当前位置:文档之家› 弹簧弹性势能公式的六种推导方法

弹簧弹性势能公式的六种推导方法

弹簧弹性势能公式的六种推导方法
弹簧弹性势能公式的六种推导方法

弹簧弹性势能公式的六种推导方法

摘要:本文用六种不同的方法,从六种不同的角度推导出弹簧弹性势能的表达式。

关键词:弹性势能,微元,积分,振动方程

我们知道,弹簧的弹性势能的表达式为2

2

1kx E p =

,k 为弹簧的劲度系数,x 为弹簧的形变量。但很多教材及教辅中都是直接给出公式,少有推导过程。笔者现用如下六种方法来推导弹簧弹性势能的表达式,加深读者理解和记忆,方便学习。

下文中,为方便讨论,忽略弹簧的质量及一切摩擦,且研究的都是水平弹簧振子,但推导出的结果适用于任何情况下的弹簧。

1 微元法

弹簧的弹性势能等于自势能零点开始保守力做功的负值。外力拉弹簧时,外力的功与弹簧反抗形变而施于外界之力做的功大小相等而符号相反,因此,弹性势能等于自势能零点开始外力做功的正值[1]。

取弹簧自由端为势能零点。设弹簧在外力F 的作用下发生形变量x ,将这个形变过程等分成很多小段,如n 段,那么每一小段中可近似认为拉力是不变的。

第1小段形变量22

11111...n x k x F W n x k F n x x =?===?,拉力的功,拉力

第2小段形变量22

222222..2.n x k x F W n x k F n x x =?===?,拉力的功,拉力

第3小段形变量22

333333..3.n

x k x F W n x k F n x x =?===?,拉力的功,拉力

第n 小段形变量22

...n

nx k x F W n nx k F n x x n n n n n =?===?,拉力的功,拉力

所以,拉力的总功为

()()2

1.

321.3.2..2222

2

2222222321+=++++=++++=++++=n n n kx n n

kx n nx k n x k n x k n x k W W W W W n

当2

2222

12.kx n n kx W n ==∞→时,。因为弹性势能等于自势能零点开始外力做功的

正值,所以弹簧的弹性势能2

2

1kx W E P ==。

2 动能定理法

取弹簧自由端为势能零点。设F 缓慢拉弹簧使其发生形变量x 。缓慢拉动意味着每一个位置都可看作是平衡状态,动能的变化0=?k E 。弹簧的弹力kx F =,因为F 与x 是线性关系,所以弹力的平均值为kx F 2

1

=

,外力F 的平均值也为kx 2

1

,方向与弹簧弹力方向相反。设弹簧反抗外力做功为W ,由动能定理得

2

2

1

kx x F W W x F -=-=∴=+

因弹簧弹性势能等于自势能零点开始保守力做功的负值,所以2

2

1kx W E P =-=。

3 积分法

取弹簧自由端为势能零点。设弹簧形变一微小量dx ,弹力做功为dW 。 k x d x F d x dW -=-= 两边积分: ??-=x

k x d x dW 0

221kx W -=∴

所以弹簧的弹性势能22

1

kx W E P =-=。

4 机械能守恒法

水平弹簧振子作简谐振动,振动方程为 ()?ω+=t A x c o s 位移对时间求导,可得振子的速度 ()?ωω+-==t A dt

dx

v sin 振子的动能为

()?ωω+==t mA mv E k 2222sin 21

21 振子的最大动能为 22m a x 2

1

ωmA E k = 对于弹簧振子,m

k =

ω 所以 2222m a x 2

1

.2121kA m k mA mA E k ===

ω 因为系统的机械能守恒,所以最大弹性势能2max 2

1

kA E P =。可见,弹簧的弹性势

能与形变量x 有关,故对于任一小于振幅A 的形变量x ,弹簧的弹性势能为

2

2

1kx E P =

5 公式变形法

水平弹簧振子作无阻尼自由振动的运动方程为 0=+kx ma

微分形式 0.22=+kx dt

x

d m

上式两边同乘以

dt

dx 得 0=+dt

dx kx dt dv mv

或 0212122=??? ??+??? ??dt

kx d dt m v d 其中,221mv 为振子的动能,221kx 为弹簧的弹性势能,即22

1

kx E P =。

6 量纲法

我们已经知道弹簧的弹性势能与弹簧的劲度系数及弹簧的形变量x 有关。不防设弹性的弹性势能为βαγx k E P =。同时我们知道振子的动能为2

2

1mv E k =

。P E 的量纲为βααγL S kg ...2-,22 (2)

1

L S kg E k -的量纲为。因为的单位都是焦耳和K P E E ,

故两者应具有相同的量纲,即

212

1

===βαγ,,

所以22

1

kx E P =,此即弹簧弹性势能的表达式。

本文用六种不同的方法推导出了弹簧弹性势能的表达式。其中微元法在高中物理学习中具有重要而广泛的运用,用这种方法推导弹簧弹性势能的表达式,是学生常见也是容易理解的。用动能定理处理该问题时显得尤为简洁且易于理解。利用简单的积分计算也能迅速解决问题。机械能守恒法和公式变形法涉及到简谐振动方程及一些高等数学知识,学生不大容易理解,但可以扩大他们的视野,激发他们更深入学习简谐振动的兴趣。最后的量纲法则非常巧妙,也是大家最不容易想到的。同一个问题从不同角度去思考,可使我们的思维更灵活,同时能将各个散落的知识点串联起来形成一个知识系统,不愧是提高学习质量的好方法。

