当前位置:文档之家› 概率论与数理统计习题答案-第二版-修订版-复旦大学

概率论与数理统计习题答案-第二版-修订版-复旦大学

概率论与数理统计习题答案-第二版-修订版-复旦大学
概率论与数理统计习题答案-第二版-修订版-复旦大学

概率论与数理统计习题及答案

习题一

1. 略.见教材习题参考答案.

2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:

(1)A发生,B,C都不发生;

(2)A与B发生,C不发生;

(3)A,B,C都发生;

(4)A,B,C至少有一个发生;

(5)A,B,C都不发生;

(6)A,B,C不都发生;

(7)A,B,C至多有2个发生;

(8)A,B,C至少有2个发生.

【解】(1)A BC(2)AB C(3)ABC

(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC

(6) ABC

(5) ABC=A B C

(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C

(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC

3. 略.见教材习题参考答案

4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).

【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]

=1-[0.7-0.3]=0.6

5.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:

(1)在什么条件下P(AB)取到最大值?

(2)在什么条件下P(AB)取到最小值?

【解】(1)当AB=A时,P(AB)取到最大值为0.6.

(2)当A∪B=Ω时,P(AB)取到最小值为0.3.

6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,

P(AC)=1/12,求A,B,C至少有一事件发生的概率.

【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)

=

14+14+13-112=34

23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()

()()()()()

P AB P A P AB P B A B P A B P A P B P AB -==

+- 0.70.51

0.70.60.54

-=

=+-

33. 三人独立地破译一个密码,他们能破译的概率分别为15,13,1

4

,求将此密码破译出的概率.

【解】 设A i ={第i 人能破译}(i =1,2,3),则

3

1231231

()1()1()()()i i P A P A A A P A P A P A ==-=-

423

10.6534

=-

??= 34. 甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人

击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3

由全概率公式,得

3

()(|)()i i i P A P A B P B ==∑

=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+

(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.458

.

习题二

1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只

球中的最大号码,写出随机变量X 的分布律. 【解】

3535

24

35

3,4,51

(3)0.1C 3(4)0.3C C (5)0.6

C X P X P X P X ======

====

故所求分布律为 X 3 4 5 P

0.1

0.3

0.6

2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;

(2) X 的分布函数并作图; (3)

133

{},{1},{1},{12}222

P X P X P X P X ≤<≤≤≤<<.

【解】

3

1331512213

3151133

150,1,2.

C 22

(0).

C 35C C 12(1).

C 35

C 1

(2).C 35

X P X P X P X ========== 故X 的分布律为 X 0

1

2

P

22

35 1235 135

(2) 当x <0时,F (x )=P (X ≤x )=0

当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=

2235

当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435

当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数

0,

022

,0135()34,12351,2x x F x x x

(3)

1122()(),

2235333434

(1)()(1)0

223535

3312

(1)(1)(1)2235

341

(12)(2)(1)(2)10.

3535

P X F P X F F P X P X P X P X F F P X ≤==<≤=-=-=≤≤==+<≤=

<<=--==--=

3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】

设X 表示击中目标的次数.则X =0,1,2,3.

312

32

2

3

3(0)(0.2)0.008

(1)C 0.8(0.2)0.096

(2)C (0.8)0.20.384(3)(0.8)0.512

P X P X P X P X ============

故X 的分布律为 X 0 1 2 3 P

0.008

0.096

0.384

0.512

分布函数

0,

00.008,01()0.104,120.488,231,3x x F x x x x

=≤

≥??

(2)(2)(3)0.896P X P X P X ≥==+==

4.(1) 设随机变量X 的分布律为

P {X =k }=!

k a

k

λ,

其中k =0,1,2,…,λ>0为常数,试确定常数a .

(2) 设随机变量X 的分布律为

P {X =k }=a/N , k =1,2,…,N ,

试确定常数a . 【解】(1) 由分布律的性质知

1()e !

k

k k P X k a a k λλ∞∞

======∑∑

故 e

a λ

-=

(2) 由分布律的性质知

1

1

1()N

N

k k a

P X k a N

======∑∑

即 1a =.

5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率.

