当前位置:文档之家› 基于单片机的函数信号发生器课程设计(毕业设计)完整版.doc

基于单片机的函数信号发生器课程设计(毕业设计)完整版.doc

基于单片机的函数信号发生器课程设计(毕业设计)完整版.doc
基于单片机的函数信号发生器课程设计(毕业设计)完整版.doc

脉冲信号发生器使用方法

脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般都以矩形波为标准信号输出。 脉冲信号发生器的种类繁多,性能各异,但内部基本电路应包括图1所示的几个部分。 主振级一般由无稳态电路组成,产生重复频率可调的周期性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器使输出的脉冲信号幅度可调。 所示为xc-15型脉冲信号发生器的面板示意图,xc-15型脉冲信号发生器是高重复频率ns (纳秒)级脉冲信号发生器。其重复频率范围为1kHz~100MHz,脉冲宽度为5ns~300μs,幅度为150mV~5V,并输出正、负脉冲及正、负倒置脉冲,性能比较完善。 (1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ①“频率”粗调开关和“频率细调”旋钮。调节“频率”粗调开关和“频率细调”旋钮,可实现1kHz~100MHz的连续调整。粗调分为十挡(1kHz、3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz和100MHz),用细调覆盖。“频率细调”旋钮顺时针旋转时频率增高,顺时针旋转到底,为“频率”粗调开关所指频率;逆时针旋转到底,为此“频率”粗调开关所指刻度低一挡。例如,“频率”粗调开关置于10kHz挡,“频率细调”旋钮顺时针旋转到底时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②“延迟”粗调转换开关和“延迟细调”旋钮。调节此组开关和旋钮,可实现延迟时间5ns~300,tts的连续调整。延迟粗调分为十挡(5ns、10ns、30ns、l00ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输出负方波的下降沿超前主脉冲前沿的时间。 “延迟细调”旋钮逆时针旋转到底为粗调挡所指的延迟时间。顺时针旋转延迟时间增加,顺时针旋转到底为此粗调挡位高一挡的延迟时间。例如,“延迟”粗调开关置于30ns挡,“延迟细调”旋钮顺时针旋转到底时输出延迟时间为100ns;逆时针旋转到底时输出延迟时间为30ns。 ③“脉宽”粗调开关和“脉宽细调”旋钮。通过调节此组开关和旋钮,可实现脉宽5ns~300μs 的连续调整。“脉宽”粗调分为十挡(5ns、10ns、30ns、100ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。“脉宽细调”旋钮逆时针旋转到底为粗调挡所指的脉宽时间。顺时针旋转脉宽增加,顺时针旋转到底为此粗调挡位高一挡的脉宽。例如,“脉宽”粗调开关置于10ns挡,“脉宽细调”旋钮顺时针旋转到底时输出脉宽为30ns;逆时针旋转到底时输出延迟时间为10ns。 ④“极性”选择开关。转换此开关可使仪器输出四种脉冲波形中的一种。 ⑤“偏移”旋钮。调节偏移旋钮可改变输出脉冲对地的参考电平。 ⑥“衰减”开关和“幅度”旋钮。调节此组开关和旋钮,可实现150mV~5V的输出脉冲幅度调整。 (2)使用注意事项在使用xc 15型脉冲信号发生器时应注意如下两点事项。 ①本仪器不能空载使用,必须接入50Ω负载,并尽量避免感性或容性负载,以免引起波形畸变。 ②开机后预热15min后,仪器方能正常工作。

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

基于STM32的简易信号发生器

绍兴文理学院 数理信息学院 课程设计报告书题目基于STM32的简易信号发生器电子信息工程专业 1班 姓名 xxx 指导教师 xxx 时间 2014年 7月12日

课程设计任务书

基于STM32的简易波形发生器 摘要 函数信号发生器是一种能够产生多种波形,如正弦波、方波、三角波、锯齿波等的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出以上波形的波形发生器。本课题采用STM32[1]为控制芯片,采用DDS[2]的设计方法,可将采样点经D/A[3]转换后输出任意波形,可通过调节D/A转换的频率来调节输出波形的频率,也可通过改变取点的起始位置来调节波形的初始相位。 关键词信号发生器STM32 DDS

