当前位置:文档之家› 摩擦与磨损(优.选)

摩擦与磨损(优.选)

摩擦与磨损(优.选)
摩擦与磨损(优.选)

表面摩擦与磨损

一、摩擦与磨损的定义

摩擦的定义是:两个相互接触的物体在外力的作用下发生相对运动或者相对运动趋势时,在切相面见间产生切向的运动阻力,这一阻力又称为摩擦力。磨损的定义是:任一工作表面的物质,由于表面相对运动而不断损失的现象。

据估计消耗在摩擦过程中的能量约占世界工业能耗的30%。在机器工作过程中,磨损会造成零件的表面形状和尺寸缓慢而连续损坏,使得机器的工作性能与可靠性逐渐降低,甚至可能导致零件的突然破坏。人类很早就开始对摩擦现象进行研究,取得了大量的成果,特别是近几十年来已在一些机器或零件的设计中考虑了磨损寿命问题。在零件的结构设计、材料选用、加工制造、表面强化处理、润滑剂的选用、操作与维修等方面采取措施,可以有效地解决零件的摩擦磨损问题,提高机器的工作效率,减少能量损失,降低材料消耗,保证机器工作的可靠性。

二、摩擦的分类及评价方法

在机器工作时,零件之间不但相互接触,而且接触的表面之间还存在着相对运动。从摩擦学的角度看,这种存在相互运动的接触面可以看作为摩擦副。有四种摩擦分类方式:按照摩擦副的运动状态分类、按照摩擦副的运动形式分类、按照摩擦副表面的润滑状态分类、按照摩擦副所处的工况条件分类。这里主要以根据摩擦副之间的状态不同分类,摩擦可以分为:干摩擦、边界摩擦、流体摩擦和混合摩擦,如图2-1所示。

图2-1 摩擦状态

1、干摩擦

当摩擦副表面间不加任何润滑剂时,将出现固体表面直接接触的摩擦(见图2-1a),工程上称为干摩擦。此时,两摩擦表面间的相对运动将消耗大量的能量并造成严重的表面磨损。这种摩擦状态是失效,在机器工作时是不允许出现的。由于任何零件的表面都会因为氧化而形成氧化膜或被润滑油所湿润,所以在工程实际中,并不存在真正的干摩擦。

2 、边界摩擦

当摩擦副表面间有润滑油存在时,由于润滑油与金属表面间的物理吸附作用和化学吸附作用,润滑油会在金属表面上形成极薄的边界膜。边界膜的厚度非常小,通常只有几个分子到十几个分子厚,不足以将微观不平的两金属表面分隔开,所以相互运动时,金属表面的微凸出部分将发生接触,这种状态称为边界摩擦(见图2-1b)。当摩擦副表面覆盖一层边界膜后,虽然表面磨损不能消除,但可以起着减小摩擦与减轻磨损的作用。与干摩擦状态相比,边界摩擦状态时的摩擦系数要小的多。

在机器工作时,零件的工作温度、速度和载荷大小等因素都会对边界膜产生影响,甚至造成边界膜破裂。因此,在边界摩擦状态下,保持边界膜不破裂十分重要。在工程中,经常通过合理地设计摩擦副的形状,选择合适的摩擦副材料与润滑剂,降低表面粗糙度,在润滑剂中加入适当的油性添加剂和极压添加剂等措施来提高边界膜的强度。

3 、流体摩擦

当摩擦副表面间形成的油膜厚度达到足以将两个表面的微凸出部分完全分开时,摩擦副之间的摩擦就转变为油膜之间的摩擦,这称为流体摩擦(见图2-1c)。形成流体摩擦的方式有两种:一是通过液压系统向摩擦面之间供给压力油,强制形成压力油膜隔开摩擦表面,这称为流体静压摩擦;二是通过两摩擦表面在满足一定的条件下,相对运动时产生的压力油膜隔开摩擦表面,这称为流体动压摩擦。流体摩擦是在流体内部的分子间进行的,所以摩擦系数极小。

4 、混合摩擦

当摩擦副表面间处在边界摩擦与流体摩擦的混合状态时,称为混合摩擦。在一般机器中,摩擦表面多处于混合摩擦状态(见图2-1d)。混合摩擦时,表面间的微凸出部分仍有直接接触,磨损仍然存在。但是,由于混合摩擦时的流体膜厚度要比边界摩擦时的厚,减小了微凸出部分的接触数量,同时增加了流体膜承载的比例,所以混合摩擦状态时的摩擦系数要比边界摩擦时小得多。

三、磨损的分类及评价方法

摩擦副表面间的摩擦造成表面材料逐渐地损失的现象称为磨损。零件表面磨损后不但会影响其正常工作,如齿轮和滚动轴承的工作噪声增大,而承载能力降

低,同时还会影响机器的工作性能,如工作精度、效率和可靠性降低,噪声与能耗增大,甚至造成机器报废。通常,零件的磨损是很难避免的。但是,只要在设计时注意考虑避免或减轻磨损,在制造时注意保证加工质量,而在使用时注意操作与维护,就可以在规定的年限内,使零件的磨损量控制在允许的范围内,就属于正常磨损。另一方面,工程上也有不少利用磨损的场合,如研磨、跑合过程就是有用的磨损。

图3-1零件的磨损曲线

3.1 工程实践表明,机械零件的正常磨损过程大致分为三个阶段:初期磨损阶段、稳定磨损阶段和剧烈磨损阶段,如图3-1所示。

1)初期磨损阶段

由图3-1可见,机械零件在初期磨损阶段的特点是在较短的工作时间内,表面发生了较大的磨损量。这是由于零件刚开始工作时,表面微凸出部分的曲率半径小,实际接触面积小,造成较大的接触压强,同时曲率半径小也不利于润滑油膜的形成与稳定。所以,在开始工作的较短时间内磨损量较大。

2)稳定磨损阶段

经过初期磨损阶段后,零件表面磨损的很缓慢。这是由于经过初期磨损阶段后,表面微凸出部分的曲率半径增大,高度降低,接触面积增大,使得接触压强减小,同时还有利于润滑油膜的形成与稳定。稳定磨损阶段决定了零件的工作寿命。因此,延长稳定磨损阶段对零件工作是十分有利的。工程实践表明,利用初期磨损阶段可以改善表面性能,提高零件的工作寿命。

3)剧烈磨损阶段

零件在经过长时间的工作之后,即稳定磨损阶段之后,由于各种因素的影响,磨损速度急剧加快,磨损量明显增大。此时,零件的表面温度迅速升高,工作噪声与振动增大,导致零件不能正常工作而失效。在实际中,这三个磨损阶段并没有明显的界限。

在机械工程中,零件磨损是一个普遍的现象。尽管,人类已对磨损开展了广泛的科学研究,但是从工程设计的角度看,关于零件的耐磨性或磨损强度的理论仍然不十分成熟。因此,本书仅从磨损机理的角度对磨损的分类作一介绍。

3.2 根据磨损的机理,零件的磨损可以分为:粘着磨损、腐蚀磨损、磨料磨损和接触疲劳磨损。

1)粘着磨损

在摩擦副表面间,微凸出部分相互接触,承受着较大的载荷,相对滑动引起表面温度升高,导致表面的吸附膜(如油膜,氧化膜)破裂,造成金属基体直接接触并“焊接”到一起。与此同时,相对滑动的切向作用力将“焊接”点,即粘着点,剪切开,造成材料从一个表面上被撕脱下来粘附到另一表面上。由此形成的磨损称为粘着磨损。通常多是较软表面上的材料被撕脱下来,粘附到较硬的表面上。零件工作时,载荷越大,速度越高,材料越软,粘着磨损越容易发生。粘着磨损严重时也称为“胶合”。

