当前位置:文档之家› HLW8012电路应用参考设计(隔离采样)

HLW8012电路应用参考设计(隔离采样)

电流采样电路的设计

电流采样电路的设计 文中研制了一套模拟并网发电系统,实现了频率跟踪、最大功率跟踪、相位跟踪、输入欠压保护、输出过流保护、反孤岛效应等功能;采用Atmega16高速单片机,实现了内部集成定时、计数器功能;利用定时器T/C2的快速PWM功能,实现SPWM信号的产生;采用T/C1的输入捕获功能,实现了频率相位监测和跟踪以及对失真度、输入电压、输出电流等物理量的检测与控制。 1 整体方案设计 设计采用Atmega16单片机为主体控制电路,工作过程为:与基准信号同频率、同相位正弦波经过SPWM调制后,输出正弦波脉宽调制信号,经驱动电胳放大,驱动H桥功率管工作,经过滤波器和工频变压器产生于基准信号通频率、同相位的正弦波电流。其中,过流、欠压保护由硬件实现,同步信号采集、频率的采集、控制信号的输出等功能,均由Atmega16完成。系统总体设计框图如图1所示。 2 硬件电路设计 分为DC/AC驱动电路、DC/AC电路和滤波电路3部分和平滑电容C1,电路原理如图2所示。 2.1 DC—AC驱动电路 是由R1、R2、R3、R4、R5、R6、Q3、Q4、P3和P4组成,其中P3和P4是控制信号输入

端,R3和R4为限流电阻。集电极的电流直接影响波形上升沿的陡峭度,集电极电流越大输出的波形越陡峭。因为R2和R1与集电极pn节的寄生电容形成了一个RC充放电的时间常数,集电极pn结的寄生电容无法改变,只有通过改变R1和R2的值来改变时间常数,所以R1和R2值越小,Q3和Q4的集电极电流就越大;RC的充电时间常数越小,波形的上升沿越陡峭,而增加集电极电流,会增加系统的功耗,权衡利弊选择一个合适的值。其次,射级pn 结的寄生电容也会影响Q3和Q4的关断时间和波形上升沿的陡峭度。所以在驱动电路中各加了一个放电回路,即拉地电阻R5和R6,R5和R6的引入,加快了Q3和Q4的关闭速度,这样就使集电极的波形更陡峭。同样在保证基极射极pn不损坏的条件下,基极的电流也是越大越好,但也会带来损耗问题,权衡利弊选择一个合适的值。关于两个电阻的取值,这里假设三极管的放大倍数为β,基极电流Ib,集电极电流Ic,流过R5的电流为I5,流过R3的电流为I3,R3的压降为V3,驱动信号为V,R5的压降为V5,有 实际中R3和R5应该比计算值小,这样是为了让三极管工作在饱和状态,提高系统稳定 性。 2.2 DC-AC电路 是由两只p沟道MOSFET。Q1、Q2和两只n沟道MOSFET Q5、Q6组成。在这里没有采用4只n沟道MOSFET,原因是驱动电路复杂,如果采用上面的驱动电路接近电源的两个导体管不能完全导通,发热量为接近地一侧导体管4倍以上,功耗增加,所以采用对管逆变即减小了功耗,而且驱动电路简单。通过控制4个导体管的开关速度再通过低通滤波器即可实 现DC/AC功能。 2.3 滤波电路 两个肖特基整流二极管1N5822为续流二极管,这里为防止产生负电压,C2、C3、C4、C5、L1、L2组成低通滤波器,其中C5、C6为瓷片电容,C2、C3用电解电容,充放电电流可以流进地,L1、L2为带铁芯的电感,带铁芯的电感对高频的抑制比空心电感更好,电感值 更高。关于参数的选取和截止频率的计算如下 3 采样电路 3.1 电流采样电路的设计 由于终端负载一定,所以电流采样实际等同于一个峰值检测的过程,此电路实际是一个峰值检测电路,P3为信号的2个输入端,调整R10,R11和R17、R18取值来实现峰值测功能,电路中的阻值并不准确,需要实际中根据信号的幅值来调整R10、R11和R17、R18阻值

