当前位置:文档之家› 实变函数总复习题.docx

实变函数总复习题.docx

实变函数总复习题.docx
实变函数总复习题.docx

总复习题

1.证明:limE n =[x:{n:xe E n } infinite}, lim£.T = {x: {n :x E n } finite}. (P. 3)

______ CO 00

Proof. Let x e limE, TU E then for any n there exists a k >n such that x E E k , n=l k=n

thus {n:x E E fl } cannot be finite, conversely, if {n:x E E n } is infinite then for any n

co oc co

there exists a k >n such that x e E k , thus x e[^E k and x e Q [J , showing the k=n n=l k=n

00 CO 00

first formula. Again let x e limE.t = [J Q then there exists a n such that x e Q ,

n=l k=n k=n

thus for any k>n,xeE k , thereby {n : x "G E n } is finite, conversely if

E n } is finite, then let m = 1 + max{n : x "e }, for any k>m.

00 00 00 k > max{/i: x "e }, so xe E k ,xe PIE and 兀 wUPl?, k=m ?i=l k=n

showing the second formula.

2-证明:力吨=皿£,,,力砥二丽检?(R11)

Proof. ^Iini£ (x) = 1 o x w limE 打 o {〃:兀 W E n } is finite limz f (x) = 1.

(x) = 1 <=> x e limE <=> {n : x G E } is infinite limE w 3. 证明Cantor 集是可测的,并且其测度为0.

Proof. By the construction of Cantor^ set C, first step take away one open interval

/( | of length —, second step take away two open intervals /2I and /22 of length 丄, 3 3

? 9 1 third step take away 2^ open intervals and /322 of length —,???, n -th step

take away 2n_l open intervals I ni J ll2,? -?,/ of length 丄,we see C = [0,1] 一

jn-l

U U I nj is measurable and

"J=1

00 r 1 1 00 Q 1 1

“(c )= l -工刍= = 1 = 0?

w=l 3 0 心 0

j _ _lim^£ (x) = 1.

(P. 66)

4.(1)设G是R中的开集,E是零测集.证明:G = G-E

一 1 2 1

(提不:Let x n T x, then since “((/(x”,一)) = —, there exists a y n e U(x z?,—)

n n n

such that 儿g E, thus I y n一x n l< — and y n—> x) ?

n ?

(2)写出Caratheodory 条件.(“ * (A) = “ * (A c E) + “ * (A - E))

(3)Let “ * be an outer measure generated by the measure “ of ring R spanned by the left closed and right open intervals on straight line R ? Show for any A u R and /? w R, “ * (A + /?) = “ * (A).

(4)设“是直线上的Lebusgue测度,证明对任意厶可测集E, /? G R,有

“(£ + /?) = //(£). (P. 67)

(1)Proof Obviously, G - E u G ? Let x eG then there exists a {x n} u G making

1 2 1

lim x n = x.Since “(t/, —)) = — ^ 0,U(x n,—)(Z E and for any n there exists a

28 n n n

y n G(/(%…,-) and 儿E. Thus eG-E,\x n-y n l<- and x ft--

Since lim(x zi ±—) = lim = x 9 lim = x and xeG-E, showing G =G-E.

/?—>oc jq“TOO>00

n

(3) Proof. Firstly we know R =心["勺)} the set of the disjoint union of finite left

/=i

n

closed and right open intervals. Let E = U[e,Q)then

i=\

“(E + /2)= “([ja +h,h i +/?)) = £[$ + /? - (a i +/?)] = £($_%) = “(E)?

/=1 r=l /=1

Obviously, //(/?) = P(R). Let a + h e A + h where a e A then there exists a n

k

such that a e E n = \<)[a i,b i), thus a G [a^b^ for some i,a + h e [a. +h,b. + /?),a + h e E n + /?

/=!

and d + *U(& + /?), showing A + /z u [J (E“ + h). For any A u R , “* (A)=

infe |JE/;,e R}, since +〃)= “*(E“),“*(A + /?) S “*(A), thereby “ * (A) = “ * (A + /? + (-/:)) S “ * (A + h), showing “ * (A + /?) = “* (A).