影响粘着磨损的主要因素;同类摩擦副材料比异类材料容易粘着;脆性材料比塑性材料的抗粘着能力高,在一定范围内的表面粗糙度越高抗粘着能力越强,此外粘着磨损还与润滑剂、摩擦表面温度及压强有关。

在工程上,可以从摩擦副的材料选用,润滑和控制载荷及速度等方面采取措施来减小粘着磨损。

2)腐蚀磨损

在机器工作时,摩擦副表面会与周围介质接触,如有腐蚀性的液体、气体、润滑剂中的某种成分,发生化学反应或电化学反应形成腐蚀物造成的磨损,称为腐蚀磨损。腐蚀磨损过程十分复杂,它与介质、材料和温度等因素有关。响腐蚀磨损的主要因素;周围介质、零件表面的氧化膜性质及环境温度等。

3 )磨料磨损

落入摩擦副表面间的硬质颗粒或表面上的硬质凸起物对接触表面的刮擦和切削作用造成的材料脱落现象,称为磨料磨损。磨粒磨损造成表面成现凹痕或凹坑。硬质颗粒可能来自冷作硬化后脱落的金属屑或由外界进入的磨粒。加强防护与密封,做好润滑油的过滤,提高表面硬度可以增加零件耐磨粒磨损的寿命。粒磨损与摩擦材料的硬度、磨粒的硬度有关。

4)接触疲劳磨损

在接触变应力作用一段时间后,摩擦副表面会出现材料脱落的现象,这称为接触疲劳磨损。接触变应力作用一段时间后造成的材料脱落会不断地扩展,形成成片的麻点或凹坑,导致零件失效。

在实际中,零件表面的磨损大都是几种磨损作用的结果。因此,在机械设计中,一定要根据零件的具体工况,从结构、材料、制造、润滑和维护等方面采取措施提高零件的耐磨性。

影响接触疲劳磨损的主要因素有;摩擦副材料组合、表面光洁度、润滑油粘度以及表面硬度等。

3.3 对磨损的常用评价方法有:磨损量、耐磨性、磨损率

1) 磨损量,由于磨损引起的材料损失量称为磨损量,它可通过测量长度、体积或质量的变化而得到,并相应称它们为线磨损量、体积磨损量和质量磨损量。

2) 磨损率,以单位时间内单位载荷下材料的磨损量表示。

3) 耐磨性,又称耐磨耗性。指材料抵抗磨损的性能,它以规定摩擦条件下的磨损率或磨损度的倒数来表示,即耐磨性=dt/dV或dL/dV。材料的耐磨损性能,用磨耗量或耐磨指数表示。

最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改

摩擦磨损过程和磨损形式

摩擦磨损过程和磨损形式 钱洪新 [摘要]在机器的运转过程中,作相对运动的零件之间总是伴随着摩擦而产生磨损。磨损通常是不希望出现的,它是消极的、不利的。本文阐述了摩擦磨损过程;分析了摩擦的种类和摩擦 磨损的四种基本形式;揭示了摩擦磨损的规律。 [关键词]摩擦磨损摩擦分类磨损形式磨损规律 机器的运转都是由运动副零件的配合表面相对运动来实现的,而配合表面的相对运动必然伴随着摩擦而产生磨损。在摩擦过程中,摩擦表面发生了尺寸、形状和表面质量的变化称为磨损。摩擦磨损是发动机零件最常见的一种损伤形式,是机器缩短使用寿命、丧失工作能力、影响安全可靠工作的主要因素之一。 一、摩擦磨损过程 摩擦磨损与摩擦表面形貌有关。由于表面粗糙度的存在,两摩擦表面仅仅是在少数孤立点上发生接触,这时,法向载荷便由这些点上发生接触。接触面积越小,法向应力越大。当法向应力超过材料的屈服极限时,接触点就产生塑性变形。在塑性变形的同时,接触点处金属表面上的氧化膜也被压碎或剪切掉。这时,接触点金属分子间相互吸引力增大,有可能相互扩散而熔合在一起。我们把熔合在一起的现象称为冷焊。当相对运动继续进行时,由于剪切而使冷焊点破裂。以后又在接触点发生塑性变形、冷焊和破裂,直到真实接触面积增大到足以支承法向载荷时为止。这时,表面硬度增加了,表面粗糙度也有所提高了。 摩擦磨损过程是一个复杂的过程。当金属产生塑性变形时,要释放热量,因此,在摩擦表面上的温度要比基体金属的温度高得多。当温度高于再结晶温度时,因变形而引起的表面强化现象将消失;当温度继续升高时,金属被软化,摩擦表面金属分子相互粘结;当温度升高到相变温度,摩擦表面金属就会产生相变,强度和硬度也大大降低。在摩擦磨损过程中,摩擦表面还要与周围介质起作用。例如当氧化膜被压碎或前切后,裸露的金属表面迅速与氧气起化学反应,形成新的氧化膜。氧化膜和基体金属的结合力较弱,容易被压碎或剪切。另外,空气中的水分和润滑油中的硫分均能与摩擦表面起化学反应,产生化合物,加剧摩擦表面的磨损。因此,摩擦磨损过程就是由于机械和化学的

表面摩擦与磨损综述总结

表面摩擦与磨损 摘要:简要介绍了摩擦与磨损的定义,摩擦的分类及评价方法;磨损的分类及评价方法;磨损的评价方法;抗摩擦磨损表面强化技术。 关键词:摩擦;磨损;表面 1 引言 摩擦与磨损是自然界存在的普遍现象, 摩擦对人类的生活和生产活动有利有弊, 而磨损却是有百害而无一利。摩擦与磨损对能源及材料的消耗是相当可观的, 据粗略估计, 有 1/3 ~ 1/2的能源消耗于磨损, 而磨损又常常是机器零部件失效的主要原因。 摩擦与磨损是发生在相互接触并相对运动的两个固体表面之间, 因此接触表面的特性, 诸如表面粗糙度及硬度等与摩擦、磨损关系密切。有些表面特性是由材料的本性决定的, 此外, 还可以采用各种方法对材料表面进行改性, 其中表面处理技术中的电镀及复合镀等则是常用的手段。在制备减摩及耐磨镀层时需进行检测, 因此, 有必要对摩擦及磨损的定义、产生原因和测试方法等有一定程度的了解[1]。 2 摩擦与磨损的定义 摩擦的定义是:两个相互接触的物体在外力的作用下发生相对运动或者相对运动趋势时,在切相面见间产生切向的运动阻力,这一阻力又称为摩擦力。磨损的定义是:任一工作表面的物质,由于表面相对运动而不断损失的现象。 据估计消耗在摩擦过程中的能量约占世界工业能耗的 30%。在机器工作过程中,磨损会造成零件的表面形状和尺寸缓慢而连续损坏,使得机器的工作性能与可靠性逐渐降低,甚至可能导致零件的突然破坏。人类很早就开始对摩擦现象进行研究,取得了大量的成果,特别是近几十年来已在一些机器或零件的设计中考虑了磨损寿命问题。在零件的结构设计、材料选用、加工制造、表面强化处理、润滑剂的选用、操作与维修等方面采取措施,可以有效地解决零件的摩擦磨损问题,提高机器的工作效率,减少能量损失,降低材料消耗,保证机器工作的可靠性[2]。 3 摩擦的分类及评价方法 在机器工作时,零件之间不但相互接触,而且接触的表面之间还存在着相对运动。从摩擦学的角度看,这种存在相互运动的接触面可以看作为摩擦副。有四种摩擦分类方式:按照摩擦副的运动状态分类、按照摩擦副的运动形式分类、按照摩擦副表面的润滑状态分类、按照摩擦副所处的工况条件分类。这里主要以前三种方式介绍分类[3]。 3.1 按摩擦副的运动状态分类