各种电压电流采样电路设计

常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制 电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压 同步信号采样电路即电网电压同步信号。 信号调 理 TMS320 LF2407A DSP 键盘显示 电路电压电流信号驱动电路保护电路 控制电路检测与驱动 电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 1.1常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路 1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢 量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变 器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统 的输出频率,即该误差可忽略不计。其中R5=1K,C4=15pF,则时间常数错误!未找到引用源。<

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

光电隔离电子电路图大全

光电隔离电子电路图全集 一.MSD1型湿敏原件空气翁度测量仪电路图 二.光电隔离器应用电路图 光电隔离器可以组成多种多样的应用电路。如组成光电隔离电路,长传输线隔离器,TTL电路驱动器,CMOS 电路驱动器,脉冲放大器等。目前,在A/D模拟转换开关,光斩波器,交流、直流固态继电器等方面也有广泛应用。光电隔离器的输入部分为红外发光二极管,可以采用TTL或CMOS数字电路驱动。 在图a,输出电压Vo受TTL电路反相器的控制,当反相器的控制输入信号为低电平时,信号反相使输出为高电平,红外发光二极管截止,光敏三极管不导通,Vo输出为高电平。反之Vo输出为低电平。从而实现TTL电路控制信号的隔离、传输和驱动作用。 图2为CMOS门电路通过光电隔离器为中间传输媒介,驱动电磁继电器的应用实例。当CMOS反相器的输出控制信号为高电平时.其输出信号为低电平,Q晶体管截止,红外发光二极管不导通,光电隔离器中的输出达林顿管截止,继电器控制绕组J处于释放状态。反之继电器的控制绕组J吸合,继电器的触点可完成规定的控制动作,从而实现CMOS门电路对电磁继电器控制电路的隔离和驱动。

选用输出部分为达林顿晶体管的光电隔离器,可以显著提高晶体管的电流放大系数,从而提高光电耦合部分的电流传输比CTR。这样,输入部分的红外发光二极管只需较小的正向导通电流If,就可以输出较大的负载电流,以驱动继电器、电机、灯泡等负载形式。 达林顿晶体管输出形式的光电隔离器,其电流传输比CTR可达5000%,即Ic=5000×If ,适用于负载较大的应用场合。在采用光电隔离器驱动电磁继电器的控制绕组时,应在控制绕组两侧反向并联二极管D,以抑制吸动时瞬恋反电动势的作用,从而保护继电器产品。 · [图文] 多敏固态控制器光电输入的电路应用原理 · [图文] 线性光藕隔离放大器电路 · [图文] 采用光隔离器的电码实验操作振荡器 · [图文] AD7414/AD7415 数字输出温度传感器 · [图文] 加外部缓冲器的远程测温电路 · [图文] 具有整形作用的光耦隔离电路 · [图文] 带PNP三极管电流放大的光耦隔离电路 · [图文] 普通光耦隔离电路 · [图文] PARCOR方式语音合成电路图 · [图文] ADM方式语音合成电路图 · [图文] 用CMOS逻辑门控制AD590电路图 · [图文] 灵敏度可调节的光电继电路图 · [图文] 光敏吸合式继电路图 · [图文] 光敏晶体管施密特电路图 · [图文] 光敏晶体管及光照吸合式继电器电路图 · [图文] 光敏晶体管光敏电桥电路图 · [图文] 光敏晶体管电感桥电路图 · [图文] 光敏吸合式继电路图 · [图文] 光控玩具汽车向前停车电路图 · [图文] 光控施密特触发电路图 · [图文] 光控升压电路图 · [图文] 光控升压电路图 · [图文] 光控换向电路图 · [图文] 光控发光二极管电路图 · [图文] 光控多功能触发器电路图 · [图文] 光控串联晶闸关开关电路图 · [图文] 光控触发脉冲形成电路图 · [图文] 光控常开式交流接触器电路图 · [图文] 光控常闭式交流接触器电路图 · [图文] 光控插座电路图 · [图文] 光控 闪光管电路图 · [图文] 光控555维电器电路图 · [图文] 光可控电路图 · [图文] 光继电路图

电压采集电路设计.(DOC)