参考文献:

[1] 漆安慎,杜婵英。力学[M]。北京:高等教育出版社,2004

完全弹性碰撞后的速度公式

如何巧记弹性碰撞后的速度公式 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度? 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得: m1v1= (m1+m2) v共 解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前 的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式 解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式。再结合①式也可很 容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度? 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等效成m1以速度v1去碰静 止的m2球,再同时加上m2球以速度碰静止的m1球。因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度+; +,即可得到上面的⑥⑦式。 另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度 v1- v2等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式,再结合①式可解得⑥⑦式。

圆柱弹簧的设计计算.

圆柱弹簧的设计计算 (一)几何参数计算 普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

(二)特性曲线

弹簧应具有经久不变的弹 性,且不允许产生永久变形。因 此在设计弹簧时,务必使其工作 应力在弹性极限范围内。在这个 范围内工作的压缩弹簧,当承 受轴向载荷P时,弹簧将产生 相应的弹性变形,如右图a所 示。为了表示弹簧的载荷与变形 的关系,取纵坐标表示弹簧承受 的载荷,横坐标表示弹簧的变 形,通常载荷和变形成直线关系 (右图b)。这种表示载荷与变 形的关系的曲线称为弹簧的特 性曲线。对拉伸弹簧,如图<圆 柱螺旋拉伸弹簧的特性曲线> 所示,图b为无预应力的拉伸 弹簧的特性曲线;图c为有预 应力的拉伸弹簧的特性曲线。 右图a中的H0是压缩弹簧 在没有承受外力时的自由长度。 弹簧在安装时,通常预加一个压 力 Fmin,使它可靠地稳定在安 装位置上。Fmin称为弹簧的最 小载荷(安装载荷)。在它的作 用下,弹簧的长度被压缩到H1 其压缩变形量为λmin。Fmax 为弹簧承受的最大工作载荷。在 Fmax作用下,弹簧长度减到 H2,其压缩变形量增到λmax。 圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的 工作行程h,h=λmax-λmin。 Flim为弹簧的极限载荷。在该 力的作用下,弹簧丝内的应力达 到了材料的弹性极限。与Flim 对应的弹簧长度为H3,压缩变 形量为λlim。

弹簧类问题的几种模型及其处理方法

弹簧类问题的几种模型 及其处理方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。 2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做功等于弹性势能增量 的负值。弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 二、弹簧类问题的几种模型 1.平衡类问题 例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。 分析:上提m1之前,两物块处于静止的平衡状态,所以有:, ,其中,、分别是弹簧k1、k2的压缩量。 当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。

高中物理公式推导(完全弹性碰撞后速度公式的推导)

高中物理公式推导一 完全弹性碰撞碰后速度的推导 1、简单说明: 1m 、2m 为发生碰撞的两个物体的质量,1v 、2v 为碰撞前1m 、2m 的速度,'1v 、' 2v 为碰撞后 1m 、2m 的速度。 2、推导过程: 第一,由动量守恒定理,得 ' 2'1 122112v m v m v m v m +=+ (1) 第二,由机械能守恒定律,得 2'22'112222112 2 1212121v m v m v m v m +=+(2) 令 12/m m k =,(1)、(2)两式同时除以1m ,得 ' ' 1 212kv v kv v +=+ (3) 2 '2 '1 2 2212 kv v kv v +=+ (4) (3)、(4)两式变形,得

( ) 2 ' '1 1--2v v k v v = (5) ()()()( ) 2 ' 2' '1 1 '1 1 22 -v v v v k v v v v -+=+ (6) 将(5)式代入(6)式,得 2' ' 1 12v v v v +=+ (7) 联立(5)、(7)两式,将' 1v 、 ' 2v 移到方程的左侧,则有 21' '1 2kv v kv v +=+ (8) 21' '1 --2v v v v += (9) 由(8)-(9),得 ()()21' 1-212 v k v v k +=+ 21' 11-122v k k v k v +++= 21212112' 1/1 -/1/22v m m m m v m m v +++= 2121 21121' -22v m m m m v m m m v +++= (10) 或者 ()2 12 1211' -22m m v m m v m v ++= (10)

弹簧弹力计算公式详解

弹簧弹力计算公式详解 压力弹簧、拉力弹簧、扭力弹簧是三种最为常见的弹簧,压力弹簧、拉力弹簧、扭力弹簧的弹力怎么计算,东莞市大朗广原弹簧制品厂为您详解,压力弹簧、拉力弹簧、扭力弹簧的弹力计算公式。 一、压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; ·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); ·弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 弹簧常数计算范例: 线径=2.0mm , 外径=22mm , 总圈数=5.5圈,钢丝材质=琴钢丝 二、拉力弹簧 拉力弹簧的k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹

簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。 ·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) 三、扭力弹簧 ·弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm). ·弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 R=负荷作用的力臂 p=3.1416

弹簧的弹性势能

1.关于弹力做功与弹性势能的关系,我们在进行猜想时,可以参考重力做功与重力势能的关系,则下面的猜想有道理的是() ①弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能增加; ②弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能减少; ③弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能增加; ④弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能减少。 A. ①③ B. ②③ C. ①④ D. ②④ 2.在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg的木块相连,若在木块上再作用一个竖直向下的力F,使木块缓慢向下移动0.10m,力F做功2.5J。此时木块再次处于平衡状态,力F的大小为50N,如图所示。求: (1)在木块下移0.10m的过程中弹簧弹性势能的增加量。 (2)弹簧的劲度系数(g取10m/s2)。 解答: (1)木块下移0.1m过程中,力F和重力做的功全部用于增加弹簧的弹 性势能,故弹性势能的增加量为: △EP=WF+mgh=(2.5+2.0×10×0.1)J=4.5J; (2)由平衡条件得,木块再次处于平衡时:△F=k·△l, 所以,劲度系数k=△F△l=500.10N/m=500N/m。 3.一根弹簧的弹力?位移图线如图所示,那么弹簧由伸长量4cm到伸长量8cm 的过程中,弹力的功和弹性势能的变化量为() A.1.8J,?1.8J B.?1.8J,1.8J C.3.6J,?3.6J D.?3.6J,3.6J 解答: F?x图象与x轴包围的面积表示弹力做功的大小,故弹簧由伸长量4cm到伸长量8cm的过程中,弹力的功: W=?12×(30+60)×0.04J=?1.8J 弹力做功为?1.8J,故弹力势能增加了1.8J; 故选:B. 4.弹簧原长为l0,劲度系数为k.用力把它拉到伸长量为l,拉力所做的功为W1;继续拉弹簧,使弹簧在弹性限度内再伸长l,拉力在继续拉伸的过程中所做的功为W2.试求W1与W2的比值. 解析:拉力F与弹簧的伸长量l成正比,故在Fl图象中是一条倾斜直线,如图所示,直线 下的相关面积表示功的大小.其中,线段OA下的三角形面积表示 第一个过程中拉力所做的功W1,线段AB下的梯形面积表示第二

[完全]弹性碰撞后的速度公式资料

[完全]弹性碰撞后的 速度公式

如何巧记弹性碰撞后的速度公式 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度? 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m 1v 1 =m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得: m 1v 1 = (m1+m2)v共 解出v共=m1v1/(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大 一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住, ⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。

另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相 对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤ 式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度? 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m 1v 1 +m2v2=m1v1'+m2v2'① ② 由 ①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等 效成m1以速度v1去碰静止的m2球,再同时加上m2球以速度碰静止的m1球。 因此由前面“一动碰一静”的弹性碰撞公式,可得两球碰撞后各自的速度 +;+,即可得到上面的⑥⑦式。

(完全)弹性碰撞后的速度公式

如何巧记弹性碰撞后得速度公式 一、“一动碰一静”得弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1得小球,以速度v1与原来静止得质量为m 2得小球发生对心弹性碰撞,试求碰撞后它们各自得速度? 图1 设碰撞后它们得速度分别为v1'与v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式得右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时得共同速度v共,由动量守恒定律得: m1v1= (m1+m2) v共 解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前得弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好就是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式得分子容易写成m2-m1,则可根据质量m1得乒乓球以速度v1去碰原来静止得铅球m2,碰撞后乒乓球被反弹回,因此v1'应当就是负得(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”得实验中,要求入射球得质量m1大于被碰球得质量m2,也可由⑥式解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再就是原来得v1'了。 另外,若将上面得⑤式变形可得:,即碰撞前两球相互靠近得相对速度v1-0等于碰撞后两球相互分开得相对速度。由此可轻松记住⑤式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”得弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2得两球发生对心弹性碰撞,碰撞前速度分别为v1与v2,求两球碰撞后各自得速度? 图2 设碰撞后速度变为v1'与v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦

碰撞速度公式

由于弹性碰撞后的速度公式不好推导,该公式又比较繁杂不好记。因此导致这类考题的得分率一直较低。下面探讨一下该公式的巧记方法。 一、“一动碰一静”的弹性碰撞公式 问题:如图1所示,在光滑水平面上,质量为m1的小球,以速度v1与原来静止的质量为m2的小球发生对心弹性碰撞,试求碰撞后它们各自的速度? 图1 设碰撞后它们的速度分别为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能(动能)守恒定律得: m1v1=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 联立①⑤解得 ⑥ ⑦ 上面⑥⑦式的右边只有分子不同,但记忆起来容易混。为此可做如下分析:当两球碰撞至球心相距最近时,两球达到瞬时的共同速度v共,由动量守恒定律得: m1v1= (m1+m2)v共 解出v共=m1v1 /(m1+m2)。而两球从球心相距最近到分开过程中,球m2继续受到向前 的弹力作用,因此速度会更大,根据对称可猜想其速度恰好增大一倍即,而这恰好是⑦式,因此⑦式就可上述推理轻松记住,⑥式也就不难写出了。如果⑥式的分子容易写成m2-m1,则可根据质量m1的乒乓球以速度v1去碰原来静止的铅球m2,碰撞后乒乓球被反弹回,因此v1'应当是负的(v1'<0),故分子写成m1-m2才行。在“验证动量守恒定律”的实验中,要求入射球的质量m1大于被碰球的质量m2,也可由⑥式