【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)

(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+

(3,3)P X Y ==

331212

33(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++

222

23333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+

0.32076=

(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ (2,1)(3,1)(3,2)P X Y P X Y P X Y ==+==+==

123223

33C 0.6(0.4)(0.3)C (0.6)0.4(0.3)=++ 332212

33(0.6)(0.3)C (0.6)0.4C 0.7(0.3)++ 31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3+

=0.243

6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?

【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,

则有

()0.01P X N ><

即 200

200200

1

C

(0.02)(0.98)0.01k k k k N -=+<∑

利用泊松近似

2000.02 4.np λ==?=

41

e 4()0.01!k

k N P X N k -∞

=+≥<∑

查表得N ≥9.故机场至少应配备9条跑道.

7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?

【解】设X 表示出事故的次数,则X ~b (1000,0.0001)

(2)1(0)(1)P X P X P X ≥=-=-=

0.1

0.11e

0.1e --=--?

8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则

14223

55C (1)C (1)p p p p -=-

故 1

3

p =

所以 4

4

51210(4)C ()

3

3243

P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)

5

553(3)C (0.3)(0.7)0.16308k

k k k P X -=≥==∑

(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)

7

773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑

10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分

布,而与时间间隔起点无关(时间以小时计).

(1) 求某一天中午12时至下午3时没收到呼救的概率;

(2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)3

2

(0)e

P X -== (2) 52

(1)1(0)1e P X P X -

≥=-==-

11.设P {X =k }=k

k

k

p p --22)1(C , k =0,1,2

P {Y =m }=m

m

m

p p --44)

1(C , m =0,1,2,3,4

分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=

5

9

,试求P {Y ≥1}.

【解】因为5(1)9P X ≥=

,故4(1)9

P X <=. 而 2(1)(0)(1)P X P X p <===-

故得 2

4

(1),9p -=

即 1

.3

p =

从而 4

65

(1)1(0)1(1)0.8024781

P Y P Y p ≥=-==--=

≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中

恰有5册错误的概率.

【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,

20000.0012np λ==?=

得 25

e 2(5)0.00185!

P X -=≈= 13.进行某种试验,成功的概率为

34,失败的概率为1

4

.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =

113

()()44

k P X k -==

(2)(4)(2)P X P X P X k =+=++=+ 321131313

()()444444

k -=++++ 21314145

1()4

==- 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡

的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;

(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.

(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为

(200030000)(15)1(14)P X P X P X >=>=-≤

由于n 很大,p 很小,λ=np =5,故用泊松近似,有

514

e 5(15)10.000069!k

k P X k -=>≈-≈∑

(2) P (保险公司获利不少于10000)

(30000200010000)(10)P X P X =-≥=≤

510

e 50.986305!k

k k -=≈≈∑

即保险公司获利不少于10000元的概率在98%以上

P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤

55

e 50.615961!k

k k -=≈≈∑

即保险公司获利不少于20000元的概率约为62%

15.已知随机变量X 的密度函数为

f (x )=A e -|x |, -∞

求:(1)A 值;(2)P {0

()d 1f x x ∞

-∞

=?

||

1e d 2e d 2x x A x A x A ∞

---∞

===??

故 1

2

A =

. (2) 11

011(01)e d (1e )22

x p X x --<<==-?

(3) 当x <0时,11()e d e 22x x x F x x -∞==? 当x ≥0时,0||0111

()e d e d e d 222x x x x x F x x x x ---∞-∞==+??? 11e 2

x

-=-

故 1e ,0

2

()11e 0

2

x

x x F x x -?

?-≥??

16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为

f (x )=?????<≥.100,

0,

100,1002x x x

求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率;

(3) F (x ). 【解】

(1) 150

2

1001001

(150)d .3P X x x ≤=

=? 33128

[(150)]()327

p P X =>==

(2) 12

23124C ()339

p ==

(3) 当x <100时F (x )=0

当x ≥100时()()d x

F x f t t -∞=

?

100

100

()d ()d x f t t f t t -∞=+?

?

2

100100100

d 1x

t t x

=

=-? 故 100

1,100()0,

0x F x x

x ?-

≥?=??

中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为

1

,0()0,

x a

f x a

?≤≤?=???其他 故当x <0时F (x )=0 当0≤x ≤a 时0

1()()d ()d d x

x x

x F x f t t f t t t a a

-∞

====?