目录 课程设计任务书.............................................................................................................................. I 摘要……………………………………………………………………………………………….II 1 设计概述 (1) 2 设计方案 (2) 3 设计实现 (3) 3.1 设计框图及流程图 (3) 3.2 MCU控制模块 (5) 3.3 按键控制模块 (5) 3.4 信号输出模块 (6) 3.5 LCD显示模块 (8) 4 设计验证 (8) 5 总结 (11)

1设计概述 信号发生器作为一种历史悠久的测量仪器,早在20年代电子设备刚出现时就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使得信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或作脉冲调制器的脉冲信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器。这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形。 自从70年代微处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。这时期的信号发生器多以软件为主,实质是采用微处理器对D/A的程序控制,就可以得到各种简单的波形。 在80年代以后,数字技术日益成熟,信号发生器绝大部分不再使用机械驱动而采用数字电路,从一个频率基准有数字合成电路产生可变频率信号。 90年代末出现了集中真正高性能的函数信号发生器,HP公司推出了型号为HP770S的信号模拟装置系统,它是由HP8770A任意波形数字化和HP1770A波形发生软件组成。 信号发生器技术发展至今,引导技术潮流的仍是国外的几大仪器公司,如日本横河、Agilent、Tektronix等。美国的FLUKE公司的FLUKE-25型函数发生器是现有的测试仪器中最具多样性功能的几种仪器之一,它和频率计数器组合在一起,在任何条件下都可以给出很高的波形质量,能给出低失真的正弦波和三角波,还能给出过冲很小的快沿方波,其最高频率可达到5MHz,最大输出幅度可达到10Vpp。 国内也有不少公司已经有了类似的仪器。如南京盛普仪器科技有限公司的SPF120DDS信号发生器,华高仪器生产的HG1600H型数字合成函数\任意波形信号发生器。国内信号发生器起步晚,但发展至今,已经渐渐跟上国际的脚步,能够利用高新技术开发出达到国际水平的高性能多功能信号发生器。 信号发生器在生产实践和科技领域中有着广泛的应用,各种波形曲线均可用三角函数方程式来表达。函数信号发生器是各种测试和实验过程中不可缺少的工具,在通信、测量 雷达、控制教学等领域应用十分广泛。不论是在生产、科研还是在教学上,信号发生器都是电子工程师信号仿真实验的最佳工具。而且,信号发生器的设计

函数信号发生器(毕业设计)

陕西国防学院电子工程系毕业论文 摘要 本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。 函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。也可以先产生三角波-方波,再将三角波或方波转化为正弦波。随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如ICL8038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。所以,可选择的方案多种多样,技术上是可行的。 关键词: ICL8038,波形,原理图,常用接法 1

陕西国防学院电子工程系毕业论文 目录 摘要 (1) 目录 (2) 第一章项目任务 (3) 1.1 项目建 (3) 1.2 项目可行性研究 (3) 第二章方案选择 (4) 2.1 [方案一] (4) 2.2 [方案二] (4) 第三章基本原理 (5) 3.1函数发生器的组成 (6) 3.2 方波发生器 (6) 3.3 三角波发生器 (7) 3.4 正弦波发生器 (9) 第四章稳压电源 (10) 4.1 直流稳压电源设计思路 (10) 4.2 直流稳压电源原理 (11) 4.3设计方法简介 (12) 第五章振荡电路 (15) 5.1 RC振荡器的设计 (15) 第六章功率放大器 (17) 6.1 OTL 功率放大器 (17) 第七章系统工作原理与分析 (19) 7.1 ICL8038芯片简介 (19) 7.2 ICL8038的应用 (19) 7.3 ICL8038原理简介 (19) 7.4 电路分析 (20) 7.5工作原理 (20) 7.6 正弦函数信号的失真度调节 (23) 7.7 ICL8038的典型应用 (24) 致谢 (25) 心得体会 (26) 参考文献 (27) 附录1 (28) 附录2 (29) 附录3 (30) 2