解释。因为只有m1>m2,才有v1'>0。否则,若v1'<0,即入射球m1返回,由于摩擦,入射球m1再回来时速度已经变小了,不再是原来的v1'了。 另外,若将上面的⑤式变形可得:,即碰撞前两球相互靠近的相对速度v1-0等于碰撞后两球相互分开的相对速度。由此可轻松记住⑤式。再结合①式也可很容易解得⑥⑦式。 二、“一动碰一动”的弹性碰撞公式 问题:如图2所示,在光滑水平面上,质量为m1、m2的两球发生对心弹性碰撞,碰撞前速度分别为v1和v2,求两球碰撞后各自的速度? 图2 设碰撞后速度变为v1'和v2',在弹性碰撞过程中,分别根据动量守恒定律、机械能守恒定律得: m1v1+m2v2=m1v1'+m2v2'① ② 由①③ 由②④ 由④/③⑤ 由③⑤式可以解出 ⑥ ⑦ 要记住上面⑥⑦式更是不容易的,而且推导也很费时间。如果采用下面等效的方法则可轻松记住。m1、m2两球以速度v1和v2发生的对心弹性碰撞,可等效成m1以速度v1去碰静止的m2球,再同时加上m2球以速度碰静止的m1球。因此由前面“一动碰一静”的弹性

弹簧的弹性势能专题训练

弹簧的弹性势能专题训练 1.关于弹力做功与弹性势能的关系,我们在进行猜想时,可以参考重力做功与重力势能的关系,则下面的猜想有道理的是() ①弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能增加; ②弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能减少; ③弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能增加; ④弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能减少。 A. ①③ B. ②③ C. ①④ D. ②④ 2.在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg的木块相连,若在木块上再作用一个竖直向下的力F,使木块缓慢向下移动0.10m,力F做功2.5J。 此时木块再次处于平衡状态,力F的大小为50N,如图所示。求: (1)在木块下移0.10m的过程中弹簧弹性势能的增加量。 (2)弹簧的劲度系数(g取10m/s2)。 3.一根弹簧的弹力?位移图线如图所示,那么弹簧由伸长量4cm到伸长量 8cm的过程中,弹力的功和弹性势能的变化量为( ) A.1.8J,?1.8J B.?1.8J,1.8J C.3.6J,?3.6J D.?3.6J,3.6J 3.答案选:B. 4.弹簧原长为l0,劲度系数为k.用力把它拉到伸长量为l,拉力所做的功为W1;继续拉弹簧,使弹簧在弹性限度内再伸长l,拉力在继续拉伸的过程中所做的功为W2.试求W1与W2的比值. 4.答案:1∶3 5.一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。假定空气阻力可忽略,运动员可视为质点,下列说法不正确的是( ) A. 运动员到达最低点前重力势能始终减小 B. 蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加 C. 蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒 D. 蹦极过程中,重力势能的改变与重力势能零点的选取有关 5.答案选D. 6.如图所示,在光滑水平面上有一物体,它的左端连一弹簧,弹簧的另一端固定在墙上,在力F作用下物体处于静止状态,当撤去F后,物体将向右运动。在物体向右 运动的过程中,下列说法正确的是( ) A. 弹簧对物体做正功,弹簧的弹性势能逐渐减少 B. 弹簧对物体做负功,弹簧的弹性势能逐渐增加 C. 弹簧先对物体做正功,后对物体做负功,弹簧的弹性势能先减少再增加 D. 弹簧先对物体做负功,后对物体做正功,弹簧的弹性势能先增加再减少 6.答案选:C.

高中物理公式推导完全弹性碰撞后速度公式的推导

高中物理公式推导完全弹性碰撞后速度公式的 推导 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高中物理公式推导一 完全弹性碰撞碰后速度的推导 1、简单说明: 1m 、2m 为发生碰撞的两个物体的质量,1v 、2v 为碰撞前 1m 、2m 的速度,'1v 、'2v 为碰撞后1m 、2m 的速度。 2、推导过程: 第一,由动量守恒定理,得 ' 2'1122112v m v m v m v m +=+ (1) 第二,由机械能守恒定律,得 2'22'1122221122 1212121v m v m v m v m +=+(2) 令12/m m k =,(1)、(2)两式同时除以1m ,得 '' 1212kv v kv v +=+ (3) 2'2'122212 kv v kv v +=+ (4) (3)、(4)两式变形,得 ()2 ''11--2v v k v v = (5)