目录 一、设计目的 ................................................................................................................... - 2 - 二、设计内容 ................................................................................................................... - 2 - 三、整体设计方案设计..................................................................................................... - 2 - 四、设计任务 ................................................................................................................... - 3 - 五、硬件设计及器件的工作方式选择............................................................................... - 3 - 1、硬件系统设计方框图:.................................................................................................- 3 - 2、中断实现:8259A工作方式选择及初始化..................................................................- 4 - 3、定时功能实现:8253的工作方式及初始化................................................................- 4 - 4、数码管显示及ADC的数据传输:8255的工作方式及初始化 ...................................- 5 - 5、模拟电压转换为数字量:ADC0809的初始化.............................................................- 5 - 6、地址编码实现:74LS138及逻辑器件 ..........................................................................- 6 - 7、显示功能:数码管显示.................................................................................................- 6 - 六、软件设计 ..............................................................................................................................- 7 - 1、主程序流程图.................................................................................................................- 7 - 2、中断子程序.....................................................................................................................- 7 - 3、显示子程序.....................................................................................................................- 8 - 4、初始化.............................................................................................................................- 9 - 8295A初始化流程图 ...................................................................................................- 9 - 8253初始化流程图......................................................................................................- 9 - 8255初始化流程图......................................................................................................- 9 - 5、程序清单及说明.......................................................................................................... - 10 - 七、本设计实现功能 ...................................................................................................... - 13 - 八、元件清单 ................................................................................................................. - 14 - 九、所遇问题与小结 ...................................................................................................... - 14 - 1、问题与解决.................................................................................................................. - 14 - 2、小结体会...................................................................................................................... - 15 - 附:系统硬件连线图 ............................................................................................................... - 16 -

开关量采集电路设计

开关量采集电路设计 开关量采集电路适用于对开关量信号进行采集,如循环泵的状态信号、进出仓阀门的开关状态等开关量。污染源在线监控仪可采集16路开关信号,输入24V 直流电压;设定当输入范围为18~24VDC 时,认为是高电平,被监视的设备处于工作状态;当输入低于18VDC 时,认为是低电平,被监视的设备处于停止状态。 为了避免电气特性及恶劣工作环境带来的干扰,该电路采用光电耦合器TLP521对信号实现了一次电-光-电的转换,从而起到输入\输出隔离的作用。 同时,还安装有LED 工作指示灯,可以使用户对每一通路的工作情况一目了然。其中一路的开关量采集电路如图1所示: 图 1 开关量采集电路 光耦TLP521将红外发光二极管和发光三级管相互绝缘的组合在一起,发光二极管为输入回路,它将电能转换成光能;发光三极管为输出回路,它将光能再转换成电能,实现了两部分电路的电气隔离。 当输入范围为18 ~24VDC 时,认为是高电平,此时光耦导通,电阻R10、R14和发光二极管共同构成输入回路。 根据光耦导通时电流为4 ~10mA ,当输入最高电压24V 时, mA V R R mA V 42414101024<+<,即Ω<+<Ωk R R k 614104.2 当输入低于18V 时认为是低电平,此时光耦的工作电流肯定低于4m A ,此时光耦不导通,电阻 R10、 R14和R12共同构成输入回路,所以: mA R R R V 412 141018<++,即R10+R14+R12>4.5k Ω。在设计中,选择R10=R12=2k Ω,R12=1k Ω。

光耦导通的最小电流为4mA,根据光耦的电流传输比CTR(Current Transfer Ratio)为50%,指当管压降U CE足够大时,集电极电流I C与发光二极管输入电流I F的百分比,所以集电极电流I C=I F*50%=4mA* 50%=2mA,同时为了使光电三极管尽快进入饱和区,选取上拉电阻R8为4.7KΩ。 最后,为了保护光耦,防止大的输入电压突变,在限流电阻R12的两端并联肖特基二极管IN5819。