摩擦与磨损

表面摩擦与磨损 一、摩擦与磨损的定义 摩擦的定义是:两个相互接触的物体在外力的作用下发生相对运动或者相对运动趋势时,在切相面见间产生切向的运动阻力,这一阻力又称为摩擦力。磨损的定义是:任一工作表面的物质,由于表面相对运动而不断损失的现象。 据估计消耗在摩擦过程中的能量约占世界工业能耗的30%。在机器工作过程中,磨损会造成零件的表面形状和尺寸缓慢而连续损坏,使得机器的工作性能与可靠性逐渐降低,甚至可能导致零件的突然破坏。人类很早就开始对摩擦现象进行研究,取得了大量的成果,特别是近几十年来已在一些机器或零件的设计中考虑了磨损寿命问题。在零件的结构设计、材料选用、加工制造、表面强化处理、润滑剂的选用、操作与维修等方面采取措施,可以有效地解决零件的摩擦磨损问题,提高机器的工作效率,减少能量损失,降低材料消耗,保证机器工作的可靠性。 二、摩擦的分类及评价方法 在机器工作时,零件之间不但相互接触,而且接触的表面之间还存在着相对运动。从摩擦学的角度看,这种存在相互运动的接触面可以看作为摩擦副。有四种摩擦分类方式:按照摩擦副的运动状态分类、按照摩擦副的运动形式分类、按照摩擦副表面的润滑状态分类、按照摩擦副所处的工况条件分类。这里主要以根据摩擦副之间的状态不同分类,摩擦可以分为:干摩擦、边界摩擦、流体摩擦和混合摩擦,如图2-1所示。 图2-1 摩擦状态

1、干摩擦 当摩擦副表面间不加任何润滑剂时,将出现固体表面直接接触的摩擦(见图2-1a),工程上称为干摩擦。此时,两摩擦表面间的相对运动将消耗大量的能量并造成严重的表面磨损。这种摩擦状态是失效,在机器工作时是不允许出现的。由于任何零件的表面都会因为氧化而形成氧化膜或被润滑油所湿润,所以在工程实际中,并不存在真正的干摩擦。 2 、边界摩擦 当摩擦副表面间有润滑油存在时,由于润滑油与金属表面间的物理吸附作用和化学吸附作用,润滑油会在金属表面上形成极薄的边界膜。边界膜的厚度非常小,通常只有几个分子到十几个分子厚,不足以将微观不平的两金属表面分隔开,所以相互运动时,金属表面的微凸出部分将发生接触,这种状态称为边界摩擦(见图2-1b)。当摩擦副表面覆盖一层边界膜后,虽然表面磨损不能消除,但可以起着减小摩擦与减轻磨损的作用。与干摩擦状态相比,边界摩擦状态时的摩擦系数要小的多。 在机器工作时,零件的工作温度、速度和载荷大小等因素都会对边界膜产生影响,甚至造成边界膜破裂。因此,在边界摩擦状态下,保持边界膜不破裂十分重要。在工程中,经常通过合理地设计摩擦副的形状,选择合适的摩擦副材料与润滑剂,降低表面粗糙度,在润滑剂中加入适当的油性添加剂和极压添加剂等措施来提高边界膜的强度。 3 、流体摩擦 当摩擦副表面间形成的油膜厚度达到足以将两个表面的微凸出部分完全分开时,摩擦副之间的摩擦就转变为油膜之间的摩擦,这称为流体摩擦(见图2-1c)。形成流体摩擦的方式有两种:一是通过液压系统向摩擦面之间供给压力油,强制形成压力油膜隔开摩擦表面,这称为流体静压摩擦;二是通过两摩擦表面在满足一定的条件下,相对运动时产生的压力油膜隔开摩擦表面,这称为流体动压摩擦。流体摩擦是在流体内部的分子间进行的,所以摩擦系数极小。 4 、混合摩擦 当摩擦副表面间处在边界摩擦与流体摩擦的混合状态时,称为混合摩擦。在一般机器中,摩擦表面多处于混合摩擦状态(见图2-1d)。混合摩擦时,表面间的微凸出部分仍有直接接触,磨损仍然存在。但是,由于混合摩擦时的流体膜厚度要比边界摩擦时的厚,减小了微凸出部分的接触数量,同时增加了流体膜承载的比例,所以混合摩擦状态时的摩擦系数要比边界摩擦时小得多。 三、磨损的分类及评价方法 摩擦副表面间的摩擦造成表面材料逐渐地损失的现象称为磨损。零件表面磨损后不但会影响其正常工作,如齿轮和滚动轴承的工作噪声增大,而承载能力降

摩擦磨损 试题

一、名词解释(10小题每题2分共20分) 1、表面的几何形状误差类型 答:机械零件的几何形状误差主要有以下三种类型,: (1)微观几何形状误差(2)表面波纹度(3)表面粗糙度也叫微观粗糙度 2、赫兹接触 答:就是指圆弧形物体的接触,如圆柱体、球体等曲面物体的接触。 3、机械理论 17~18世纪初,把固体看成是绝对刚体,摩擦现象的解释完全建立在固体表面的几何概念上,认为摩擦式粗糙不平的表面相互机械作用的结果,故称为机械理论。 4、磨粒磨损 答:磨粒磨损是指在摩擦过程中,由于摩擦表面上硬的微突体或摩擦界面上的硬颗粒而引起材料损耗的一种磨损现象(2分)。 5、微动腐蚀磨损 答:两接触表面间没有宏观的相对运动,由于振幅很小的相对滑动产生的磨损称为微动磨损。如果微动磨损过程中,两表面的化学反应起主要作用时,则可称为微动腐蚀磨损。(2分)6、弹性流体动压润滑 答:考虑了弹性变形及压粘变化对流体动压润滑的影响称为弹性流体动压润滑(2分) 7、润滑油闪点和燃点 答:将润滑油在规定的条件下加热,其蒸气与周围空气混合形成可燃气体,当与火焰接触时,瞬间闪火的最低温度为该油的闪点。(1分)若闪火时间长达5秒,则该温度即为这种润滑油的燃点。(1分) 8、固体润滑剂 答:为防止与保护相互运动的表面不受损害,以及减少摩擦副的摩擦与磨损而在运动表面使用的粉末状或薄膜状的固体物质,即叫固体润滑剂 9、强制润滑 答:用油泵将润滑油等输送到需润滑的机件部位的方法叫强制润滑。 10、摩擦学及摩擦学的研究对象 答:研究发生在作相对运动的表面(界面)上的各种现象产生、变化和发展的规律及其应用的一门科学(1分)。研究对象摩擦、磨损(包括材料转移)和润滑(包括固体润滑)的原理及其应用。(1分)。 二、填空题(10小题每题2分共20分) 1、通常所说的表面形状误差是由加工过程的(固有误差)引起的与要求形状的偏差。 2、两个粗糙表面的接触通常是一个(弹性变形)和(塑性变形)并存的混合系统。 3、大气中很少遇到纯净表面,金属表面总有一层膜,它可能是(氧化膜)或(污染膜)。 4、粘着磨损按磨损程度分为(轻微磨损)(涂抹)、(刮伤)、(胶合)和(咬死)五种。 5、在接触疲劳强度的基本准则中,(最大剪应力T max45)准则应用更广泛。 6、机器零件典型磨损过程分为(磨合)阶段、(正常磨损)阶段和(事故磨损)阶段 7、恒量磨损特性的主要参数是(磨损率),经常采用的有(三)种。 8、粘度是液体流动时在液体分子之间的(内摩擦),即流体膜的(剪切阻力)。 9、润滑油的基本构成成分时(基础油)和(添加剂)。 10、润滑脂的基本组分是(基础油)、(稠化剂)、(添加剂)和(稳定剂)。 三、问答题(5小题每题4分共20分) 1、古典摩擦理论有哪几种? 答:1)机械咬合理论。2)分子吸引理论。3)库仑摩擦定律。