()()()()2'2''1 1'1122-v v v v k v v v v -+=+ (6) 将(5)式代入(6)式,得 2''112v v v v +=+ (7) 联立(5)、(7)两式,将' 1v 、' 2v 移到方程的左侧,则有 21''12kv v kv v +=+ (8) 21' '1--2v v v v += (9) 由(8)-(9),得 212121121' -22v m m m m v m m m v +++= (10) 或者 ()2121211' -22m m v m m v m v ++= (10) 由(8)+k*(9),得 221212121' 21v m m m v m m m m v +++-= (11) 或者 ()2122121'21m m v m v m m v ++-= (11) 3、意外收获:

弹簧设计计算过程

弹簧设计计算过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

弹簧设计计算 已知条件: 弹簧自由长度H0= 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D= 弹簧直径d= 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=~ b σ=~*1716MPa=~ 取p τ=。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。

2 .33.22==d D C =(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K = 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 弹簧刚度663.2282.379834 34' ???==n D Gd P =mm 节距t=66 2.35.1795)2~1(0?-=-n d H =≈12 计算出来的自由高度H0=nt+=66*12+*= 压并高度Hb=(n+d=(66+*=216mm 弹簧最小工作载荷时的压缩量F1=795-411=384mm 则最小工作载荷3 431413.226683842.3798????==nD F Gd P = 螺旋角α=arctan(t/πD)=arctan(12/*)= 弧度= ° 弹簧展开长度L=1696 .0cos 683.22cos 1??=παπDn = ≈4833mm 弹簧压并高度H b ≤n 1*d max =68*(+)=,取值216mm 弹簧压并时的变形量为= 弹簧压并时的载荷为Fa=*= (4)螺旋弹簧的稳定性、强度和共振的验算 高径比b=H0/D==> n B c P H P C P >=0' 不稳定系数C B = ==0'H P C P B c **=

测量弹簧储存的弹性势能的实验报告

测量弹簧储存的弹性势能的实验报告 1.问题提出 弹簧在形变时,储存的弹性势能能否测量,通解是什么? 2.实验方法 计算重物的重力势能改变量,就可以计算出弹簧储存的势能. 3.实验设计 (1)器材:两根已知劲度系数的弹簧(k=0.5 N/m、k=1 N/m)、不同质量的钩码4个(分别为50g、100g、200g、400g)、刻度尺. (2)过程设计: <1>将弹簧悬挂后,测量其原长L0. <2>分别挂上不同质量的钩码,待静止后测量弹簧此时的长度并 计算ΔL(即为钩码重心改变量). <3>计算砝码重力势能的改变量,即为弹簧储存的弹性势能. 4.实验过程记录 表一 注:由于k值较小,为考虑弹簧的弹性范围,所以在进行k1的实验时,选取较小的钩码. 计算过后,我们发现在误差允许的范围内,钩码重力势能的改变

量的值与1/2kx2基本相同. 经过查阅资料,我们了解到,这与我们得到的是相同的。而且,当我们把重力势能的改变量式子同弹性势能储存量公式连接起来的时候,却发现一个奇怪的式子: Mg=1/2 kx ??!!这是什么情况?这不就代表着,拉力等于弹簧弹力的一半?怎么可能?于是我们展开了思考. 假设我们不用钩码,而用手去拉,这样手对弹簧做的功就是弹簧储存的弹性势能.这是可以推导的.由于弹簧的拉力是成线性变化的,所以可以用求平均的方法求出拉力做的功。那么此时的推导是可行的。 Fs=ΔE 此时的是符合的胡克定理的. 能量转化行不通但做功却行得通!难道能量转化时并不是仅仅转化为弹性势能? 这么一想,就感觉对了!由于我们是在弹簧自由悬挂的状态下加入钩码的,所以此时,这个系统就成为一个弹簧振子.如果不计损失的话,它会一直往返振动下去.但实际操作中,能量损失不可避免的存在,而我们在设计实验时是测量静止后的长度,将损耗自然地忽略了.虽然这对我们得出结论没有影响,但足以反应出我们在思考过程中的漏洞.那么再将平衡位置时的钩码具有的动能加上,矛盾便迎刃而解了.

弹簧设计计算过程

弹簧设计计算 已知条件: 弹簧自由长度H0=796.8mm 弹簧安装长度L1=411mm 弹簧工作长度L2=227mm 弹簧中径D=22.3mm 弹簧直径d=3.2mm 弹簧螺距P=12mm 弹簧有效圈数n=66 弹簧实际圈数n1=68 计算步骤: (1)初步考虑采用油淬火-回火硅锰弹簧钢丝60Si2MnA C 类,抗拉强度1716-1863MPa ,切变模量G=79GPa ,弹性模量E=206GPa 。 取b σ=1716MPa 。 (2)压缩弹簧许用切应力 p τ=(0.4~0.47) b σ=(0.4~0.47)*1716MPa=686.4~806.52MPa 取p τ=686.4MPa 。 (3)由于弹簧刚度尚未可知,但是弹簧的中径、直径、有效圈数都已知。 2 .33.22==d D C =6.9688(计算值在5~8之间) 6.9688 615.046.9688416.96884615.04414+-?-?=+--=C C C K =1.2139 弹簧的最大工作压缩量Fn=795-227=568mm 由公式348D P F Gd n n n =可得最大工作载荷34343.226685682.3798????==nD F Gd P n n = 803.5758N 弹簧刚度663.2282.379834 34' ???==n D Gd P =1.4147N/mm 节距t= 66 2.35.1795)2~1(0?-=-n d H =11.9727≈12 计算出来的自由高度H0=nt+1.5d=66*12+1.5* 3.2=796.8mm 压并高度Hb=(n+1.5)d=(66+1.5)*3.2=216mm