电阻采样及隔离

引言 在工业测量和控制系统中,为防止外界的各种干扰,必须将测量系统和计算机系统进行电气隔离。常用的隔离措施有变压器隔离、电容耦合隔离和光耦隔离。与变压器隔离、电容耦合隔离相比,光耦体积小,价格便宜,隔离电路简单且可以完全消除前后级的相互干扰,具有更强的抗干扰能力。 对于数字信号的隔离,使用一般的光耦器件隔离就能达到很好的效果。然而一般的光耦具有较大的非线性电流传输特性且受温度变化的影响较大,对于模拟信号的传输其精度和线性度难以满足系统要求。为了能更精确地传送模拟信号,用线性光耦隔离是最好的选择。线性光耦输出信号随输入信号变化而成比例变化,它为模拟信号传输中隔离电路的简单化、高精度化带来了方便。 本文以avago公司的hcnr201线性光耦为例说明线性光耦的内部原理及隔离电路的原理。 2 hcnr201线性光耦隔离原理 线性光耦hcnr201内部结构原理如图1所示。hcnr201由一个高性能发光二极管led和两个相邻匹配的光敏二极管pd1和pd2组成,这两个光敏二极管有完全相同的性能参数。led是隔离信号的输入端,当有电流流过时就会发光,两个光敏二极管在有光照射时就会产生光电流,hcnr201的内部封装结构使得pd1和pd2都能从led得到近似光照,且感应出正比于led发光强度的光电流。光敏二极管pd1起负反馈作用用于消除led的非线性和偏差特性带来的误差,改善输入与输出电路间的线性和温度特性,稳定电路性能。光敏二极管pd2是线性光耦的输出端,接收由led发出的光线而产生与光强成正比的输出电流,达到输入及输出电路间电流隔离的作用。正是hncnr201内部的封装结构、pd1与pd2的严格比例关系及pd1负反馈的作用保证了线性光耦的高稳定性和高线性度。 图1 线性光耦hcnr201内部结构 3 线性光耦hcnr201隔离电路 3.1 工作原理

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示 其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。 1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即 K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。

FOC控制基于电阻的电流采样方案比较

FOC控制基于电阻的电流采样方案比较 最近有时间把TI ST还有Microchip三家关于PMSM控制中使用电阻采样相的电路看了一下,发现各家都有自己的特点,就做个总结吧。 1.TI C2000系列双电阻采样法 原理说明 在U相和V相的下桥分别串联一个功率电阻,通过一个运放电路连接至A/D。采样时机放在PWM的下溢中断进行,U V两相电阻上的电流即为电机U V相的线电流。 关键点 (1)采样时机: 必须在下桥臂全部导通的时候进行采样。

在软件设计的时候,采用下溢中断(处于第7段和第1段零矢量区域中),将电流采样的任务安排在一个PWM周期的开始处,在比较匹配到来之前的期间,U、V两相的上桥臂都是关断的,也就是说下桥臂是导通的,这样就可以在每个PWM周期顺利采样一次两个相电流值。 (2)采样方式 因为电机绕组线圈呈感性,线圈上的相电流不能突变,因此从矢量U0 转换到零矢量后,其对应的工作状态转换如图所示,其中二极管能起到续流作用,此时,下桥臂采样电阻上流过的是相电流,因此在每个PWM周期前期通过下桥臂的采样电阻检测相电流是可行的。 开关状态为000时电流的流通路径

(3)采样电流电路 从上图可以看出,流经各相采样电阻的电流是正负的,故采样电阻上端的电压是一个带正负信号的正弦波形(下端为地),后级运放电路作用是将整体电压抬高,并且进行比例增益。 2.STM32的方案:三电阻采样法

(1)电流处理: 采样电阻上端采集到的电压是一个带正负的正弦波形,所以其后端一定要接一个运放电路,一方面是滤波,更重要的则是把采集到的信号缩放到AD能采集的电压范围。这个电路可以采用同相比例放大+偏移。 (2)AD触发: 在STM32的高级定时器中,除了产生三相PWM波的CH1,CH2,CH3之外还有一个CH4,这个通道只能产生一路PWM波,它可以用来触发AD,可以比较容易的和前面几个PWM波同步,而且配置好周期能非常灵活的取采样点。(3)相采样选择: 每次需要采集两个电流,采集哪两个电流由SVPWM当前扇区决定。每次只有在下桥臂打开的时候才能进行采样。 (4)干扰Tnoise和Trise: Tnoise是每次开关管打开或者关闭时,对当前采集的相电压的影响时间。Trise 是每次开关管打开的时候该相电流会有一个跳变,需要一段时间来稳定。在这两个时间里面不能采集电流。 (5)SVPWM: SVPWM是FOC算法的最后一步,根据前面运算得到的数据,修改PWM波形输出,从而修正电机的运行,同时确定下次相电流采样的扇区。 [R1]此处与TI方案不同,ST方案根据扇区号来确定当前需要采样的电流相,而TI根据二极管续流可以持续获得稳定的U/V相电流反馈,TI的方法更好