??

当x >a 时,F (x )=1

即分布函数

0,

0(),

01,

x x F x x a a x a

?? 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测

值大于3的概率. 【解】X ~U [2,5],即

1

,25

()3

0,

x f x ?≤≤?=???其他

5

3

12(3)d 33

P X x >==?

故所求概率为

223333

21220C ()C ()33327

p =+= 19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1

()5

E .某顾客在窗口

等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等

到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5

X E ,即其密度函数为

5

1e ,0

()5

0,x

x f x -?>?=??≤?

x 0 该顾客未等到服务而离开的概率为

25

101(10)e d e 5

x P X x -∞

->==?

2~(5,e )Y b -,即其分布律为

225525

()C (e )(1e ),0,1,2,3,4,5

(1)1(0)1(1e )0.5167

k

k k P Y k k P Y P Y ----==-=≥=-==--=

20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服

从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则

406040(60)(2)0.9772710

10x P X P Φ--??

<=<== ???

若走第二条路,X~N (50,42),则

506050(60)(2.5)0.99384

4X P X P Φ--??

<=<== ???++

故走第二条路乘上火车的把握大些.

(2) 若X~N (40,102),则

404540(45)(0.5)0.69151010X P X P Φ--??

<=<== ???

若X~N (50,42),则

504550(45)( 1.25)4

4X P X P Φ--??

<=<=- ???

1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些. 21.设X ~N (3,22),

(1) 求P {2

22X P X P ---??

<≤=<≤

???

11(1)(1)1220.841310.69150.5328

ΦΦΦΦ????

=--=-+ ? ?

????=-+=

433103(410)2

22X P X P ----??

-<≤=<≤ ???

770.999622ΦΦ????

=--=

? ?????

(||2)(2)(2)P X P X P X >=>+<-

323323222215151122220.691510.99380.6977

X X P P ΦΦΦΦ-----????=>+< ? ?

????????????

=--+-=+- ? ? ? ?????????=+-=

333

(3)(

)1(0)0.522

X P X P Φ->=>=-=- (2) c=3

22.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ?-?

->=>

???

1(2)(2)2[1(2)]0.0456

ΦΦΦ=-+-=-=

23.一工厂生产的电子管寿命X (小时)服从正态分布N (160,σ2),若要求P {120<X ≤200}

≥0.8,允许σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ---??

<≤=<≤

???

404040210.8ΦΦΦσσσ-??????

=-=-≥

? ? ???????

故 40

31.251.29

σ≤

= 24.设随机变量X 分布函数为

F (x )=e ,0,

(0),00.xt A B x ,x λ-?+≥>?

(1) 求常数A ,B ;

(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).

【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞

→+

→-=???=??得11A B =??=-?

(2) 2(2)(2)1e P X F λ-≤==-

33(3)1(3)1(1e )e P X F λλ-->=-=--=

(3) e ,0

()()0,0x x f x F x x λλ-?≥'==?

25.设随机变量X 的概率密度为

f (x )=??

?

??<≤-<≤.

,0,21,

2,10,

其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).

【解】当x <0时F (x )=0

当0≤x <1时0

()()d ()d ()d x

x

F x f t t f t t f t t -∞

-∞

=

=+?

?

?

2

0d 2

x

x t t ==?

当1≤x<2时()()d x

F x f t t -∞=

?

1

1

1

1

22

()d ()d ()d d (2)d 13222221

2

x

x f t t f t t f t t

t t t t

x x x x -∞==+=+-=+--=-+-?

????

当x ≥2时()()d 1x

F x f t t -∞

=

=?

故 22

0,0,01

2

()21,1221,

2

x x x F x x x x x

26.设随机变量X 的密度函数为

(1) f (x )=a e - |x |,λ>0;

(2) f (x )=?????<≤<<.

,

0,21,

1

,10,2其他x x x bx 试确定常数a ,b ,并求其分布函数F (x ).

【解】(1) 由

()d 1f x x ∞

-∞

=?

知||0

21e d 2e d x x a

a x a x λλλ

---∞

===

??

故 2

a λ

=

即密度函数为 e ,02

()e 02

x

x x f x x λλλλ-?>??=??≤??