长安大学摩擦磨损复习题及参考答案

磨损及耐磨材料复习题参考答案 1.固体表面的几何特性通常用(表面波纹度或宏观粗糙度)和(表面粗糙度或微观粗糙度) 来描述。 2.固体表面由于加工过程中的变形及局部加热,表现出不同于基体的物理机械性能,主要 表现在(硬度)、(残余应力)、(组织转变)、(塑性变形)和(微观缺陷)等。 3.固体表面的吸附分为(物理吸附)和(化学吸附)吸附。说明两种吸附的意义(物理吸附 是非常快的可逆过程。被吸附分子保持自己的特性。其与表面的结合属典型的范·德·瓦尔斯力。)(在化学吸附作用下,吸附原子与表面原子(分子)间发生电子交换,相互发生化学作用,从而使吸附表层的结构和化学性质发生变化,形成化合物。)。 4.影响滑动摩擦的主要因素有(金属性质)、(粗糙度)、(温度)、(速度)和(环境气氛与压 力)。 5.摩擦引起的表面效应有(温度效应)、(次表面应力的改变)、(扩散过程的发生)。 6.摩擦后表面的白层组织是由于(塑性流动)、(急冷急热)和(表面反应)三种效应所致。 7.滚动摩擦的机理与模型主要有(微观滑动)、(弹性滞后)、(塑性变形)和(粘着效应)。 8.常见的磨损形式包括(粘着磨损)、(磨料)、(疲劳)、(微动)、(腐蚀)和(冲蚀)。 9.减摩材料主要包括(钢铁)、(非铁合金)和(其他)减摩材料。 10.摩阻材料的主要失效形式为(磨损失效)和(热疲劳开裂)。 11.常见的润滑原理(方式)有那些?说出三种以上常见的固体润滑材料。流体润滑、边界润 滑和固体润滑。石墨、MoS 2、六方氮化硼(h-BN)、原硼酸(H 3 BO 3 )。 12.说明边界润滑的意义及和流体润滑的差异。所谓边界摩擦(又称边界润滑),是指相对运动的两 表面被极薄的润滑膜(厚度在0.1μm以下)隔开情况下的摩擦。它不同于流体摩擦,因为此时两表面间的摩擦和磨损不是取决于润滑剂的粘度,而是取决于两表面的特性和润滑剂特性。因而能大幅度提高承载能力,扩大使用范围。。而相对于干摩擦来说,边界摩擦具有较低的摩擦系数和磨损量。 13.解释磨损的实质及磨损与摩擦的关系,简要说明磨损的分类。要点:由于机械作用、间 或伴有化学和电的作用,表面相对运动,使材料发生损耗的现象(4);摩擦是根源(起因),磨损是结果。有摩擦就有磨损(3);分类:黏着磨损,磨料磨损,疲劳磨损,微动磨损,冲蚀磨损,腐蚀磨损(3)。 14.材料磨损量包括那些?解释相对耐磨性的含义;固体表面的接触面积分为哪3种?An、 Ap、Ar各表示什么。要点:W l ,W v 和W w ;ε=w A ∕w B ;(3) An=a*b, Ap,轮廓接触面积, Ar,实际接触面积(3); 15.简要说明金属固体表面结构。固体表面的接触具有什么特点?要点:外表层,氧化膜和吸 附膜或污染膜,内表层,加工硬化层,母材(3)。不连续性和不均匀性。 16.古典摩擦定律的基本内容包括哪些?与近代研究主要有哪些差异?摩擦力与作用于摩擦表 面的法向载荷成正比;摩擦力的大小与名义接触面积无关;静摩擦力大于动摩擦力;摩擦力的大小与滑动速度无关;摩擦力的方向总是与接触表面间的相对运动速度的方向相反。近代研究表明,上述定律与实际情况由许多不符之处。例如:摩擦系数实际上是与材料和环境有关的一个综合特性指数;而且,对于某些极硬或软材料摩擦力与法向载荷不呈线性比例关系。对于弹性材料(如橡胶)或粘弹性材料(如某些聚合物),摩擦力与名义接触面积的大小则存在着某种关系;对于很洁净、光滑的表面,或承受载荷很大时,接触表面间出现强烈的分子吸引力,故摩擦力与名义接触面积成正比。粘弹性材

摩擦磨损论文资料

.2 电磨损试验装置的研制 2.1 试验装置研制背景 电刷是电机中极为重要的部件, 它在电机的固定部件与旋转部件之间传导电流, 在直流电机或交流整流子电机中还起换向作用。现代工业要求电机朝高速、小型化方向发展, 这就要求电刷工作电流大、磨损速率小、摩擦系数小、具有高的比强度、比模量和良好的润滑耐磨性, 一定的导电、导热性, 而在各类耐磨、减磨材料中得到应用。但目前国内外有关金属基复合材料摩擦磨损性能的研究, 大都在机械磨损条件下进行的,施加的摩擦压力很大,对通电状态下的电磨损, 特别是电流强度变化对电刷耐磨性的影响和小压力工作条件下磨损的研究报道较少。考虑到电刷的实际工作状况,本文将制得的银一石墨复合材料电刷, 在模拟电机实际工作条件下, 研究复合电刷材料在不通电的纯机械磨损和通人不同电流强度的电磨损条件下的磨损性能, 并对其电磨损机理进行了初步探讨。 2.2 试验装置整体构造和原理 2.2.1 试验装置结构特点 2 4 7 8 6 5 3 1 1.对磨环 2.对磨环螺母 3.电刷支架 4.刷握 5.电刷 6.施压弹簧 7.支架螺母 8.导线 图1 磨损实验装置结构原理示意图

9 9.底座 图2 磨损试验装置结构结构示意图 电磨损实验装置主要由动力系统、磨损测试系统、电刷支架固定及加载系统组成,其结构原理示意图如图1,2所示。 如图采用的电磨损实验装置系统主要包括以下几大部分: (1) 动力系统 采用三项异步电动机作为动力装置,型号为JW-5024,功率为60W,标准工作电压380V,额定工作电流0.33A,频率50Hz,绝缘等级为E级,转速为1400转/分。 (2) 电刷支架固定系统及加载系统 如图2所示,u行铁片与电机底座用螺丝固定,电机底座采用球墨铸铁,目的就是为了减少电机的震动,增加工作稳定性和可靠性,降低工作噪音。 (3) 磨损测试系统 主要由电刷和对磨环构成,电刷与对磨环相接触(如图1所示),利用对磨环的转动,小弹簧对电刷施加压力,使电刷稳定磨损。

摩擦磨损测试及考核评价方式

摩擦磨损测试及考核评价方式 一、磨损 1.1磨损定义 磨损是指摩擦副相对运动时,表面物质不断损失或产生残余变形的现象。表面物质运动主要包括机械运动、化学作用和热作用:(1)机械作用使摩擦表面发生物质损失及摩擦表面的物理变形;(2)化学作用使摩擦表面发生性状改变;热作用是摩擦表面发生形状改变。典型的磨损曲线通常由三部分组成,如图1.1所示。 磨 损 量 图1.1 磨损曲线示意图 磨合阶段:磨损量随时间的增加而增加。发生在初始运动阶段,由于表面存在粗糙度,微凸体接触面积小,接触应力大,磨损速度较快。 稳定磨损阶段:摩擦表面磨合后达到稳定状态磨损率保持不变。稳定磨损阶段标志磨损条件保持相对稳定,是零件整个寿命范围内的工作过程。 剧烈磨损阶段:工作条件恶化,磨损量急剧增大。该阶段内零件精度降低、间隙增大,温度升高,产生冲击、振动和噪声,最终导致零部件完全失效。 1.2磨损种类 按磨损的破坏机理,通常把磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种。 (1)粘着磨损 当摩擦副相对滑动时, 由于粘着效应所形成结点发生剪切断裂,被剪切的材料或脱落成磨屑,或由一个表面迁移到另一个表面,此类磨损称为粘着磨损。粘着磨损再细分还有轻微磨损、涂抹、擦伤、划伤和咬死五种。