三相电信号采集电路设计方案

引言 当前,电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生畸变,电能质量受到严重影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量 的要求越来越高,电能质量问题成为近年来各个方面关注的焦点,电能质量监测是当前国际上的一个研究热点[1],有必要对三相电信号进行高精度采集,便于进一步分析控制,提高电能质量。对电力参数的采样方法主要有两种,即直流采样法和交流采样法。直流采样法采样的是整流变换后的直流量,软件设计简单,计算方便,但测量精度受整流电路的影响,调整困难。交流采样法则是按一定规律对被测信号的瞬时值进行采样,再按一定算法进行数值处理,从而获得被测量,因而较之直流采样法更易获得高精度、高稳定性的测量结果[2]。 三相电信号采集电路设计 三相电信号采集电路框架 三相电信号采集电路的框架如图1所示。三相电压电流信号经过电压电流互感器转换为较低的电压信号。其中A相的电压信号经过波形调整成为频率与A相电压信号相同的方波信号,用于测量频率。同时将转换后方波频率信号进行频率的整数倍放大作为A/D转换的控

制信号。经过六路互感器降压后,将信号送入AD7656进行A/D转换,转换完的数字信号就可以供于DSP/MCU进行数据分析。 电压电流互感器的选用 电压/电流互感器均采用湖北天瑞电子有限公司TR系列检测用 电压输出型变换器。电压互感器采用检测用电压输出型电压变换器TR1102-1C,如图2为其结构图,规格为300V/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。电流互感器采用检测用电压输出型电流变换器TR0102-2C,规格为5A/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。 电源电路 AD7656共有两种模拟信号输入模式,一是模拟输入信号为二倍的参考电压(2.5V)即+/-5V之间,另一种是四倍的参考电压即+/-10V 之间。为提高采样的精度,本电路采用输入信号为+/-10V之间,因此需要+/-10V~+/-16.5V之间电源供电。AD7656同时需要5V的AVCC

光耦隔离运放HCPL-7800 在电机电流采样中的应用

光耦隔离运放HCPL-7800 在电机电流采样中的应用 摘要:本文介绍了一种专门适用于电机驱动电流检测的光耦隔离运放HCPL-7800的结构和特点,并重点介绍了此隔离运放的应用。 关键词:隔离运放,电流采样 Abstract: This paper introduces the construction and the characteristics of HCPL-7800.This isolation amplifier was designed for current sensing in electronic motor drives. The key is to introduce the application of this isolation amplifier. Keywords: isolation amplifier, current sensing 1. 概述 HCPL-7800隔离运放是专门为电机驱动电流的检测设计的。电机电流通过一个外部采样 电阻得到模拟电压,进入芯片。在隔离侧的另一边得到一个微分的输出电压。这个微分的输出电压正比与电机电流,通过一个光耦放大器转换成单端信号。由于在现代开关逆变器电机驱动中电压的共模干扰一般都有几百伏每微秒,而HCPL-7800能够抗至少10kv/us的共模干扰。正是基于这一点,HCPL-7800隔离运放为在很嘈杂的环境中,电机电流的检测提供了更高的准确性和稳定性,也为各种各样的电机控制提供了平滑控制的可能。它也能被用于在严重的噪声干扰的环境中需要很高的准确性,稳定性和线性的的模拟信号的隔离。HCPL-7800的增益为+/-3%,HCPL-7800(A)适用于比较精确的场合,因为它的增益为+/-1%,它应用了先进的(Σ-Δ)的模数转换技术, 斩波放大器和全微分电路拓扑。它的具体的原理图如图1所示: 图1 HCPL-7800的结构简图 HCPL-7800(A)隔离运放广泛应用于电机的相电流检测,逆变器的电流检测,开关电源的脉冲信号的隔离,一般的电流检测和监测,一般的模拟信号的隔离等方面。跟LEM比较,它更加适用于电机电流的检测,抗共模抑制比的能力较强,同时具有很高的性价比。 2. 典型应用 图2是HCPL-7800对电机电流采样的应用电路,从图中可以看出HCPL-7800(A)的电源 一般都从功率开关器件的门极驱动电路的电源中获得。旁路电容C1,C2尽可能地靠近HCPL-7800的管腿。旁路电容是必要的因为HCPL-7800内部的高速的数字信号的特点,由于输入电路的开关电容的本质,在输入侧也要加上旁路电容C3,输入的旁路电容也形成了滤波器的一部分,用于防止高频噪声。 对于采样电阻的选择也是本电路中的最重要的部分,电流采样电阻应该具有很低的阻抗(可以达到最小限度的功率损耗),很低的电感值(最小的di/dt变化引起的电压尖峰),。对于此电阻的选择,一般是考虑最小的功率损耗和最大的准确性的折中点。小的采样电阻能够减小功率损耗,而大的采样电阻能够用上HCPL-7800的整 个输入范围从而提高电路的准确性。