(4) Proof. Obviously, for a e A and /? e B, tz + /?=/? + /? G (A + /?) n (B + /?) <=>

a =

b e A B <^> a + h = b + h e (A B) + h, a + h e A + h - (B + h) a e A,a ~e B <=>

a + h e (A- B) + h. Since for any A e H(R) =P(R),“*(A) = “*(A —力)=“* ((A-h) c E) + //*((A-/?)-E) = “* ((A - h + /?) n (£ 4- h)) + // * (A - /i + A - (£ 4- /?))=

“ * (A c (E + /?)) + “ * (4 一(E + /i)). So E + h is L-measurable and “(E + /?) = “ * (E + /?)= “*(E) = “(E)?

5.设人仁-Jg,证明f = g (a.e). (P. 82)

Proof. We might assume as well f n— f in X - H and /“ T g in X - K

where “(H) = “(K) = 0? In X -(H 匕K) we have f = g .Since

“(HuK)5“(H) + “(K) = 0, “(HuK) = 0 and f = g a.e.

1, 0< x

6.设f n (x) = < -1, 0< x

0, x > n.

讨论:(1)九是否儿乎处处收敛?

(2)九是一致收敛?

(3)九是否依测度收敛?(P?82)

*

1, if x is rational,

Solution. (1) Let /(%) = < -l,if x irrational, then in [0,+oo], lim f tl (x) = f(x).

"TOO

0, if x = +oo,

(2) If f n (x) is uniformly convergent to g(x) then naturally it^s also convergent to

g(x) and so /(x) = g(x) by (1). For £ =— and any n, let x be a rational number

greater than n then I f n (x) 一f (x) 1= I /(x) 1=1, a contradiction. So f n (x) is not uniformly convergent in [0,+oo] ?

(3) If f n— g then there exists a sequence {/^ : k e N} making 九 a.e

a.c

(4)Since 九T 仁g = f and 九ae > f . But for any

> 0, E(\f tlk -f\>a) = {x:x>n k} =(心,oo) T 0,

“(E(l f Hk - / l> o-)) = oo , “(E(l 九- g A er)) = “(E(l 九- / I")) = oo,

contrary to f n—g .

7.设/在(0,oo)上厶可积并且一致连续,证明lim/(x) = 0.(P. 103)

X—>00

Proof. Since f is L-measurable on (0,oo), also is I f?if lim/O)",

x—>00 then there exists a > 0 such that for any n there exists a x” > nJ f(x n) l> ^0.

Selecting x“ we might assume x ll+l > x n + \. Let 8 then there exists a 5,*>5>0

such that as long so \x-x n k d> J /(x)一f(x n) \< £.

Then -s<\f(x)\-\ f(x n) l< £?, I /(x) l>l f(x fl) I -^ > y and > (+oo).^-2^ =+oo, a contradiction.

&设.f在E上可积.对任意E上的有界函数g,有]ygd// = O,

1, if/(x)>0, then g is bounded and [l/(x)lt//z

-1,讦/(x) <0 比

[fgdy = 0. It follows that I / 1= 0 a.eand f =0 a.e.

9.设几g在E上可测,g e < g(a.e),问f是否一定可积? (P. 103).

Answe匚Maybe not. For example, for f = _1 S 0 = g , g is obviously integrable on (-oo,0)

but f is not measurable on (-oo,0). Also let /(x) = —e (-1,0) then /(x) < 0, x

obviously, |0 = | Odx = 0 but

4-1,0)丄 1

证明/ =0 (a.e)(提示:Define g(x)=1, if f(x)>0 fg=\f\\(P. 103) -l,if/(x)<0 76

Proof. Let g

证明:(1) /(x,y)的两个累次积分存在且相等.

(2) /(兀,y)在E 上不是Lebusgue 可积.

Proof. Since f x and f y are both continuous, they are Riemann integrable and

naturally Lebesgue integrable. Since their integrand are both odd, their value can only But /(x, y) is not Lebesgue integrable in E, if not, by integrability of f in E, we see f also be integrable in [0,1] x [0,1], therefore there would exists the integral ff —f dx f —r of second order. But it's invalid, since for JJ ()」]x[O ?l](兀2 + y2)2 J) J)(兀2 *『