图1.1 粘着磨损机理 (2)磨料磨损 外来的硬料介质进入摩擦副,或摩擦副一个表面比另一个表面硬,在较硬表面上存在的微凸体,在摩擦过程中对较软表面犁沟或拉槽,引起表面材料的脱落,这种现象叫做磨料磨损。磨料磨损是一种最常见的磨损,按照磨损机理还可细分为微观切削、挤压剥落和疲劳破坏三小类。

图1.2 二体/三体磨粒磨损机理 (3)化学磨损 化学磨损是在摩擦促进作用下,摩擦副的一方或双方与中间物质或环境介质中的某些成分发生化学或电化学作用,造成表面材料损失的过程。分为氧化磨损与特殊介质腐蚀磨损两类。 图1.3 化学磨损机理 (4)疲劳磨损 摩擦接触表面在交变接触压应力作用下,材料表面因疲劳损伤而引起表面脱落的现象。疲劳磨损有两种基本类型,宏观疲劳磨损和微观疲劳磨损。宏观疲劳磨损主要是指两个相互滚动或滚动兼滑动的摩擦表面,在循环变化的接触应力作用下,材料疲劳而发生脱落的现象;微观疲劳磨损是滑动接触表面由于微凸体相互接触使材料发生疲劳而引起的机械磨损现象。此外,疲劳磨损的破坏机理又分为麻点剥落、浅层剥落、深层剥落。

齿轮摩擦磨损试验机工作原理

齿轮摩擦磨损试验机工作原理 工作原理是齿轮摩擦磨损试验机的灵魂,只有掌握工作原理,才能熟练地掌握,应用。下面简单介绍一下几个重要部件的工作原理。 1,加载方式 该机是一种动力闭环结构,加载方式采用加载杆挂砝码的方式。 加载杆挂在加载离合器的槽轮上,加挂砝码后,通过紧固加载离合器的螺母,将加载离合器上的两个槽轮拧紧,取下砝码及加载杆,在扭矩测量离合器上可读出扭矩。 2,温度控制 试样的加热及温度的控制,都通过温度控制表和调功器来实现。在温度控制表的右侧有一个纽子开关,掰到“开”的一边,温度控制表接通电源,掰到“关”的一边,温度控制表断开电源。调功器开关操作相同,通过对温控表的设置和调功器的操作,可以实现对试验温度的控制。 3,电器部分 插上电源线后,按下电源部分的“开”按钮,整个机器处于通电状态;按下电源部分的“关”按钮,整个机器处于断电状态;按下电源部分的“开”按钮后,按“低速”按钮,电机将以1450r/min的转速运转;按下“电机停”按钮,电机将停止运转。 产品用途: CL-100齿轮摩擦磨损试验是一种多用途试验机。即可用于润滑剂承载能力的评定,也可根据用户需要,特殊定货,用于齿轮副的胶合承载能力和齿轮接触承载能力的试验。 相关标准: GB/T13672-92《润滑剂承载能力测定法(CL-100齿轮机法)》 SH/T0306-92《齿轮胶合承载能力试验方法》 主要技术性能指标: 1.最大扭矩:1kN.m; 2.最大载荷级:13级; 3.温度控制精度:±2%; 4.驱动电机功率:6.5/8kw; 5.驱动电机转速:1450/2880r/min,无级可调; 6.试验齿轮箱容量(轴中心线至箱底面的部分):1.25L; 7.加热功率:0.5×3=1.5kw; 8.主机外型尺寸(长×宽×高)1390×705×1082mm。 9.可增加试验箱体、驱动箱体冷却器,可实现试验介质冷却保温。 10.可增加循环油箱,可实现试验介质的动态循环。 工作环境: 试验机应在下列条件下工作: 1、电源电压的波动范围不应超过额定值的±10%,频率的波动范围不应超过额定值的2%; 2、试验机应水平安装,安装基础须平稳,主机工作台纵横方向水平误差应不超过0.2/1000; 3、室温10℃-35℃; 4、环境无震动,无强磁场干扰,无腐蚀性介质; 5、相对湿度不大于80%。

摩擦磨损试验

实验四 摩擦学基础实验(1学时) 一.实验目的 1.通过实验了解不同材料配副摩擦系数的变化及磨损量的不同。 2.掌握摩擦学实验的基本方法及有关仪器设备的使用方法。 二.实验原理 1.概述 摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。在一般正常工作状态下,磨损可分三个阶段: (1).跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。 (2).稳定磨损阶段:磨损更轻微,磨损率低而稳定。 (3).剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明零件即将失效。(如图4.1) 机件磨损是无法避免的。但是如何缩短跑合期、延长稳定磨损阶段和推迟剧烈磨损的到来,是研究者致力的方向。 伯韦尔(Burwell)根据磨损机理的不同,把粘着磨损,磨粒磨损、腐蚀磨损和表面疲劳磨损列为磨损的主要类型,而把表面侵蚀,冲蚀等列为次要类型。这些不同类型的磨损,可以单独发生,相继发生或同时发生(称为复合磨损形式)。 2磨损的检测与评定 研究磨损要通过各种摩擦磨损试验设备,检测摩擦过程中的摩擦系数及磨损量(或磨损率)。摩擦过程中从表面上脱落下来的材料(磨屑),记录了磨损的发展历程,反映了磨损机理,描述了表面磨损的程度。发生磨损后的表面,同样有着磨损机理、磨损严重程度及其发展过程的记载。因此研究磨屑和磨损后表面 磨损量 跑合 稳定磨损阶段 剧烈 图4.1 磨损三个阶段的示意图 摩擦行程(时间)

上的信息是研究磨损的重要一环。 2.1摩擦磨损试验机 磨损试验的目的在于研究各种因素对摩擦磨损的影响,从而合理地选择配对材料,采用有效措施降低摩擦、磨损,正确设计摩擦副的结构尺寸及冷却设施等等。 摩擦磨损试验大体上可分为实验室试验,模拟试验或台架试验,以及使用试验或全尺寸试验三个层次,各层次试验设备的要求各不相同。 (1)实验室评价设备 实验室设备主要用于摩擦磨损的基础研究,研究工作参数(载荷、速度等)对摩擦磨损的影响。可以得到单一参量变化与摩擦磨损过程之间的关系。还可控制试验环境,如加润滑(剂或材料、剂量和组分及润滑方式),周围气氛(惰性气氛、真空、温度、特殊介质),求得特定环境条件下的结果,研究者需要选择合适的试验设备和试验条件: 试验设备有各种不同的摩擦形式、接触形式和运动形式,有不同的主变参数(载荷、速度)和可测结果(摩擦系数、磨损),将这些形式排列组合成不同的试验设备。 摩擦形式:滑动摩擦、滚动摩擦及滚动-滑动混合摩擦; 接触形式:点接触、线接触和面接触; 运动形式:旋转运动和直线运动,又各自有单向和往复两种形式。 实验室设备的特点是: a.摩擦副是抽象了的各种不同的摩擦形式、接触形式和运动形式,而不是实际摩擦零件的形式; b.要有定量测定摩擦系数和(或)磨损的装置,以及能定量地显示实验条件(载荷和速度)的设备,有的设备和试验方法已经标准化。使用标准化的设备和方法,可以得到可比的试验结果。 几种常用的实验室摩擦试验设备见表4.1 表4.1 实验室常用的摩擦试验设备 摩擦副对偶实验机名称接触及运动形式可测数据应用范围