DSP交流采样电路设计..

DSP 交流采样电路设计

1.实验目的 本次实验针对电气工程及其自动化专业及测控专业。通过综合实验,使学生对所学过的DSP在继电保护中的应用有一个系统的认识,并运用自己学过的知识,自己设计模拟继电保护过程实验系统。要求用DSP完成对电网的电压的采样,然后经过DSP的处理,可以对系统继电器的跳合进行控制,自己设计,自己编程,最后自行调试,自行实现自己的设计。在整个试验过程中,摆脱以往由教师设计,检查处理故障的传统做法,由学生完全自己动手,互相查找处理故障,培养学生动手能力。学生试验应做到以下几点: 1. 通过DSP程序的设计模拟继电保护跳闸实验,进一步了解DSP在继电保护中的应用。 2. 通过实验线路的设计,计算及实际操作,使理论与实际相结合,增加感性认识,使书本知识更加巩固。 3. 培养动手能力,增强对DSP运用的能力。 4..培养分析,查找故障的能力。 5. 增加对DSP外围电路的认识。 2.实验设备 DSP板、仿真器、面包板、采样板器件,电烙铁,其它工具。

3.实验原理 1、DSP最小系统电路图

1、模拟电子线路 (一)、电流采样电路的设计

本次电流采样电路选择的电流互感器总共由两级,前一级互感器变比为4A :1A ,第二级互感器采用TA1015-1,其变比为5A:5mA ,也就是1000:1,两级总共的互感器比例为4000:1。 即电流互感器一次侧的电流大小为4A ,二次侧的电流大小为1A ,二级互感器的二次侧电流大小为1mA 。如图3-6,在互感器二次侧并一个1K 的电阻即可将一次侧的4A 的强电流信号变换为二次侧的弱电压信号,其计算公式为: )(0.14000/4/12mA A k i i === (3-1) )(0.1101100.13322V R i u =***==- (3-2) 其峰值为: )(414.10.1222V u u p =*== (3-3) 即电流互感器二次侧输出的电压范围为-1.414V 至+1.414V ,即一次回路里的220V 的工频交流便被线性转化为-1.414V 至+1.414V 。 信号电路共有三级,第一级为偏置放大环节,它能够将交流信号调理成DSP 能准确进行AD 转换的0V 至3.3V 的直流信号。第二级为有源滤波环节,该环节能够滤去信号调理电路里的高频干扰信号。第三极为跟随环节,其输入高阻抗,输出低阻抗,进一步增加了信号调理电路的抗干扰能力。

电压电流采样电路设计

- 常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM)系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 控制电路电路主电路 图2-1 DSTATCOM系统总体硬件结构框图 常用电网电压同步采样电路及其特点 1.1.1 常用电网电压采样电路1 从D-STATCOM的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 】 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R5=1K ,C4=15pF,则时间常数 <