高中物理复习:弹性势能

高中物理复习:弹性势能 【知识点的认识】 1.定义:发生形变的物体,在恢复原状时能够对外做功,因而具有能量,这种能叫做弹性势能。 2.决定因素:与形变程度有关,形变越厉害,弹性势能就越大;与弹簧的劲度系数有关,k 越大,弹性势能就越大。 3.弹簧弹性势能表达式:。 4.弹力做功的计算:由于弹力是一个变力,计算其功不能用W=Fs设弹簧的伸长量为x,则F=kx,画出F﹣x图象。如图所示。则此图线与x轴所夹面积就为弹力所做的功。由图象可得:W弹=kx12﹣kx22=﹣△E P。 5.弹力做功与弹性势能变化量的关系:W弹=﹣△E P.当弹力做负功,弹性势能增加;当弹力做正功,弹性势能减少。 【命题方向】 题型一:对弹性势能的理解 例1:关于弹性势能,下列说法正确的是() A.弹性势能与物体的形变量有关 B.弹性势能与物体的形变量无关 C.物体运动的速度越大,弹性势能越大 D.物体运动的速度越大,弹性势能越小 分析:任何物体发生弹性形变时,都具有弹性势能。弹簧伸长和压缩时都有弹性势能。同一个弹簧形变量越大,弹性势能就越大。 解:AB、发生弹性形变的物体,形变量越大,弹性势能越大,故A正确,B错误; CD、物体运动的速度越大,动能越大,但弹性势能与物体的运动速度大小无关,故C错误,D错误。 故选:A。 点评:本题关键明确弹性势能的概念,知道影响弹性势能大小的因素,基础题。 【知识点应用及拓展】

重力势能弹性势能 定义物体由于被举高而具有的能量物体发生弹性形变而具有的能量影响因素物体的质量、高度劲度系数K、形变量L 表达式E P=mgh E P=kl2 能的变化与力做功的关系重力做正功,重力势能减少,重力做 负功,重力势能增加 弹力做正功,弹性势能减少,弹力做 负功,弹性势能增加 相对性与选择的零势能面有关一般以弹簧处于原长时的弹性势能 为零 【解题方法点拨】

弹簧弹性势能

弹簧弹性势能类问题 1.如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。若将C换成另一个质量为(m1+m3)的物体D,仍从上 述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是 多少?已知重力加速度为g。 2.A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg 和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2) (1)使木块A竖直做匀加速运动的过程中,力F的最大值; (2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.

1.开始时,A 、B 静止,设弹簧压缩量为x 1,有 k x 1=m 1g ① 挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为x 2,有 k x 2=m 2g ② B 不再上升,表示此时A 和 C 的速度为零,C 已降到其最低点,由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 △E =m 3g(x 1+x 2)-m 1g(x 1+x 2) ③ C 换成 D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得 21(m 3+m 1)v 2+2 1m 1v 2=(m 3+m 1)g(x 1+x 2)-m 1g(x 1+x 2)-△E ④ 由③④式得 2 1(2m 1+m 3)v 2=m 1g(x 1+x 2) ⑤ 由①②⑤式得 v=k m m g m m m )2()(2312211++ ⑥ 2.分析: 此题难点和失分点在于能否通过对此物理过程的分析后, 确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力N=0时恰好分离. 解: 当F=0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩为 x ,有kx=(m A +m B )g x=(m A +m B )g/k ① 对A 施加F 力,分析A 、B 受力对A :F+N-m A g=m A a ② 对B :kx′-N-m B g=m B a′③ 可知,当N≠0时,AB 有共同加速度a=a′,由②式知欲使A 匀加速运动,随 N 减小F 增大.当N=0时,F 取得了最大值F m , 即F m =m A (g+a )=4.41 N 又当N=0时, A 、 B 开始分离,由③式知,此时,弹簧压缩量kx′=m B (a+g )x′=m B (a+g )/k ④ AB 共同速度v 2=2a (x-x′)⑤ 由题知,此过程弹性势能减少了E P =0.248 J 设F 力功W F ,对这一过程应用动能定理或功能原理W F +E P -(m A +m B )g (x-x′)=2)(2 1v m m B A +⑥ 联立①④⑤⑥,由E P =0.248 J 可知,W F =9.64×10-2J