当x ≤0时1()()d e d e 22

x

x

x x F x f x x x λλλ

-∞

-∞===?

?

当x >0时0

()()d e d e d 2

2

x

x

x

x F x f x x x x λλλ

λ

--∞

-∞

=

=+?

??

11e 2

x

λ-=-

故其分布函数

11e ,02

()1e ,02

x

x x F x x λλ-?->??=??≤??

(2) 由12

20

1

11

1()d d d 22

b f x x bx x x x ∞

-∞

=

=+=+?

??

得 b =1

即X 的密度函数为

2,011(),120,

x x f x x x

<

=≤

当x ≤0时F (x )=0 当0

()()d ()d ()d x

x

F x f x x f x x f x x -∞-∞

=

=+?

?

?

2

d 2

x

x x x =

=?

当1≤x <2时012

1

1()()d 0d d d x x

F x f x x x x x x x -∞

-∞

==++????

312x

=

- 当x ≥2时F (x )=1 故其分布函数为

20,0,01

2

()31,1221,2

x x x F x x x x ≤???<

27.求标准正态分布的上α分位点, (1)α=0.01,求z α; (2)α=0.003,求z α,/2z α. 【解】(1) ()0.01P X z α>=

即 1()0.01z αΦ-= 即

()0.09z αΦ=

故 2.33z α= (2) 由()0.003P X z α>=得

1()0.003z αΦ-=

即 ()0.997z αΦ= 查表得 2.75z α=

由/2()0.0015P X z α>=得

/21()0.0015z α-Φ=

/2()0.9985z αΦ=

查表得 /2 2.96z α= 28.设随机变量X 的分布律为 X -2 -1 0 1 3 P k

1/5 1/6 1/5 1/15 11/30

求Y =X 2的分布律.

【解】Y 可取的值为0,1,4,9

1(0)(0)5

117(1)(1)(1)61530

1

(4)(2)511

(9)(3)30

P Y P X P Y P X P X P Y P X P Y P X ====

===-+==+====-=

====

故Y 的分布律为

Y 0 1 4 9 P k

1/5 7/30 1/5 11/30

29.设P {X =k }=(

12

)k

, k =1,2,…,令 1,1,.X Y X ?=?

-?

当取偶数时

当取奇数时 求随机变量X 的函数Y 的分布律.

【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+

242111

()()()222

111()/(1)443

k =++++=-=

2(1)1(1)3

P Y P Y =-=-==

30.设X ~N (0,1).

(1) 求Y =e X 的概率密度; (2) 求Y =2X 2+1的概率密度; (3) 求Y =|X |的概率密度.

【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=

当y >0时,()()(e )(ln )x Y F y P Y y P y P X y =≤=≤=≤

ln ()d y

X f x x -∞

=

?

故 2/2

ln d ()111()(ln )e ,0d 2π

y Y Y x F y f y f y y y y y -===> (2)2(211)1P Y X =+≥=

当y ≤1时()()0Y F y P Y y =≤=

当y >1时2()()(21)Y F y P Y y P X y =≤=+≤

2

111222y y y P X P X ??

---??=≤=-≤≤ ? ? ??

???

(1)/2

(1)/2

()d y X y f x x ---=

?

故 d 1

211()()d 4

122Y Y X X y y f y F y f f y y ??

????--=

=+-?? ? ? ? ?-????????

(1)/4

1

21e ,1212π

y y y --=>-

(3) (0)1P Y ≥=

当y ≤0时()()0Y F y P Y y =≤=

当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤ ()d y

X y

f x x -=

?

故d

()()()()d Y Y X X f y F y f y f y y

=

=+- 2/22e ,02π

y y -=>

31.设随机变量X ~U (0,1),试求:

(1) Y =e X 的分布函数及密度函数; (2) Z =-2ln X 的分布函数及密度函数. 【解】(1) (01)1P X <<=

故 (1e e )1

X

P Y <=<= 当1y ≤时()()0Y F y P Y y =≤=

当1

ln 0

d ln y

x y ==?

当y ≥e 时()(e )1X Y F y P y =≤= 即分布函数

0,

1()ln ,1e 1,e Y y F y y y y ≤??

=<

故Y 的密度函数为

1

1e ,

()0,Y y y f y ?<

=???