摩擦磨损与耐磨材料

摩擦磨损与耐磨材料 姓名:李英杰 班级:材控13-2 学号:201301021048

Cr—Mn-N奥氏体一铁素体不锈钢的空蚀 1、概述: (1)空蚀原理:抛光表面在空蚀气泡溃灭作用下产生空蚀凹坑,随后叠加并扩展,表面出现塑性变形,产生加工硬化和应力,但表面易发生塑性流变,对高应变速率不敏感,所以空蚀孕育期长,空蚀扩展较慢,抗空蚀性能较好。空蚀发生时材料表面会产生疲劳裂纹并向内部扩展,引发疲劳断裂和脱落,之后裂纹继续向材料内部扩展,导致进一步破坏。空蚀发生后表面粗糙度明显变大【1】。 (2)研究历程:为了减轻水轮机过流部件的空蚀损伤,过去的几十年里在材料科学与工程领域,人们一直致力于开发具有抗空蚀损伤高性能的新材料,其中从60 年代发展起来的 Cr-Ni—MO系不锈钢就具有比传统材料更好的抗空蚀性[l] 由于这些 Cr-Ni-Mo 系不锈钢含有较多稀缺的金属镍,成本很高,而且抗含沙河流中泥沙磨损的性能也不理想,故开发价格低廉 (无镍或低镍) 且性能优异的水轮机过流部件用不锈钢具有极其重要的实际意义.早在 2O 世纪 3O 年代初期一些国家就开始了Cr—Mn-N不锈钢代镍的探索性研究,并列入国家标准[2].Cr-M n-N系列不锈钢在化工、石油以及制药等工业中如今已经部分代替Ni-Cr 不锈钢.为了降低现有水轮机用 Cr-Ni-Mo系不锈钢的成本和提高抗多相流损伤的性能,我国及国外的一些研究者也将目光转向了 Cr-Mn—N系列不锈钢,并开展了该类不锈钢的抗空蚀和冲刷腐蚀等多相流损伤的研究工作,已取得了一定的成果,展示了其作为水轮机用金属材料的良好前景[2,4-7]。 2、实验研究: 0Cr13Ni5M o不锈钢热处理工艺为 1000 ℃正火,500 ℃回火,组织为回火马氏体 Cr—Mn—N 奥氏体一铁素体不锈钢为锻后固溶态.根据两种钢材的化学成分和硬度. Cr—Mn—N奥氏体一铁素体不锈钢组织中铁素体体积含量为19%.实验设备为美国 M isonix 公司生产的 X12020 型超声振荡空蚀实验机,该设备的振动频率为20 kH z峰一峰振幅为60 m,试样的前端即受到空蚀破坏的表面直径为 19.1 m m ,试样的后端加工成螺纹,用来将试样固定在设备的变幅杆上.为了减轻腐蚀因素的影响,选择蒸馏水为实验介质.实验介质放在冷

实验八金属材料的滑动摩擦磨损

实验八金属材料滑动摩擦磨损 一、实验目的 1. 了解磨损试验机的结构及磨损试验方法 2. 掌握滑动摩擦磨损的步骤及方法 二、实验原理 当在正压力作用下相互接触的两个物体受切向外力的影响而发生相对滑动,或有相对滑动的趋势时,在接触表面上就会产生抵抗滑动的阻力,这一自然现象叫做摩擦,这时所产生的阻力叫做摩擦力。从材料本身而言,任何机器在运转时,各机件之间总要发生接触和相对运动。当两个相互接触的机件表面作相对运动(滑动、滚动或滑动+滚动)时就会产生摩擦,有摩擦就会有磨损。而磨损是降低机器、工具效率、精确度甚至是使其报废的重要原因,也是造成金属材料损耗和能源消耗的重要原因。据估计,全世界大约有1/2-1/3的能源以各种形式消耗在摩擦上。因此,控制摩擦,减少磨损,改善润滑性能已成为节约能源和原材料、缩短维修时间的重要措施。润滑是降低摩擦和减少磨损的有效手段。摩擦在机械中也并非总是有害的,如带传动、汽车及拖拉机的制动器等正是靠摩擦来工作的,这时还要进行增摩技术的研究。 影响摩擦与磨损的因素很多,诸如施加压力、运动速度、工件表面质量、润滑剂及材料性能等等,所以金属的摩擦磨损特性并不是固有的,而是摩擦条件与材料性能的综合特性。因此,磨损试验方法就是指试样与对磨材料之间加上中间介质,在施加一定的压力下,按一定的速度作相对运动,经过一定时间(或摩擦距离)后,测量其磨损量,根据磨损量大小来判断材料的耐磨性能。若在相同时间(或距离)内磨损量越大,表明材料的耐磨性越差。反之,则表明耐磨性越好。因此,研究磨损规律,提高材料耐磨性,对节约能源,延长机件寿命具有重要意义。 摩擦系数是摩擦副系统的综合特性,而不是材料本身的固有特性。在给出一种材料的摩擦系数时,必需同时给出得出该数值的条件和所用的测试设备。其主要影响因素有如下几个方面: 1. 表面膜:具有表面氧化膜的摩擦副,摩擦主要发生在膜层内。对于金属的摩擦来说,由于表面氧化膜的塑性和机械强度比金属材料差,在摩擦过程中,膜先被破坏,金属摩擦表面不易发生粘着,使摩擦系数降低,磨损减少。在金属摩擦表面涂覆软金属能有效地降低摩擦系数。 2. 材料性质:分子或原子结构相同或相近的两种材料互溶性大,互溶性较大的材料组成摩擦副,易发生粘着,摩擦系数增高;反之,分子或原子结构差别大则互溶性小,互溶性较小的材料组成摩擦副,不易发生粘着,摩擦系数一般都比较低。因此,在条件允许的

材料的摩擦磨损

《材料的摩擦磨损》课程考查论文 CNx/TiN复合涂层 的摩擦磨损性能研究 南京航空航天大学 二О一二年六月

CNx/TiN复合涂层的摩擦磨损性能研究 摘要:采用多弧—磁控溅射沉积技术在高速钢基体上沉积了CNx/TiN复合涂层,通过对不同速度、载荷下的摩擦磨损试验前后CNx/TiN复合涂层的摩擦磨损系数、显微形貌及涂层和对偶球磨损量的观察分析,研究了CNx/TiN复合涂层的摩擦学性能。结果表明,CNx/TiN 复合涂层的平均摩擦系数均较低。在相同的滑动速度l.0m/s下,载荷小于或接近临界载荷时,CNx/TiN复合涂层与对偶球之间的磨损机制主要是磨粒磨损,当载荷大于临界载荷时,随载荷增大逐渐表现为粘着磨损为主要磨损机制。在相同载荷70N下,随着摩擦滑动速度的下降,涂层和对偶球的磨损都有增加,尤其是涂层的磨损增加更加明显,表明CNx/TiN涂层在高速条件下的抗磨损能力高于低速条件。 关键词:复合涂层;临界载荷;磨损机制 1引言 对于相互接触并相对运动的摩擦部件而言,精密度和寿命则为其正常运行的关键问题,而其表面物理、化学、机械性能所决定的摩擦学特性在很大程度上决定了其精密度和寿命。由于表面工程技术和材料科学的发展,可以通过选择、设计复合薄膜或涂层以解决主体材料表面无法满足的技术需要。复合涂层或薄膜(包括摩擦学及光、电、磁和化学等功能涂层)的设计,主要是在按照硬度、强度、机加工等性能要求而选择的主体(基体)材料表面引入一个功能薄膜或涂层以满足或改善材料表面的摩擦学、光、电、磁及化学等性能要求。摩擦学涂层的设计原则主要是通过涂层或薄膜改善或赋予主体材料表面不具备或原本较弱的两类功能,即适宜的摩擦特性和良好的抗磨性能[1]。 涂层根据硬度的不同分为两个部分:(1)硬质涂层的硬度<40GPa,(2)超硬涂层的硬度>40GPa[2]。在大量的硬质材料中,仅有少数的超硬材料:如立方氮化硼(c—BN),非晶类金刚石碳膜,非晶氮化碳和多晶金刚石。但是这些超硬材料是非热力学稳定的,这限制了他们的一些应用。由于TiN具有良好的红硬性、韧性、高温抗氧化性,TiN成为最先被广泛使用的硬质涂层材料。从六十年代末开始,己经广泛地应用于刀具涂层,表面装饰保护,模具耐磨耐蚀涂层。 1989年,Liu[3]根据固体弹性模量的经验公式,应用从头计算方法,从理论上预言了氮化碳的理想结构β-C3N4的硬度接近或超过金刚石的硬度。这种材料含N量达4/7,化学稳定性和热稳定性优良,可以克服金刚石不能加工钢铁的缺点。从此世界各国材料科学家都在致力于这种新型超硬材料的制备。 对于给定的硬质薄膜的摩擦性能主要由膜层的硬度、膜层的抗断裂强度、接触温度、化学成分以及结构决定。对于一定的实际应用条件,可以通过提高膜层