完全弹性碰撞

§3-7 完全弹性碰撞 完全非弹性碰撞 一、碰撞(Collision ) 1.基本概念: 碰撞,一般是指两个或两个以上物体在运动中相互靠近,或发生接触时,在相对较短的时间内发生强烈相互作用的过程。 碰撞会使两个物体或其中的一个物体的运动状态发生明显的变化。 碰撞过程一般都非常复杂,难于对过程进行仔细 分析。但由于我们通常只需要了解物体在碰撞前后运动状态的变化,而对发生碰撞的物体系来说,外力的作用又往往可以忽略,因而可以利用动量、角动量以及能量守恒定律对有关问题求解。 2.特点: 1)碰撞时间极短 2)碰撞力很大,外力可以忽略不计,系统动量守恒 3)速度要发生有限的改变,位移在碰撞前后可以忽略不计 3.碰撞过程的分析: 讨论两个球的碰撞过程。碰撞过程可分为两个过程。开始碰撞时,两球相互挤压,发生形变,由形变产生的弹性恢复力使两球的速度发生变化,直到两球的速度变得相等为止。这时形变得到最大。这是碰撞的第一阶段,称为压缩阶段。此后,由于形变仍然存在,弹性恢复力继续作用,使两球速度改变而有相互脱离接触的趋势,两球压缩逐渐减小,直到两球脱离接触时为止。这是碰撞的第二阶段,称为恢复阶段。整个碰撞过程到此结束。 4.分类:根据碰撞过程能量是否守恒 1)完全弹性碰撞:碰撞前后系统动能守恒(能完全恢复原状); 2)非弹性碰撞:碰撞前后系统动能不守恒(部分恢复原状); 3)完全非弹性碰撞:碰撞后系统以相同的速度运动(完全不能恢复原状)。 二、完全弹性碰撞(Perfect Elastic Collision ) 在碰撞后,两物体的动能之和(即总动能)完全没有损失,这种碰撞叫做完全弹性碰撞。 解题要点:动量、动能守恒。 问题:两球m 1,m 2对心碰撞,碰撞前 速度分别为2010,v v ,碰撞后速度变为21,v v 动量守恒 2021012211v m v m v m v m (1) 动能守恒 2 20221012222112 1212121v m v m v m v m (2) 由(1) 22021011v v m v v m (3) 由(2) 2 2 2202210211v v m v v m (4) 由(4)/(3) 202101v v v v

完全弹性 碰撞的速度公式推导过程

完全弹性碰撞的速度公式推导过程 完全弹性碰撞的速度公式推导过程完全弹性碰撞的速度公式是怎么推导的无从得知,书上没讲,很多资料也没有讲,我想多半是为了不要影响思维的连贯性,所以将之省略了。我开始以为不复杂,就是上标下标看着烦人,所以就打算试着推导一下。谁知这个推导并没有想象中那么简单。第一次因为上下标搞混了,推导了半天没结果就放一边了。第二次仔细地推导,花了更多的时间,结果还是一塌糊涂。我终于明白书上为什么没有把这个推导过程放在书里了,的确是太复杂,学习的时候多半会干扰对碰撞本身的关注。但是这么放弃也有点不甘心,就又花了些时间,第三次准备将其推导出来。闲人可以看看,我也是放假闲着没事推导的,实在是很复杂很恐怖的推导。我自己都不想再看,因为象那样用常规的方式根本就推导不出来! 动量守恒定律: MpVp'+MqVq'=MpVp+MqVq(1-1) 动能守恒: (1/2)MpVp'2+(1/2)MqVq'2=(1/2)MpVp2+(1/2)MqVq2(1-2) 前两次推导吃了亏,所以第三次推导前仔细看了看书上结果公式的特点。有这样几个地方需要注意: 1、撞击后有两个速度,我们需要求的结果分别是这两个速度; 2、任一撞后的速度公式中,不能有另一个待求的速度,也就是Vp'的速度公式中,不能出现Vq',反之亦然; 3、这两组等式看上去比较对称,要设法利用这个关系; 4、由于上下标众多,推演起来很费眼,要准备使用复合式进行合并,以简化推演过程,最后再将其还原出来,形成最终的分离式,并整理。(具体见后面的备注,确实需要备注来记住这个过程,免得再走弯路) …. 至此,跟书上给出的公式差距越来越大,推导已经变得无比复杂了。再继续推导下去,除了浪费时间,就是浪费精力,只有停下来了。第三次推导仍以失败结束。之前也在网上搜索了很多的信息,大多数都说联立求解,就象我刚才做的那样,现在网上的信息泛滥与良莠不齐的确误导了不少像我这样的人。一时不知如何是好,休息了一阵,觉得还是只有在网上找找资料,要是翻书的话更是无从下手。在搜索条件的设置上,我略过了包含百度、搜狗、中学、高中之类的信息,因为这类回答通常都很简单,且充斥着随意和缺乏管理的编排。这样一来,信息比较集中和丰富了,然后把快照一页一页的翻看着。大概过了十多分钟,有一篇PPT 格式的文章出现了,于是我把它取了下来。打开一看,心里有点高兴,这是台湾老师做的课件。台湾人写的东西比较人性化,很多细节也会一五一十的说出来,而且是用很口语化的方式说出来,就像在跟人聊天一样。比如台湾有个程序员李维,他写的书就很平淡,甚至可以说是大白话,但是就目的而言,是完全没有问题的,而且省去了几倍另外查找资料、自己再写程序尝试的时间。另一个擅长C++剖析的侯捷,写的技术书或资料就像散文一般华丽,在众多台湾的写家里面也是独树一帜的。完全不像我们平时看的一些资料平淡无奇,藏着掖着,掐头去尾的,该省的不省,不该省的全省了。尽管这是个PPT 的课件,没有具体讲述推导的过程,但它还是给了一个推导的线索。最后才明白要用一个很怪异的方式,把碰撞速度公式极为简单地推导出来。为了省去翻页的麻烦,我再把两个守恒公式写在下面: 动量守恒定律: MpVp'+MqVq'=MpVp+MqVq(1-1) 动能守恒: 对两个方程做同样的整理,把M 一样的放在一边,如下: Mp(Vp-Vp')=Mq(Vq'-Vq)(1-3) Mp(Vp2-Vp'2)=Mq(Vq'2-Vq2)(1-4) 这两个整理后的方程看上去很工整,形式差别不大,只是动能方程中的四个速度多了个平方,其它都一样。正是这个成了巧妙推导的基础。因为两个方程左右两边相等,所以分别在两边相除的话,等式还是成立的。在(1-4)两边分别除以(1-3)的两边,就能分别约去Mp 和Mq,形成一个新的方程,见下: 对这个新的方程,该怎样处理呢?PPT 课件没有给个说法,而是直接给出了Vp+Vp'=Vq'+Vq(1-6) 的结论,并用这个结论推导速度公式,尽管结论跟书上是一致的,但刚开始我还是没有搞明白这是怎么一回事。想了一阵才顿悟: 因为: a2-b2=(a+b)(a-b) 因此,(1-5)式可以写成: 两边约去相减的那个因式,这时Vp+Vp'=Vq'+Vq,也就是(1-6)式就成立了。将(1-6)式进行整理,分别建立Vp'和Vq'的等式,如下: Vp'=Vq'+Vq-Vp(1-7) Vq'=Vp+Vp'-Vq(1-8) 现在将(1-7)式代入(1-1)中,有Mp(Vq'+Vq-Vp)+MqVq'=MpVp+MqVq

