:.2510+≤≤a (3)方法一、变量分离直接构造函数 解:由于0>x ,所以:( )2 ln x x x x b -+=32 ln x x x x -+= ()2 321ln x x x x g -++=' ()x x x x x x g 1 266212---=-+='' 当6710+< ''x g 所以()x g '在6 7 10+< x 时,(),0<''x g 所以()x g '在6 71+>x 上递减; 又(),01='g ().6 7 10, 000+< <='∴x x g

基本初等函数的导数公式表

导数基本知识汇总试题 基本知识点: 知识点一、基本初等函数的导数公式表(须掌握的知识点) 1、=c '0 2、 =n n x nx -1'() (n 为正整数) 3、 ln =x x a a a '() =x x e e '() 4、ln =a long x x a 1'() 5、ln =x x 1 '() 6、sin cos =x x '() 7、 cos sin =-x x '() 8、=-x x 211'() 知识点二:导数的四则运算法则 1、v =u v u '''±±() 2、 =u v uv v u '''+() 3、(=Cu Cu '' ) 4、u -v =u v u v v 2'''() 知识点三:利用函数导数判断函数单调性的法则 1、如果在(,)a b ,()f x '>0,则()f x 在此区间是增区间,(,)a b 为()f x 的单调增区间。 2、如果在(,)a b ,()f x '<0,则()f x 在此区间是减区间,(,)a b 为()f x 的单调减区间。 一、计算题 1、计算下列函数的导数; (1)y x 15= (2) )-y x x 3=≠0( (3))y x x 54=0 ( (4))y x x 23=0 ( (5))-y x x 23 =0 ( (6)y x 5=

(7)sin y x = (8)cos y x = (9)x y =2 (10)ln y x = (11)x y e = 2、求下列函数在给定点的导数; (1)y x 1 4= ,x =16 (2)sin y x = ,x π =2 (3)cos y x = ,x π=2 (4)sin y x x = ,x π =4 (5)3y x = ,11 28(,) (6)+x y x 2=1 ,x =1 (7)y x 2 = ,,24()

最新复合函数求导练习题

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

高中数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征)()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=23)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x =+()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 326()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数 ()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为5102,函数33)()(22 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ)'2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时'()0f x <,(2,3)x ∈时'()0f x >, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1, 3]x ∈时,要使 22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+,解得 01a <<. 2、解:(Ⅰ) a ax x x f ++='23)(2. 由题意知???=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵3>a ,∴01242>-=?a a .

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

(完整word版)2018年高考数学专题复习突破训练(高考真题专题练)_构造函数解决高考导数问题

构造函数解决高考导数问题 1.(2015·课标全国Ⅰ理)设函数a ax x e x f x +--=)12()(,其中1

6.(2016?课标全国Ⅱ文)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 7.(2017·天津文)(本小题满分14分) 设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅰ)求()f x 的单调区间; (Ⅱ)已知函数()y g x =和x y e =的图像在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0; (ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围. 8.(2016·江苏)(本小题满分16分)已知函数f (x )=a x +b x (a >0,b >0,a ≠1,b ≠1). (1)设a =2,b =1 2 . ①求方程f (x )=2的根; ②若对于任意x ∈R ,不等式f (2x )≥mf (x )-6恒成立,求实数m 的最大值; (2)若0<a <1,b >1,函数g (x )=f (x )-2有且只有1个零点,求ab 的值.

导数综合讲义(教师版).pdf

导数综合讲义 第1讲导数的计算与几何意义 (3) 第2讲函数图像 (4) 第3讲三次函数 (7) 第4讲导数与单调性 (8) 第5讲导数与极最值 (9) 第6讲导数与零点 (10) 第7讲导数中的恒成立与存在性问题 (11) 第8讲原函数导函数混合还原(构造函数解不等式) (13) 第9讲导数中的距离问题 (17) 第10讲导数解答题 (18) 10.1 导数基础练习题 (21) 10.2 分离参数类 (24) 10.3 构造新函数类 (26) 10.4 导数中的函数不等式放缩 (29) 10.5 导数中的卡根思想 (30) 10.6 洛必达法则应用 (32) 10.7 先构造,再赋值,证明和式或积式不等式 (33) 10.8 极值点偏移问题 (35) 10.9 多元变量消元思想 (37) 10.10 导数解决含有ln x与e x的证明题(凹凸反转) (39) 10.11 导数解决含三角函数式的证明 (40) 10.12 隐零点问题 (42) 10.13 端点效应 (44) 10.14 其它省市高考导数真题研究 (45)

导数 【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应引起考生注意。 【基础知识整合】 1、导数的定义: f ' (x ) = lim f (x 0 + ?x ) - f (x 0 ) , f ' (x ) = lim f (x + ?x ) - f (x ) 0 ?x →0 ?x ?x →0 ?x 2、导数的几何意义:导数值 f ' (x ) 是曲线 y = f (x ) 上点 (x , f (x )) 处切线的斜率 3、常见函数的导数: C ' = 0 ; (x n )' = nx n -1 ; (sin x )' = cos x ; (cos x )' = -sin x ; (ln x )' = 1x ; (log a x )' = x ln 1 a ; (e x )' = e x ; (a x )' = a x ln a 4、导数的四则运算: (u ± v )' = u ' ± v ' ;; (u ?v )' = u ' v + v ' u ; (u )' = u 'v -2 v 'u v v 5、复合函数的单调性: f ' x (g (x )) = f ' (u )g ' (x ) 6、导函数与单调性:求增区间,解 f ' (x ) > 0 ;求减区间,解 f ' (x ) < 0 若函数在 f (x ) 在区间 (a , b ) 上是增函数 ? f ' (x ) ≥ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上是减函数 ? f ' (x ) ≤ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在增区间 ? f ' (x ) > 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在减区间 ? f ' (x ) < 0 在 (a , b ) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题

考点06 函数与导数的综合运用(1)(解析版)

考点06 函数与导数的综合应用(1) 【知识框图】 【自主热身,归纳提炼】 1、(2016南京学情调研)已知函数f (x )=1 3x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值 范围为________. 【答案】???? 32,4 【解析】因为函数f (x )在(1,2)上有极值,则需函数f (x ) 在(1,2)上有极值点. 解法 1 令f ′(x )=x 2+2x -2a =0,得x 1=-1-1+2a ,x 2=-1+1+2a ,因为x 1?(1,2),因此则需10,解得3 2

导数练习题及答案:函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

相关主题
文本预览
相关文档 最新文档