摩擦与磨损.doc

第1章绪论 1.1 摩擦学的发展历史 摩擦学一词最早是1966年Jost发表的一篇具有划时代意义的报告中提出的,它来源于古希腊词“tribos”,意思是摩擦,词义可译为摩擦科学,与其意思相当的英语词义是摩擦磨损或润滑科学,后者几乎包含了摩擦的全部内容。在词典里,摩擦学的定义是研究相互运动表面之间的相互作用以及相关问题与实践的科学与技术。 摩擦学是分析和解决装备中磨损、可靠性、维修等问题的一门学问,这些问题具有重大经济意义,涉及的领域大到太空船,小到家用设备。摩擦表面的相耳作用非常复杂,要认识它们需要掌握多门学科知识,例如物理学、化学、应用数学、固体力学、流体力学、热力学、热传导、材料科学、流变学、润滑、机械设计、可靠性分析等。 虽然摩擦学的定名时间相对较晚,而实际上人们了解摩擦学的相关知识却要早于其历史记录时间[15],例如旧石器时代发明的钻孔或生火钻具就已经安装了川鹿角或骨头制作的轴承;制作陶器的转盘或碾谷物的石辊也使用了一些轴承[14];罗马附近的尼米湖曾发现了一个公元40年的推力球轴承。 公元前3500年人们就开始利用车轮,这表明我们的祖先那时就知道如何在移动物体时降低摩擦。在搬运铺路或建造纪念碑的巨大石块时,人们利用了减摩技巧,例如用水作为滑橇的润滑剂。图1.1.1是公元前1880年埃及人使用滑橇搬运巨大雕像的情景[19],172人沿着木制轨道拖拉重力约600kN的雕像,一个人站在滑橇上将一种液体(很可能是水)向滑动轨道上喷洒,他町谓是最早的润滑工程师之一。Dowson估计过这个工地的摩擦因数[15],以每人的拉力为800 N计算,172人的总拉力为172x 800N,物体滑动时此力至少等于摩擦力,因此摩擦因数约为0.23。埃及人在公元前几千年前就会使川润滑脂,曾在一个墓穴里发现了古战车轴承上的残留动物脂。 在占罗马辉煌之后的一段时间里,军队工程师利用摩擦学原理设计作战机械和防御工事,使他们名声显赫。达芬奇(DaVinci,1452—1519)是文艺复兴时期的工程师和艺术家,他在军事工程方面的天才与他的绘画、雕塑天赋同样出色,他最先提出了摩擦的科学定义。达芬奇推断了矩形物块在平面上的滑动规律,他第一次提出了摩擦因数的概念,认为摩擦因数是摩擦力与正压力之比。可惜他的试验笔记在几百年中都未出版,他的这些工作并没有产生历史影响。直到1699年,法国物理学家阿芒顿(Amontons)研究了两个平面之间的干摩擦之后,再次发现这个摩擦定律”。第一,阻止界面滑动的摩擦力与正压力成正比;第二,摩擦力的大小与接触面积无关。这些发现后来被法国物理学家库仑(coulomb)修正”“,他以发现静电现象而闻名,他补充了第三条摩擦定律,即滑动摩擦力与速度无关,并且对静摩擦和动摩擦作厂清晰的区别。 在16世纪,轴承材料有了很大发展。1684年,Hooke把钢轴颈和青铜轴瓦组合为车轮轴承,它比木质轴颈与铁质轴瓦的组合要好得多。伴随着18世纪后叶的工业化,早期石油 工业于19世纪50年代出现于苏格兰、加拿大和美国[15,20]。

摩擦和磨损与润滑学的基本原理

摩擦和磨损与润滑学的基本原理 一、摩擦和摩擦的种类 1.什么是摩擦? 相互接触的物体沿着它们的接触面做相对运动时,会产生阻碍物体相对运动的阻力,这种现象称为摩擦。这种阻力叫摩擦力。 2.摩擦的种类 摩擦的种类很多,因为研究的依据不同,摩擦的分类也不同。按摩擦副的运动状态分为静摩擦和动摩擦;按摩擦副运动形式分类分为滑动摩擦、滚动摩擦和自旋摩擦;按摩擦发生的部位分类分为内摩擦和外摩擦;按摩擦副表面润滑状况分类分为静摩擦、干摩擦、边界摩擦、流体摩擦和混合摩擦。本文重点介绍静摩擦、干摩擦、边界摩擦、流体摩擦(液体摩擦)和混合摩擦。 (1)静摩擦是指摩擦表面没有任何吸附膜或化合物存在时的摩擦。静金属的摩擦会产生表面粘着。 (2)干摩擦是指在大气条件下,摩擦表面没有任何润滑剂存在的摩擦。严格说干摩擦是在接触表面上无任何其他介质,如自然污染膜、润滑膜以及湿气等。干摩擦是消耗动力最多,磨损最严重的一种摩擦。 (3)边界摩擦是指摩擦表面有一层极薄得润滑膜存在时的摩擦。这层膜称为边界油膜。 (4)流体摩擦是指摩擦表面完全被润滑油膜隔开时的摩擦。这种摩擦发生在界面的润滑剂膜内,摩擦阻力最小,磨损最小。 (5)混合摩擦——是指属于过渡状态的摩擦,包括半干摩擦和半流体摩擦。半干摩擦是指同时存在着干摩擦和边界摩擦的混合摩擦。半流体摩擦是指同时存在着流体摩擦和边界摩擦(或干摩擦)的混合摩擦。 二、磨损和磨损的种类 1.什么是磨损? 是指两个相互接触的物体发生相对运动时,物体表面的物质不断地转移和损失。磨损的结果使相对运动的物体表面不断有微料抖落,表面性质、几何尺寸均发生改变。 2.磨损的三个阶段 磨损阶段、稳定磨损阶段和急剧磨损阶段 3.磨损的种类 按磨损的破坏机理,通常把磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种。 (1)粘着磨损 由于摩擦表面存在着一定的粗糙度,在压力的作用下,当摩擦表面做相对运动时,在真空接触点上产生瞬时高温,使其表面软化,熔化,甚至相互粘着,接触表面的材料从一个表面转移到另一个表面,这种现象就叫做粘着磨损。粘着磨损严重时,摩擦副之间咬死,不能再发生相对运动。 (2)磨料磨损 外来的硬料介质进入摩擦副,或摩擦副一个表面比另一个表面硬,在较硬表面上存在的微凸体,在摩擦过程中对较软表面犁沟或拉槽,引起表面材料的脱落,这种现象叫做磨料磨损。磨料磨损是一种最常见的磨损。 (3)腐蚀磨损