弹簧弹性势能公式的六种推导方法

弹簧弹性势能公式的六种推导方法 摘要:本文用六种不同的方法,从六种不同的角度推导出弹簧弹性势能的表达式。 关键词:弹性势能,微元,积分,振动方程 我们知道,弹簧的弹性势能的表达式为2 2 1kx E p = ,k 为弹簧的劲度系数,x 为弹簧的形变量。但很多教材及教辅中都是直接给出公式,少有推导过程。笔者现用如下六种方法来推导弹簧弹性势能的表达式,加深读者理解和记忆,方便学习。 下文中,为方便讨论,忽略弹簧的质量及一切摩擦,且研究的都是水平弹簧振子,但推导出的结果适用于任何情况下的弹簧。 1 微元法 弹簧的弹性势能等于自势能零点开始保守力做功的负值。外力拉弹簧时,外力的功与弹簧反抗形变而施于外界之力做的功大小相等而符号相反,因此,弹性势能等于自势能零点开始外力做功的正值[1]。 取弹簧自由端为势能零点。设弹簧在外力F 的作用下发生形变量x ,将这个形变过程等分成很多小段,如n 段,那么每一小段中可近似认为拉力是不变的。 第1小段形变量22 11111...n x k x F W n x k F n x x =?===?,拉力的功,拉力 第2小段形变量22 222222..2.n x k x F W n x k F n x x =?===?,拉力的功,拉力 第3小段形变量22 333333..3.n x k x F W n x k F n x x =?===?,拉力的功,拉力 第n 小段形变量22 ...n nx k x F W n nx k F n x x n n n n n =?===?,拉力的功,拉力 所以,拉力的总功为

()()2 1. 321.3.2..2222 2 2222222321+=++++=++++=++++=n n n kx n n kx n nx k n x k n x k n x k W W W W W n 当2 2222 12.kx n n kx W n ==∞→时,。因为弹性势能等于自势能零点开始外力做功的 正值,所以弹簧的弹性势能2 2 1kx W E P ==。 2 动能定理法 取弹簧自由端为势能零点。设F 缓慢拉弹簧使其发生形变量x 。缓慢拉动意味着每一个位置都可看作是平衡状态,动能的变化0=?k E 。弹簧的弹力kx F =,因为F 与x 是线性关系,所以弹力的平均值为kx F 2 1 = ,外力F 的平均值也为kx 2 1 ,方向与弹簧弹力方向相反。设弹簧反抗外力做功为W ,由动能定理得 2 2 1 kx x F W W x F -=-=∴=+ 因弹簧弹性势能等于自势能零点开始保守力做功的负值,所以2 2 1kx W E P =-=。 3 积分法 取弹簧自由端为势能零点。设弹簧形变一微小量dx ,弹力做功为dW 。 k x d x F d x dW -=-= 两边积分: ??-=x k x d x dW 0 221kx W -=∴ 所以弹簧的弹性势能22 1 kx W E P =-=。 4 机械能守恒法

相关主题
文本预览
相关文档 最新文档