其他 (2) 由P (0

(0)1P Z >=

当z ≤0时,()()0Z F z P Z z =≤=

当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤

/2

(ln )(e )2

z z P X P X -=≤-=≥

/21

/2

e d 1e z z x --=

=-? 即分布函数

-/2

0,

0()1-e ,Z z z F z z ≤?=?>?

0 故Z 的密度函数为

/2

1e ,0

()20,

z Z z f z z -?>?=??≤?0

32.设随机变量X 的密度函数为

f (x )=22,0π,π0,

.x

x ?<

试求Y =sin X 的密度函数. 【解】(01)1P Y <<=

当y ≤0时,()()0Y F y P Y y =≤=

当0

(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<

arcsin π220πarcsin 22d d ππy

y x x x x -=

+??

222211arcsin 1πarcsin ππy y =+--()() 2

arcsin π

y =

当y ≥1时,()1Y F y = 故Y 的密度函数为

2

21,01π()10,Y y f y y

?<

其他 33.设随机变量X 的分布函数如下:

???

??≥

<+=.

)3(,

)2(,

)1(,11

)(2

x x x x F

试填上(1),(2),(3)项.

【解】由lim ()1x F x →∞

=知②填1。

由右连续性+

0lim ()()1x x F x F x →==知00x =,故①为0。 从而③亦为0。即

2

1

,0()11,

0x F x x x ?

=+??≥? 34.同时掷两枚骰子,直到一枚骰子出现6点为止,求抛掷次数X 的分布律. 【解】设A i ={第i 枚骰子出现6点}。(i=1,2),P (A i )=

1

6

.且A 1与A 2相互独立。再设C ={每次抛掷出现6点}。则

121212()()()()()()P C P A A P A P A P A P A ==+-

111111666636

=

+-?= 故抛掷次数X 服从参数为11

36

的几何分布。

35.随机数字序列要多长才能使数字0至少出现一次的概率不小于0.9? 【解】令X 为0出现的次数,设数字序列中要包含n 个数字,则

X~b (n ,0.1)

00(1)1(0)1C (0.1)(0.9)0.9n

n P X P X ≥=-==-≥

即 (0.9)0.1n ≤ 得 n ≥22 即随机数字序列至少要有22个数字。 36.已知

F (x )=????

?

????≥<≤+<.

2

1,1,21

0,

21,0,0x x x x

则F (x )是( )随机变量的分布函数.

(A ) 连续型; (B )离散型; (C ) 非连续亦非离散型.

【解】因为F (x )在(-∞,+∞)上单调不减右连续,且lim ()0x F x →-∞

=

lim ()1x F x →+∞

=,所以F (x )是一个分布函数。

但是F (x )在x =0处不连续,也不是阶梯状曲线,故F (x )是非连续亦非离散型随机变量的分布函数。选(C )

37.设在区间[a ,b ]上,随机变量X 的密度函数为f (x )=sin x ,而在[a ,b ]外,f (x )=0,则区间 [a ,b ]

等于( )

(A ) [0,π/2]; (B ) [0,π];

(C ) [-π/2,0]; (D) [0,π2

3]. 【解】在π[0,]2

上sin x ≥0,且

π/2

sin d 1x x =?

.故f (x )是密度函数。

在[0,π]上π

sin d 21x x =≠?

.故f (x )不是密度函数。

在π

[,0]2-

上sin 0x ≤,故f (x )不是密度函数。 在3[0,π]2上,当3

ππ2

x <≤时,sin x <0,f (x )也不是密度函数。

故选(A )。

38.设随机变量X ~N (0,σ2),问:当σ取何值时,X 落入区间(1,3)的概率最大? 【解】因为2

1

3

~(0,),(13)(

)X

X N P X P σσ

σ

σ

<<=<

<

3

1

()()()g σσσ

=Φ-Φ令

利用微积分中求极值的方法,有

22

3

311

()()()()g σσ

σσσ

'''=-

Φ+Φ

22

2

2

9/21/22

2

1/28/22

3

111e e 221e [13e ]02σσσσσσπ

π

πσ

----=-

+=

-=令

得2

04ln 3σ=

,则 02

ln 3

σ= 又 0()0g σ''< 故02

ln 3

σ<

为极大值点且惟一。 故当2

ln 3

σ=

时X 落入区间(1,3)的概率最大。 39.设在一段时间内进入某一商店的顾客人数X 服从泊松分布P (λ),每个顾客购买某种物

品的概率为p ,并且各个顾客是否购买该种物品相互独立,求进入商店的顾客购买这种物品的人数Y 的分布律.