2)2 n f x )Qy - x f _ x f+F du x

"H '」)(/+).,2)2 2 (x 2 + y 2)2 2 兰(丄_亠)=—「and for Q 沦1, f 〉丄f 亠〒

2 F 1 +兀2 2x(1 + /) J) 2x(1+ x 2) 4 £??(] +兀2) L 严宀w n = In -In 丄二一ln 〃T-oo for "―>oo.

1 n~ n 10.设Ifn G N\u U, .f 是可积函数,证明:若』九-

Proof. For any cr > 0, let //(E(l f n - f \>

. Since lim fl f n -/ Id// = 0,lim ox n = 0 and limx n = — \imox n = —0 = 0. “->8 J w —>oo nfg (y /i —>oc 川一>8 n-?oc

11?设 £ = [-l,l]x[-14;/,y 都取为 Lebusgue 测度,作

f(^y) = ](x 2 + y 2)

0, x = y = 0.

equal to zero, thereby two successive integrations f dy f xydx

1 +兀

2

x 2

u 2 2u

—(In ------ 一 In ---- ) = —In ------- ——> +oo if m T oo, which is not Lebesgue 4 1 + AT 1 + W 4 1 + zr integrable in IO,1J.

12. 设“(X) voo,/证明:liml/ll = f .(P. 113) p->8 卩

Proof. Let M =11 / ll x ,, since II f(x) ll /?< M(//(x))p , if lim||/||^ ||/||^ then there exists

the limit lim II f(x) II < M where lim p n = +oo. Then there exists an £ > 0 and N

n-?oo P" such that M - e >\\ f(x) \\f) for n>N. For “(x) = 0 JI / 11^= 0 =11 f \\p and the £ conclusion is obvious. For “(x) > 0 Jet E = {x:\ /(x) l> M ——}

2

_i_ then for //(£) -6* >11 /(x) II /; > (M - —)(//(£)) Pm - s> M and —>s. 2 2 2

g

a contradiction, so “(E) = 0 and M =11 f ll x < M - —, a contradiction, completing the verification.

13. Let “(G) = 1 J and g are nonnegative measurable and fg >1.

Show

Proof. l = (Jd//)2 <(J7^d Z z )2 5(J (77)2d“)J (7T )2d“ = (]/d“)Jgd“?

14. Let {f n :neN}^L\feL !\\\f n -f\\p ^O and 九 t g (a.e). Show f = g (a.e).

Proof. By Fatou's theorem, II g-f\\p =\\ hm f n -f\\p =\\ lim(/n -/) II 厂(Jl lim(/“ -/) I")"=

1111

(JlimlA-/r )^ =(JlimlA-/l /?)/,

<(limJlA-/l^)/? = lim(fl/… - / r = lim II A-/H p = lim II f n - f ll z , = 0, showing \\ g - f 11/?=0 and g = f a.e.

15. Let f be integrable in E and E n = E(f > n). Show lim /d(E n ) = 0. ? “(E) showing i E 册;=扌EG -

n 1 m 2 l+T m Proof. Since n 2

实变与泛函期末试题答案

06-07第二学期《实变函数与泛函分析》期末考试参考答案 1. 设()f x 是),(+∞-∞上的实值连续函数, 则对于任意常数a , })(|{a x f x E >=是一开集, 而})(|{a x f x E ≥=总是一闭集. (15分) 证明 (1) 先证})(|{a x f x E >=为开集. (8分) 证明一 设E x ∈0,则a x f >)(0,由)(x f 在),(+∞-∞上连续,知0>?δ,使得 ),(00δδ+-∈x x x 时,a x f >)(, 即 E x U ?),(0δ, 故0x 为E 的内点. 由0x 的任意性可知,})(|{a x f x E >=是一开集. 证明二 })(|{a x f x E >=可表为至多可数的开区间的并(由证明一前半部分), 由定理可知E 为开集. (2) 再证})(|{a x f x E ≥=是一闭集. (7分) 证明一 设0x E '∈, 则0x 是E 的一个聚点, 则E ?中互异点列},{n x 使得 )(0∞→→n x x n . ………………………..2分 由E x n ∈知a x f n ≥)(, 因为f 连续, 所以 a x f x f x f n n n n ≥==∞ →∞ →)(lim )lim ()(0, 即E x ∈0.……………………………………………………………………………………6分 由0x 的任意性可知,})(|{a x f x E ≥=是一闭集. …………………………………7分 证明二 对})(|{a x f x E ≥=, {|()}E x f x a E ??=?,……………………… 5分 知E E E E =?=Y ,E 为闭集. …………………………………………………… 7分 证明三 由(1)知,})(|{a x f x E >=为开集, 同理})(|{a x f x E <=也为开集, 所以})(|{a x f x CE ≥=闭集, 得证. 2. 证明Egorov 定理:设,{()}n mE f x <∞是E 上一列..e a 收敛于一个..e a 有限的函数)(x f 的可测函数, 则对0>?δ, 存在子集E E ?δ, 使)}({x f n 在δE 上一致收敛, 且 .)\(δδ,选0,i 使0 1 ,i ε<则当0i n n >时,对一切