摩擦磨损试验教程一

教你做摩擦磨损模拟试验教程一 摩擦磨损模拟试验是摩擦学的一个重要研究手段。摩擦是现象,磨损是摩擦的结果,摩擦、磨损是两个不同的概念。二者在大多数情况下没有直接的关系,在少数特殊条件下才会有密切的关系。那么,我们如何做摩擦磨损模拟试验?摩擦磨损模拟试验结果又与哪些因素有关?我们应该怎样提高摩擦磨损模拟试验有效性? 济南益华摩擦学测试技术研究所经多年的、大量的试验(设备评定试验和客户委托试验)及研究分五个教程为大家作浅要介绍。 标准试验设备选型(上) 通常情况下进行摩擦磨损模拟试验,首先要对试验设备进行合理选型。设备选型的原则是:标准试验须遵循标准方法要求,选择相应的设备;非标试验需考虑实际工况(试验条件),试样易于制备,节约试验成本,试样条件可更改性好,便于缩短试验周期,试验设备易于操作等因素。 部分摩擦磨损模拟试验有标准试验方法,其标准不仅给出了试验方法,还给出了评定方法(也有标准仅给出了试验方法)。 1.油品润滑性能 油品方面的标准、试验方法相对是比较全面的。 润滑油、润滑脂的抗磨、极压性能试验标准有《四球机法》。《四球机法》是一类较全面的标准,明确给出了试验方法及试验结果评定方法。就应选择符合标准技术要求的四球摩擦试验机及符合标准要求的四球试验专用钢球。 比如标准《GB/T12583-98润滑剂极压性能测定法(四球机法)》、《GB/T 3142-82润滑剂承载能力测定法(四球机法)》、《SH/T0202-92润滑脂极压性能测定法》中,明确规定了试验运行时间、试验转速、负荷级别以及评定方法,以测定油品极压性能指标最大无卡咬负荷、烧结负荷以及综合磨损值。因此,润滑油、润滑脂极压性试验MRS-10A微机控制四球摩擦磨损试验机、MRS-10P触摸屏杠杠式四球摩擦磨损试验机以及MRS-10G杠杠式四球摩擦磨损试验机都 可供选择。 标准《SH/T0189-92润滑油抗磨性能测定法(四球机法)》、《SH/T0204-92润

摩擦磨损论文

常见摩擦材料简介 摘要:摩擦磨损是造成材料损耗的主要原因。根据不同的用途,将用到不同的耐摩擦材料。本文将介绍几种常见的摩擦材料及其相应的主要功能。 关键字:摩擦磨损石棉粉末冶金润滑自修复 1.前言 磨损是机械零件失效的3大原因(磨损、腐蚀和断裂)之一。1957年Burwell按照磨损机理将磨损分为4大基本类型,即粘着磨损、磨料磨损、表面疲劳磨损和腐蚀磨损,这些磨损使机械部件的摩擦表面出现裂纹、梨沟、麻点等缺陷,是造成机械零件失效的主要原因[1]。 磨损是造成材料损耗的主要原因之一,据不完全统计,能源的1/3到1/2消耗于摩擦和磨损;大约80%的机器零件失效是由于磨损引起的。据我国冶金矿山、农机、煤炭、电力和建材五个部门的不完全统计,每年仅备件消耗的钢材就在150万吨以上。我国每年因磨损造成球磨机磨球消耗近200万吨,球磨机和各种破碎机衬板消耗近50万吨,轧辊消耗近60万吨。斗齿是挖掘机上磨损最严重的零件,由于其在作业过程中直接与砂土岩石等接触,工作条件十分恶劣,根据对三峡工地斗齿使用情况的统计,磨损是其主要的失效形式,占90-95%。磨损造成的经济损失十分巨大,我国每年由于磨损造成的材料损失和能源浪费高达10亿元,煤炭工业用的刮板输送机仅中部槽的磨损所造成的损失每年即高达1亿元。摩擦与磨损不仅消耗大量能源和材料,而且由于磨损导致零件失效后,修复或者替换零件,以及因此造成的停工给工业生产带来了巨大的损失。因此一些工业部门对于耐磨材料的需求越来越广泛,比如水泥工业的碾碎机、煤炭工业的粉碎机等都需要耐磨性能优异的材料[2]。 航空发动机作为飞行器的心脏, 其零部件长期工作在高负荷、高工作温度的情况下, 容易因运转部件疲劳或磨损引起故障, 严重影响发动机的正常使用。为了保证航空发动机的正常运行专门设置了滑油系统, 用于减少零部件之间的摩擦并带走摩擦产生的金属碎屑。目前航空发动机磨损趋势预测模型主要有灰色模型[3] 、时序模型[4] 、支持向量机模型以及神经网络模型[5],这些模型从不同的角度提取了零部件的磨损信息。 2.摩擦材料简介 材料抗粘着磨损的能力在很大程度上取决于金属的组织结构,材料表面之间的粘着行为主要跟其相互的晶面的配合程度有关。配对材料的互溶性愈大,粘着倾向就愈大,易于发生粘着磨损,摩擦系数较高,粘着磨损就愈大。当两种材料完全不相溶时,其粘着倾向最小。

磨损机理

磨损与形貌测量 一)磨损机理 根据近年来的研究,人们普遍认为按照不同的磨损机理来分类是比较恰当的,通常将磨损划分为四个基本类型:粘着磨损;磨粒磨损;表面疲劳磨损;腐蚀磨损;微动磨损。 虽然这种分类还不十分完善,但它概括了各种常见的磨损形式。例如:腐蚀磨损是表面和含有固体颗粒的液体相摩擦而形成的磨损,它可以归入磨粒磨损。微动磨损的主要原因是接触表面的氧化作用,可以将它归纳在腐蚀磨损之内。

还应当指出:在实际的磨损现象中,通常是几种形式的磨损同时存在,而且一种磨损发生后住住诱发其它形式的磨损。例如疲劳磨损的磨屑会导致磨粒磨损,而磨粒磨损所形成的新净表面又将引起腐蚀或粘着磨损微动磨损就是一种典型的复合磨损。在微动磨损过程中,可能出现粘着磨损、氧化磨损、磨粒磨损和疲劳磨损等多种磨损形式。随着工况条件的变化,不同形式磨损的主次不同。 二)典型的磨损过程(三阶段) 1、磨合磨损过程 在一定载荷作用下形成一个稳定的表面粗糙度,且在以后过程中,此粗糙度不会继续改变,所占时间比率较小。 2、稳定磨损阶段 经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命。 3、剧烈磨损阶段

经稳定磨损后,零件表面破坏,运动副间隙增大→动载、振动→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效。 三)摩擦表面的形态分析 由于摩擦现象发生在表面层,表层组织结构的变化是研究摩擦磨损规律和机理的关键,现代表面测试技术已先后用来研究摩擦表面的各种现象。 1、摩擦磨损表面形貌的分析 摩擦过程中表面形貌的变化可以采用表面轮廓仪和电子显微镜来进行分析。 表面轮廓仪是通过测量触针在表面上匀速移动,将触针随表面轮廓的垂直运动检测、放大,并且描绘出表面的轮廓曲线。再经过微处理机的运算还可以直接测出表面形貌参数的变化。 目前常用的表面微观形貌分析设备为扫描电子显微镜。电子扫描的图像清晰度好,并有立体感,放大倍数变化范围宽(20-20000倍),检测范围亦较大。 2、摩擦磨损表面结构的分析 金属表面在摩擦磨损过程中表层结构的变化通常用衍射技术来分析,常用的有电子衍射法、 X射线衍射法。 1)电子衍射的穿透能力小,散射厚度仅为10-7~10-8 cm。电子衍射可用来进行薄层的摩擦表面分析,例如研究金属的粘着磨损和摩擦副材料迁移现象。

相关主题
文本预览
相关文档 最新文档