函数信号发生器的设计与制作

函数信号发生器的设计、和装配实习 一.设计制作要求: 掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。掌握安装、焊接和调试电路的技能。掌握在装配过程中可能发生的故障进行维修的基本方法。 二.方波一三角波一正弦波函数发生器设计要求 函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。 产生正弦波、方波、三角波的方案有多 种: 1:如先产生正弦波,然后通过整 形电路将正弦波变换成方波,再由积分 电路将方波变成三角波。 2:先产生三角波一方波,再将三 角波变成正弦波或将方波变成正弦波。 3 3:本次电路设计,则采用的图1函数发生器组成框图 是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。此钟方法的电路组成框图。如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。 为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理: ,并判所谓比较器,是一种用来比较输入信号v1和参考电压V REF 断出其中哪个大,在输出端显示出比较结果的电路。 在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。 一、单门限电压比较器 所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

函数信号发生器

函数信号发生器 函数信号发生器 作者:华伟锋卞蕊樊旭超 2013-8-8

函数信号发生器 摘要 直接数字频率合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快等优点,在雷达及通信等领域有着广泛的应用前景。本文介绍了DDS(直接数字频率合成)的基本原理和工作特点,提出以DDS芯片AD9850芯片为核心利用MSP430F5438单片机控制,辅以必要的外围电路,构成一个输出波形稳定、精度较高的信号发生器。该信号发生器主要能产生标准的正弦波、方波与三角波(锯齿波),波形可手动切换,频率步进可调,软件系统采用菜单形式进行操作,LCD液晶显示可实时显示输出信号的类型、幅度、频率和频率步进值,操作方便明了,还增加了很多功能。 关键词:AD9850;信号发生器;MSP430F149单片机;DDS;LCD液晶; Abstact:Direct Digital Synthesis (DDS) is an important frequency synthesizer technology, with high resolution, fast frequency conversion, etc., in radar and communications and other fields have a wide range of applications. This article describes the DDS (direct digital frequency synthesis) of the basic principles and work, we proposed to DDS chip AD9850 chip as the core using MSP430F5438 MCU control, supplemented by the necessary peripheral circuits to form a stable output waveform, high precision signal generator . The signal generator can generate standard primary sine wave, square wave and triangular wave (sawtooth), the waveform can be manually switched, frequency step adjustable software system used to operate the menu form, LCD liquid crystal display can be real-time display of the output signal type , amplitude, frequency and frequency step value, easy to understand, but also adds a lot of functionality. Key words:AD9850; signal generator; MSP430F5438MCU; DDS; LCD liquid crystal;

简易矩形波发生器报告

数字电路设计研讨 --简易矩形波信号发生器 姓名:尹晨洋 学号:13211023 班级:通信1301 同组成员:程永涛 学号:13211007 指导老师:任希

目录 一、综述************************************************************ 1 二、电路元件结构及工作原理***************************** 1 1)、555计数器******************************************************** 1 2)、74ls160同步计数器************************************************ 2 3)、74ls175 4位寄存器************************************************* 4三、频率可调的矩形波发生器***************************** 4 1)、频率可调的矩形波发生器电路图仿真电路图******************************* 4 2)、频率可调的矩形波发生器工作原理分析*********************************** 4 3)、仿真结果分析******************************************************** 5四、可显示频率计数器***************************************** 6 1)、可显示频率计数器仿真电路图******************************************** 6 2)、工作原理分析********************************************************* 6 3)、仿真结果分析********************************************************** 7 4)、实验误差************************************************************** 9 五、总结与体会************************************************** 9 六、参考文献*******************************************************

信号发生器毕业设计

信号发生器的设计与制作 系别:机电系专业:应用电子技术届:07届姓名:张海峰 摘要 本系统以AD8951集成块为核心器件,AT89C51集成块为辅助控制器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。AD9851是AD公司生产的最高时钟为125 MHz、采用先进的CMOS技术的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成,能实现全数字编程控制的频率合成。 关键词AD9851,AT89C51,波形,原理图,常用接法

ABSTRACT 5 The system AD8951 integrated block as the core device, AT89C51 Manifold for auxiliary control devices, production of a function signal generator to produce low cost. Suitable for students to learn the use of electronic technology measurement. AD9851 is a AD produced a maximum clock of 125 MHz, using advanced CMOS technology, the direct frequency synthesizer, mainly by the programmable DDS systems, high-performance module converter (DAC) and high-speed comparator three parts, to achieve full Digital program-controlled frequency synthesizer. Key words AD9851, AT89C51, waveforms, schematics, Common Connection