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

实变函数期末考试卷A卷完整版

实变函数期末考试卷A 卷 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实变 函数 一、 判断题(每题2分,共20分) 1.若A 是B 的真子集,则必有B A <。 (×) 2.必有比a 小的基数。 (√) 3.一个点不是E 的聚点必不是E 的内点。 (√) 4.无限个开集的交必是开集。 (×) 5.若φ≠E ,则0*>E m 。 (×) 6.任何集n R E ?都有外测度。 (√) 7.两集合的基数相等,则它们的外测度相等。 (×) 8.可测集的所有子集都可测。 (×) 9.若)(x f 在可测集E 上可测,则)(x f 在E 的任意子集上也可测。(×) 10.)(x f 在E 上可积必积分存在。 (×) 1.设E 为点集,E P ?,则P 是E 的外点.( × ) 2.不可数个闭集的交集仍是闭集. ( × ) 3.设{}n E 是一列可测集,且1,1,2,,n n E E n +?=则 1( )lim ().n n n n m E m E ∞ →∞ ==(× ) 4.单调集列一定收敛. (√ ) 5.若()f x 在E 上可测,则存在F σ型集,()0F E m E F ?-=,()f x 在F 上连续.( × ) 二、填空题(每空2分,共20分) 1.设B 是1R 中无理数集,则=B c 。 2.设1,1,,3 1,21,1R n A ???????= ,则=0A φ ,='A }0{ 。 3.设 ,2,1,0),1 1,11(=++-=n n n A n ,则=?∞=n n A 0 )1,1(- ,=?∞=n n A 1 }0{ 。 4.有界变差函数的不连续点构成的点集是 至多可列 集。

实变函数论试题及答案

实变函数论测试题 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ == 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以 ∞ +=∈ 1 n m m A x ∞ =∞ =? 1n n m m A , 则可知n n A ∞ →lim ∞=∞ =? 1n n m m A 。设 ∞=∞ =∈1n n m m A x ,则有n ,使 ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →= ∞ =∞ =1n n m m A 。 2、设(){}2 2 2,1E x y x y =+<。求2E 在2 R 内的'2 E ,0 2E ,2E 。 解:(){}2 2 2,1E x y x y '=+≤, (){}222,1E x y x y =+< , (){}222,1E x y x y =+<。 3、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令 ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 4、试构造一个闭的疏朗的集合[0,1]E ?,12 m E =。 解:在[0,1]中去掉一个长度为1 6的开区间5 7 ( , )1212 ,接下来在剩下的两个闭区间 分别对称挖掉长度为11 6 3 ?的两个开区间,以此类推,一般进行到第n 次时, 一共去掉12-n 个各自长度为1 116 3 n -? 的开区间,剩下的n 2个闭区间,如此重复 下去,这样就可以得到一个闭的疏朗集,去掉的部分的测度为 11 11212166363 2 n n --+?++ ?+= 。

实变函数试题库(5)及参考答案

实变函数试题库及参考答案(5) 本科 一、填空题 1.设,A B 为集合,则___(\)A B B A A 2.设n E R ?,如果E 满足0 E E =(其中0 E 表示E 的内部),则E 是 3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的 4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是 7.若()E R ?是可数集,则__0mE 8.设 {}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果 .()() ()a e n f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立) 二、选择题 1、设E 是1 R 中的可测集,()x ?是E 上的简单函数,则 ( ) (A )()x ?是E 上的连续函数 (B )()x ?是E 上的单调函数 (C )()x ?在E 上一定不L 可积 (D )()x ?是E 上的可测函数 2.下列集合关系成立的是( ) (A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ? 3. 若() n E R ?是闭集,则 ( ) (A )0 E E = (B )E E = (C )E E '? (D )E E '= 三、多项选择题(每题至少有两个以上的正确答案) 1.设{[0,1]}E =中的有理点 ,则( ) (A )E 是可数集 (B )E 是闭集 (C )0mE = (D )E 中的每一点均为E 的内点