【解】e (),0,1,2,!

m

P X m m m λλ-==

= 设购买某种物品的人数为Y ,在进入商店的人数X =m 的条件下,Y ~b (m ,p ),即

(|)C (1)

,0,1,,k k m k

m P Y k X m p p k m -===-= 由全概率公式有

()()(|)m k

P Y k P X m P Y k X m ∞

======∑

全国历自学考试概率论与数理统计(二)试题与答案

全国2011年4月自学考试概率论与数理统计(二) 课程代码:02197 选择题和填空题详解 试题来自百度文库 答案由王馨磊导师提供 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A , B , C , 为随机事件, 则事件“A , B , C 都不发生”可表示为( A ) A .C B A B .C B A C .C B A D .C B A 2.设随机事件A 与B 相互独立, 且P (A )=5 1, P (B )=5 3, 则P (A ∪B )= ( B ) A .253 B .2517 C .5 4 D .2523 3.设随机变量X ~B (3, 0.4), 则P {X ≥1}= ( C ) A .0.352 B .0.432 C .0.784 D .0.936 解:P{X ≥1}=1- P{X=0}=1-(1-0.4)3=0.784,故选C. 4.已知随机变量X 的分布律为 , 则P {-2<X ≤4}= ( C ) A .0.2 B .0.35 C .0.55 D .0.8 解:P {-2<X ≤4}= P {X =-1}+ P {X =2}=0.2+0.35=0.55,故选C. 5.设随机变量X 的概率密度为4 )3(2 e 2 π21)(+-= x x f , 则E (X ), D (X )分别为 ( ) A .2,3- B .-3, 2 C .2,3 D .3, 2 与已知比较可知:E(X)=-3,D(X)=2,故选B. 6.设二维随机变量 (X , Y )的概率密度为? ??≤≤≤≤=,,0, 20,20,),(其他y x c y x f 则常数 c = ( A ) A .4 1 B .2 1 C .2 D .4 解:设D 为平面上的有界区域,其面积为S 且S>0,如果二维随机变量 (X ,Y )的概率密度为 则称 (X ,Y )服从区域D 上的均匀分布,

概率论和数理统计 复旦大学 课后题答案4

4习题四 1.设随机变量X 的分布律为 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;82842 E X =-? +?+?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 故 ()0.58300.34010.07020.0073E X =? +?+?+?+?+? 0.501,= 5 2 ()[( )]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?= 3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①, 又12331()(1)010.1E X P P P P P =-++=-= ……②, 2222 12313()(1)010.9E X P P P P P =-++=+= ……③ 由①②③联立解得1230.4,0.1,0.5.P P P === 4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少? 【解】记A ={从袋中任取1球为白球},则

(){|}{}N k P A P A X k P X k ===∑ 全概率公式 1{}{} 1().N N k k k P X k kP X k N N n E X N N ===== ===∑∑ 5.设随机变量X 的概率密度为 f (x )=?? ? ??≤≤-<≤.,0,21,2, 10,其他x x x x 求E (X ),D (X ). 【解】1 2 2 1 ()()d d (2)d E X xf x x x x x x x +∞ -∞ = =+-? ?? 2 1 3 32011 1.33x x x ?? ??=+-=??????? ? 1 2 2 2 3 20 1 7 ()()d d (2)d 6 E X x f x x x x x x x +∞ -∞ ==+-= ? ?? 故 2 2 1()()[()].6 D X E X E X =-= 6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ -4X . 【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=?+?+= (2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X - 因独立 1184568.=?-?= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ), D (2X -3Y ). 【解】(1) (32)3()2()3323 3. E X Y E X E Y -=-=?-?= (2) 2 2 (23)2()(3)412916192.D X Y D X DY -=+-=?+?= 8.设随机变量(X ,Y )的概率密度为

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计习题及答案

习题二 3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 4.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 5.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 6.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;