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

EDA实验 函数信号发生器

EDA设计实验 题目:函数信号发生器 作者: 所在学院:信息科学与工程学院 专业年级: 指导教师: 职称: 2011 年 12 月 11 日

函数信号发生器 摘要:函数信号发生器在生产实践和科技领域有着广泛的应用。本设计是采用了EDA技术设计的函数信号发生器。此函数信号发生器的实现是基于VHDL语言描述各个波形产生模块,然后在QuartusⅡ软件上实现波形的编译,仿真和下载到Cyclone芯片上。整个系统由波形产生模块和波形选择模块两个部分组成。最后经过QuartusⅡ软件仿真,证明此次设计可以输出正弦波、方波、三角波,锯齿波,阶梯波等规定波形,并能根据波形选择模块的设定来选择波形输出。 关键字:函数信号发生器;Cyclone;VHDL;QuartusⅡ 引言: 函数信号发生器即通常所说的信号发生器是一种常用的信号源,广泛应用于通信,雷达,测控,电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格要求的电信号设备是最普通、最基本也是应用最广泛的电子仪器之一,几乎所有电参量的测量都要用到波形发生器。随着现代电子技术的飞速发展,现代电子测量工作对函数信号信号发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波性,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度、及分辨率高等。本文基于

EDA设计函数信号发生器,并产生稳定的正弦波、方波、锯齿波、三角波、阶梯波。 正文: 1、Quartus II软件简介 1)Quartus II软件介绍 Quartus II 是Alera公司推出的一款功能强大,兼容性最好的EDA工具软件。该软件界面友好、使用便捷、功能强大,是一个完全集成化的可编程逻辑设计环境,具有开放性、与结构无关、多平台完全集成化丰富的设计库、模块化工具、支持多种硬件描述语言及有多种高级编程语言接口等特点。 Quartus II是Altera公司推出的CPLD/FPGA开发工具,Quartus II提供了完全集成且与电路结构无关的开发包环境,具有数字逻辑设计的全部特性,包括:可利用原理图、结构框图、VerilogHDL、AHDL和VHDL完成电路描述,并将其保存为设计实体文件;芯片平面布局连线编辑;功能强大的逻辑综合工具;完备的电路功能仿真与时序逻辑仿真工具;定时/时序分析与关键路径延时分析;可使用SignalTap II逻辑分析工具进行嵌入式的逻辑分析;支持软件源文件的添加和创建,并将它们链接起来生成编程文件;使用组合编译方式可一次完成整体设计流程;自动定位编译错误;高效的期间编程与验证工具;可读入标准的EDIF网表文件、VHDL网表文件和Verilog网表文件;能生成第

如何使用函数信号发生器

如何使用函数信号发生器 认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发. 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波,换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设

脉冲信号发生器设计

脉冲信号发生器 摘要:本实验是采用fpga方式基于Alter Cyclone2 EP2C5T144C8的简易脉冲信号发生器,可以实现输出一路周期1us到10ms,脉冲宽度:0.1us到周期-0.1us,时间分辨率为 0.1us的脉冲信号,并且还能输出一路正弦信号(与脉冲信号同时输出)。输出模式 可分为连续触发和单次手动可预置数(0~9)触发,具有周期、脉宽、触发数等显示功能。采用fpga计数实现的电路简化了电路结构并提高了射击精度,降低了电路功耗和资源成本。 关键词:FPGA;脉冲信号发生器;矩形脉冲;正弦信号; 1 方案设计与比较 脉冲信号产生方案: 方案一、采用专用DDS芯片的技术方案: 目前已有多种专用DDS集成芯片可用,采用专用芯片可大大简化系统硬件制作难度,部数字信号抖动小,输出信号指标高;但专用芯片控制方式比较固定,最大的缺点是进行脉宽控制,测量困难,无法进行外同步,不满足设计要求。 方案二、单片机法。 利用单片机实现矩形脉冲,可以较方案以更简化外围硬件,节约成本,并且也可以实现灵活控制、能产生任意波形的信号发生器。但是单片机的部时钟一般是小于25Mhz,速度上无法满足设计要求,通过单片机产生脉冲至少需要三条指令,所需时间大于所要求的精度要求,故不可取。 方案二:FPGA法。利用了可编程逻辑器件的灵活性且资源丰富的特点,通过Quartus 软件的设计编写,实现脉冲信号的产生及数控,并下载到试验箱中,这种方案电路简单、响应速度快、精度高、稳定性好故采用此种方案。 2 理论分析与计算 脉冲信号产生原理:输入量周期和脉宽,结合时钟频率,转换成两个计数器的容量,用来对周期和高电平的计时,输出即可产生脉冲信号。 脉冲信号的精度保证:时间分辨率0.1us,周期精度:+0.1%+0.05us,宽度精度:

函数信号发生器的设计与实现

实验1 函数信号发生器的设计与实现 姓名:_ _____ 学号: 班内序号:____ 课题名称:函数信号发生器的设计 摘要:采用运算放大器组成的积分电路产生比较理想的方波-三角波,根 据所需振荡频率和对方波前后沿陡度、方波和三角波幅度的要求,选择运放、稳压管、限流电阻和电容。三角波-正弦波转换电路利用差分放大器传输特性曲线的非线性实现,选取合适的滑动变阻器来调节三角波的幅度和电路的对称性,同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词:方波三角波正弦波 一、设计任务要求 1.基本要求:

设计制作一个函数信号发生器电路,该电路能够输出频率可调的正弦波、三角波和方波信号。 (1) 输出频率能在1-10KHz范围内连续可调,无明显失真。 (2) 方波输出电压Uopp=12V(误差小于20%),上升、下降沿小于10us。 (3) 三角波Uopp=8V(误差小于20%)。 (4) 正弦波Uopp1V,无明显失真。 2.提高要求: (1) 输出方波占空比可调范围30%-70%。 (2) 自拟(三种输出波形的峰峰值Uopp均可在1V-10V内连续可调)。 二、设计思路和总体结构框图 总体结构框图: 设计思路: 由运放构成的比较器和反相积分器组成方波-三角波发生电路,三角波输入差分放大电路,利用其传输特性曲线的非线性实现三角波-正弦波的转换,从而电路可在三个输出端分别输出方波、三角波和正弦波,达到信号发生器实验的基本要求。 将输出端与地之间接入大阻值电位器,电位器的抽头处作为新的输出端,实现输出信号幅度的连续调节。利用二极管的单向导通性,将方波-三角波中间的电阻改为两个反向二极管一端相连,另一端接入电位器,抽头处输出的结构,实现占空比连续可调,达到信号发生器实验的提高要求。 三、分块电路和总体电路的设计过程 1.方波-三角波产生电路 电路图:

函数信号发生器使用说明

EE1641C~EE1643C型 函数信号发生器/计数器 使用说明书 共 11 张 2004年 10 月

1 概述 1.1 定义及用途 本仪器是一种精密的测试仪器,因其具有连续信号、扫频信号、函数信号、脉冲信号等多种输出信号,并具有多种调制方式以及外部测频功能,故定名为EE1641C型函数信号发生器/计数器、EE1642C(EE1642C1)型函数信号发生器/计数器、EE1643C型函数信号发生器/计数器。本仪器是电子工程师、电子实验室、生产线及教学、科研需配备的理想设备。 1.2 主要特征 1.2.1 采用大规模单片集成精密函数发生器电路,使得该机具有很高的可靠性及优良性能/价格比。 1.2.2 采用单片微机电路进行整周期频率测量和智能化管理,对于输出信号的频率幅度用户可以直观、准确的了解到(特别是低频时亦是如此)。因此极大的方便了用户。 1.2.3 该机采用了精密电流源电路,使输出信号在整个频带内均具有相当高的精度,同时多种电流源的变换使用,使仪器不仅具有正弦波、三角波、方波等基本波形,更具有锯齿波、脉冲波等多种非对称波形的输出,同时对各种波形均可以实现扫描、FSK调制和调频功能,正弦波可以实现调幅功能。此外,本机还具有单次脉冲输出。 1.2.4 整机采用中大规模集成电路设计,优选设计电路,元件降额使用, 以保证仪器高可靠性,平均无故障工作时间高达数千小时以上。 1.2.5 机箱造型美观大方,电子控制按纽操作起来更舒适,更方便。 2 技术参数 2.1 函数信号发生器技术参数 2.1.1 输出频率 a) EE1641C:0.2Hz~3MHz 按十进制分类共分七档 b) EE1642C:0.2Hz~10MHz 按十进制分类共分八档 c) EE1642C1:0.2Hz~15MHz 按十进制分类共分八档 d) EE1643C:0.2Hz~20MHz 按十进制分类共分八档 每档均以频率微调电位器实行频率调节。 2.1.2 输出信号阻抗 a) 函数输出:50Ω b) TTL同步输出:600Ω 2.1.3 输出信号波形 a) 函数输出(对称或非对称输出):正弦波、三角波、方波 b) 同步输出:脉冲波 2.1.4 输出信号幅度 a) 函数输出:≥20Vp–p±10%(空载);(测试条件:fo≤15MHz,0dB衰减) ≥14Vp–p±10%(空载);(测试条件:15MHz≤fo≤20MHz,0dB衰减) b) 同步输出:TTL电平:“0”电平:≤0.8V,“1”电平:≥1.8V(负载电阻≥600Ω) CMOS电平:“0”电平:≤4.5V,“1”电平:5V~13.5V可调(fo≤2MHz) c) 单次脉冲:“0”电平:≤0.5V,“1”电平:≥3.5V 2.1.5 函数输出信号直流电平(offset)调节范围:关或(–10V~+10V)±10%(空载) [“关”位置时输出信号所携带的直流电平为:<0V±0.1V,负载电阻为:50Ω时,调节范围为 (–5V~+5V)±10%]

任意信号发生器毕业设计开题报告书

苏州科技学院 毕业设计开题报告 设计题目任意信号发生器的硬件设计(基于89C51实现)院系电子与信息工程学院 专业电子信息工程 班级电子0911 学生姓名XXXXXXX 学号 设计地点 指导教师 2013 年3月31 日

设计题目:任意信号发生器的硬件设计(基于89C51实现)课题目的、意义及相关研究动态: 一、课题目的: 信号发生器是一种能产生模拟电压波形的设备,这些波形能够校验电子电路的设计。信号发生器广泛用于电子电路、自动控制系统和教学实验等领域,它是一种可以产生正弦波,方波,三角波等函数波形的一起,其频率范围约为几毫赫到几十兆赫,在工业生产和科研中利用信号发生器输出的信号,可以对元器件的性能鉴定,在多数电路传递网络中,电容与电感组合电路,电容与电阻组合电路及信号调制器的频率,相位的检测中都可以得到广泛的应用。因此,研究信号发生器也是一个很重要的发展方向。 常用的信号发生器绝大部分是由模拟电路构成的,但这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积和功耗都很大,而本课题设计的函数信号发生器,由单片机构成具有结构简单,价格便宜等特点将成为数字量信号发生器的发展趋势。 本课题采用的是以89c51为核心,结合 DAC0832实现程控一般波形的低频信号输出,他的一些主要技术特性基本瞒住一般使用的需要,并且它具有功能丰富,性能稳定,价格便宜,操作方便等特点,具有一定的推广作用。 二、课题意义: (1)任意信号发生器主要在实验中用于信号源,是电子电路等各种实验必不可少的实验设备之一,掌握任意信号发生器的工作原理至关重要。 (2)任意信号发生器能产生某些特定的周期性时间任意波形(正波、方波、三角波)信号,频率范围可从几个微赫到几十兆赫任意信号发生器在电路实验和设备检测中具有十分广泛的用途。 (3)本课题主要研究开发一个基于51单片机的实验用任意信号发生器,不但成本较低而精度较高,最重要的是开发简单易于调试,具有一定社会价值和经济价值。 (4)任意信号发生器作为一种常见的电子仪器设备,既能够构成独立的信号源,也可以是高新能的网络分析仪,频谱仪以及自动测试装备的组成部分,任意信号发生器的关键技术是多种高性能仪器的支撑技术,因为它是能够提高质量的精密信号源及扫描源,可使相应系统的检测过程大大简化,降低检测费用并且提高检测精度。

相关主题
文本预览
相关文档 最新文档