一种实用的电压隔离电路

一种实用的电压隔离电路 1 引言 在微机监控系统中,干扰通常是通过电源线和地线串入微机主控系统而引起测试与控制的错误,甚至可能导致严重后果。因此,必须加强数据采集与控制系统的抗干扰性设计。在硬件上,我们通常采用的是微机主控系统与前向通道和后向通道完全实现电气隔离.消除由于共地和共电源线而串入的干扰信号。 光电耦合器是通过光线实现耦合的,输入和输出之间没有直接的电气联系.故具有很强的隔离作用,在实际应用中很广泛,光电耦合器件具有非线性电流传输特性,这对于数字量和开关量的传输不成问题,但若直接用于模拟量的传输,则线性度和精度都很差。因而.在实际应用中常先将模拟信号经ADC转换成数字信号。再采用光电耦合器进行数字量隔离,这存在有两个问题: (1)经过ADC转换后需对每位数据线进行隔离,无疑需用多个光电耦合器,而且与微机数据线相接,需采用价格较贵的高速光电耦合器。 (2)对于有些单片机如8098,其内部集成有10位A/D,在精度够用的情况下,希望直接采用其内部的A/D,如果再外加ADC 芯片,则不能充分利用主控系统的资源。既增加了成本又降低了系统的可靠性。 因此,有必要找到一种性能价格比和可靠性都比较高的隔离电路,实现模拟量的线性传输。 2 电路的原理与设计实现 利用偏置方法和差分技术,用普通的非线性光电耦合器构成了具有线性传输特性的隔离放大电路,实现了电压的线性隔离,经反复实验,证明该方案切实可行。 (1)电路原理分析 线性光隔离电路的原理图如图1所示,它由光电耦合器I,光电耦合器II,偏置输入I,偏置输入II和差分放大等单元组成,设置偏置输入I是为了让输入信号落在光电耦合器I的线性区域内,光电耦合器II和偏置输入II是用来提供直流电压信号,它通过差分放大来抵消由于偏置输入I对光电耦合器I的输入作用而使光电耦合器I的输出多增加的直流信号部分。光电耦合器II还能补偿光电耦合器I的光漂移,使得光隔离电路输出稳定。差分放大电路除了恢复输入信号的直流电平外,还具有放大作用,调节其放大倍数使光隔离电路的输出为所要求的数值。

PMSM电机矢量控制之电流采样原理分析复习过程

P M S M电机矢量控制之电流采样原理分析

PMSM 电机矢量控制之电流采样原理分析 摘要:本文分析了PMSM 电机磁场定向控制(FOC)器的电流采集硬件电路,包括母线电流采样和相线电流采样的电路分析。以下电路是业界常用、稳定、经典的不二之选,工作之余,在此与同僚分享一下。 156 21R Uop Up R Up V cc -=-----------------------------------------(1-1) 158 N 157N O R U R U U =--------------------------------------------------(1-2) P N U U =-----------------------------------------------------------(1-3) 整理后,代入数值得: 230 U 220V 10U OP CC P +=-----------------------------------------(1-4) O N U 11.21.2U =----------------------------------------------------(1-5) P N U U =-----------------------------------------------------------(1-6) 最终,推出: OP O U 8.93V 1.34U +=-----------------------------------------(1-7)

一、当MOS 管IRFB3607处于正向导通状态时,电流在一定范围内会使二极管D13处于不导通状态(Up-Un<0.7V),但是电流超过阈值后,便会使二极管D13导通,并将电压嵌制在0.7V 。当MOS 管IRFB3607处于反向导通状态时,其体二极管也起到电压嵌制作用,电路工作原理相似。 56 92BM P 93P CC R R U U R U V +-=----------------------------------------------------------------------(2-1) 132 OP N 140N O R U U R U U -=----------------------------------------------------------------------(2-2) P N U U =---------------------------------------------------------------------------------------(2-3) 令15692R R R =+,代入上式(2-1),整理得: 93 1BM 93CC 1P R R U R V R U ++=----------------------------------------------------------------------(2-4) 140132OP 140O 132N R R U R U R U ++= --------------------------------------------------------------------(2-5)

相关主题
文本预览
相关文档 最新文档