(2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 7.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 8.已知在五重伯努利试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间 隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32 (0)e P X -== (2) 52 (1)1(0)1e P X P X - ≥=-==- 11.设P {X =k }=k k k p p --22) 1(C , k =0,1,2 P {Y =m }=m m m p p --44) 1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=5 9 ,试求P {Y ≥1}. 【解】因为5(1)9P X ≥= ,故4(1)9 P X <=. 而 2 (1)(0)(1)P X P X p <===-

概率论与数理统计复旦大学出版社第二章课后答案(供参考)

概率论与数理统计习题二答案 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只 球中的最大号码,写出随机变量X 的分布律. 【解】X 的可能取值为3,4,5,其取不同值的概率为 以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)1 33{},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】X 的可能取值为0,1,2,其取不同值的概率为 (2) 当0x <时,{}()0F x P X x =≤= 当01x ≤<时,{}{}22()035 F x P X x P X =≤=== 当12x ≤<时,{}{}{}34()0135 F x P X x P X P X =≤==+== 当2x ≥时,{}{}{}{}()0121F x P X x P X P X P X =≤==+=+== 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示3次射击中击中目标的次数.则X 的可能取值为0,1,2,3,显然~(3,0.8)X b 其取不同值的概率为 分布函数 3次射击中至少击中2次的概率为 4.(1) 设随机变量X 的分布律为 {}! k P x k a k λ==, 其中k =0,1,2,…,λ>0为常数,试确定常数a .

(2) 设随机变量X 的分布律为 {}a P x k N == , k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率. 【解】设X 、Y 分别表示甲、乙投中次数,则~(3,0.6)X b ,~(3,0.7)Y b (1) {}{}{}{}{}0,01,12,23,3P X Y P X Y P X Y P X Y P X Y ====+==+==+== 33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++222233 33C (0.6)0.4C (0.7)0.3(0.6)(0.7)+ (2) {}{}{}{}1,02,03,0P X Y P X Y P X Y P X Y >===+==+== 312322 33(0.6)C 0.7(0.3)(0.6)C (0.7)0.3++=0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则~(200,0.02)X b ,设机场需配备N 条跑 道,根据题意有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松定理近似计算 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 13 p = 所以 4 451210 (4)C () 33243 P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率;

概率论与数理统计模拟试题

模拟试题A 一.单项选择题(每小题3分,共9分) 1. 打靶3 发,事件表示“击中i发”,i = 0,1,2,3。那么事件 表示( )。 ( A ) 全部击中;( B ) 至少有一发击中; ( C ) 必然击中;( D ) 击中3 发 2.设离散型随机变量x 的分布律为则常数 A 应为 ( )。 ( A ) ;( B ) ;(C) ;(D) 3.设随机变量,服从二项分布B ( n,p ),其中0 < p < 1 ,n = 1,2,…,那么,对 于任一实数x,有等于( )。 ( A ) ; ( B ) ; ( C ) ; ( D ) 二、填空题(每小题3分,共12分) 1.设A , B为两个随机事件,且P(B)>0,则由乘法公式知P(AB) =__________ 2.设且有 ,,则 =___________。 3.某柜台有4个服务员,他们是否需用台秤是相互独立的,在1小时内每人需用台秤的概 率为,则4人中至多1人需用台秤的概率为:__________________。 4.从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________。 三、(10分)已知,求证 四、(10分)5个零件中有一个次品,从中一个个取出进行检查,检查后不放回。直到查 到次品时为止,用x表示检查次数,求的分布函数: 五、(11分)设某地区成年居民中肥胖者占10% ,不胖不瘦者占82% ,瘦者占8% ,又知肥胖者患高血压的概率为20%,不胖不瘦者患高血压病的概率为10% ,瘦者患高血压病的概率为

5%, 试求: ( 1 ) 该地区居民患高血压病的概率; ( 2 ) 若知某人患高血压, 则他属于肥胖者的概率有多大? 六、(10分)从两家公司购得同一种元件,两公司元件的失效时间分别是随机变量和,其概率密度分别是: 如果与相互独立,写出的联合概率密度,并求下列事件的概率: ( 1 ) 到时刻两家的元件都失效(记为A), ( 2 ) 到时刻两家的元件都未失效(记为B), ( 3 ) 在时刻至少有一家元件还在工作(记为D)。 七、(7分)证明:事件在一次试验中发生次数x的方差一定不超过。 八、(10分)设和是相互独立的随机变量,其概率密度分别为 又知随机变量 , 试求w的分布律及其分布函数。 九、(11分)某厂生产的某种产品,由以往经验知其强力标准差为 7.5 kg且强力服从正态分布,改用新原料后,从新产品中抽取25 件作强力试验,算 得,问新产品的强力标准差是否有显著变化?( 分别 取和0.01,已知, ) 十、(11分)在考查硝酸钠的可溶性程度时,对一系列不同的温度观察它在100ml 的水中溶解的硝酸钠的重量,得观察结果如下:

概率论与数理统计考研复习资料

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 1.A ?B(事件B 包含事件A )事件A 发生必然导致事件B 发生. 2.A ∪B(和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A -B(差事件)事件A 发生而B 不发生. 5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A = B A B A = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n , P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) . (5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n ()()() () +∑ + ∑ - ∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 111 21 …+(-1)n-1P(A 1A 2…A n ) 四.等可能(古典)概型 1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型. 2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率 1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0). 2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)= ()()i n i i B A P B P ∑=1

概率论与数理统计复旦大学出版社第四章课后答案

概率论 习题四 答案 1.设随机变量X 的分布律为 X -1 0 1 2 P 1/8 1/2 1/8 1/4 求E (X ),E (X ),E (2X +3). 【解】(1) 11111 ()(1)012;8 2842 E X =-?+? +?+?= (2) 22 22211115()(1)012;82844 E X =-?+?+?+?= (3) 1 (23)2()32342 E X E X +=+=?+= 2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. X 0 1 2 3 4 5 P 5905100 C 0.583C = 14 1090 5 100 C C 0.340C = 231090 5 100 C C 0.070C = 321090 5 100 C C 0.007C = 4110905100 C C 0C = 510 5 100 C 0C = 故 ()0.58300.34010.07020.00730405E X =?+?+?+?+?+? 0.501,= 5 2 ()[()]i i i D X x E X P == -∑ 222(00.501)0.583(10.501)0.340(50.501)00.432. =-?+-?++-?=L 3.设随机变量X -1 0 1 P p 1 p 2 p 3 且已知E (X )=0.1,E (X 2)=0.9,求123,,p p p . 【解】因1231p p p ++=……①, 又12331()(1)010.1E X p p p p p =-++=-=g g ……②, 222212313()(1)010.9E X p p p p p =-++=+=g g g ……③ 由①②③联立解得1230.4,0.1,0.5.p p p ===

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

《概率论与数理统计》基本名词中英文对照表

《概率论与数理统计》基本名词中英文对照表英文中文 Probability theory 概率论 mathematical statistics 数理统计 deterministic phenomenon 确定性现象 random phenomenon 随机现象 sample space 样本空间 random occurrence 随机事件 fundamental event 基本事件 certain event 必然事件 impossible event 不可能事件 random test 随机试验 incompatible events 互不相容事件 frequency 频率 classical probabilistic model 古典概型 geometric probability 几何概率 conditional probability 条件概率 multiplication theorem 乘法定理 Bayes's formula 贝叶斯公式 Prior probability 先验概率 Posterior probability 后验概率 Independent events 相互独立事件 Bernoulli trials 贝努利试验 random variable 随机变量

probability distribution 概率分布 distribution function 分布函数 discrete random variable 离散随机变量distribution law 分布律hypergeometric distribution 超几何分布 random sampling model 随机抽样模型binomial distribution 二项分布 Poisson distribution 泊松分布 geometric distribution 几何分布 probability density 概率密度 continuous random variable 连续随机变量uniformly distribution 均匀分布exponential distribution 指数分布 numerical character 数字特征mathematical expectation 数学期望 variance 方差 moment 矩 central moment 中心矩 n-dimensional random variable n-维随机变量 two-dimensional random variable 二维离散随机变量joint probability distribution 联合概率分布 joint distribution law 联合分布律 joint distribution function 联合分布函数boundary distribution law 边缘分布律

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

相关主题
相关文档 最新文档