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

实变函数期末考试卷A及参考答卷

2011—2012学年第1学期 数计学院09级数学与应用数学专业(1、2班) 《实变函数》期末考试卷(A)

试卷共8 页第 1 页

实变函数期末考试卷(A) 2009级本科1、2班用 考试时间2012年01月 04日 一 填空题(每小题3分,满分24分) 1 我们将定义在可测集q E ??上的所有L 可测函数所成的集合记为()M E .任取()f M E ∈,都可以确定两个非负可测函数: 试卷 共 8 页 第 2 页

()()()(),0, 0,0.f x x E f f x x E f + ∈>?=? ∈≤? 当时当时 和()()()()0, 0, ,0. x E f f x f x x E f - ∈>?=?-∈≤? 当时当时 分别称为f 的正部和负部。请你写出()()(),,f x f x f x + -和()f x 之间的关系: ()f x = , ()f x = 。 2 上题()M E 中有些元素?被称为非负简单函数,指的是: 12k E E E E =U UL U 是有限个互不相交的可测集的并集,在i E 上()i x c ?≡ (非负常数)(1,2,,i k =L ).?在E 上的L 积分定义为: ()E x dx ?= ?, 这个积分值可能落在区间 中,但只有当 时才能说?是 L 可积的。 3 若()f M E ∈是非负函数,则它的L 积分定义为: ()E f x dx = ?, 这个积分值可能落在区间 中,但只有当 时才能说f 是 L 可积的。 4 ()M E 中的一般元素f 称为是积分确定的,如果f +和f - , 即()E f x dx + ?和()E f x dx -?的值 ;但只有当 时 才能说f 是L 可积的,这时将它的积分定义为: ()E f x dx = ?。 5 从()M E 中取出一个非负函数列(){}n f x ,则法图引理的结论是不等式: ; 如果再添上条件和 就 得到列维定理的结论: 。 6 设f 和()1,2,n f n =L 都是()M E 中的可测函数,满足 ()()lim n n f x f x a e →∞ =g g 于E 或n f f ?两个条件之一。 或 的结论:

实变函数积分理论部分复习试题[附的答案解析版]

2011级实变函数积分理论复习题 一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例) 1、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可积函数。(×) 2、设{}()n f x 是[0,1]上的一列非负可测函数,则1 ()()n n f x f x ∞ ==∑是[0,1]上的Lebesgue 可测函数。(√) 3、设{}()n f x 是[0,1]上的一列非负可测函数,则 [0,1][0,1] lim ()d lim ()d n n n n f x x f x x →∞ →∞ =? ? 。 (×) 4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{} ()k n f x ,使得, [0,1][0,1] lim ()d lim ()d k k n n k k f x x f x x →∞ →∞ ,()f x 在[0,]n 上 黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1 [0,)[0,]n n ∞ =+∞= 上的可测函数) 10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,()[0,1],n G f 表示()n f x 在

聊城大学实变函数期末试题

《实变函数》 一、单项选择题 1、下列各式正确的是( C D ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =?? (C )1lim n n n n k n A A ∞ ∞ →∞ ===??; (D )1lim n n n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( D ) (A )=P c (B) 0m P = (C) P P =' (D) P P = 3、下列说法不正确的是( B ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( A ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5. 下列说法不正确的是( C ) (A) 0P 的任一领域内都有E 中无穷多个点,则0P 是E 的聚点 (B) 0P 的任一领域内至少有一个E 中异于0P 的点,则0P 是E 的聚点 (C) 存在E 中点列{}n P ,使0n P P →,则0P 是E 的聚点 (D) 内点必是聚点 6.设)(x f 在E 上L 可积,则下面不成立的是( C ) (A))(x f 在E 上可测 (B))(x f 在E 上a.e.有限 (C))(x f 在E 上有界 (D))(x f 在E 上L 可积 7. 设}{n E 是一列可测集,12n E E E ???? ,则有(B )。 (A )1lim n n n n m E m E ∞=→∞???> ??? (B) 1lim n n n n m E m E ∞ =→∞ ???= ???

(完整版)《实变函数及泛函分析基础》试卷及答案

试卷一: 一、单项选择题(3分×5=15分) 1、1、下列各式正确的是( ) (A )1lim n k n n k n A A ∞ ∞ →∞ ===??; (B )1lim n k n k n n A A ∞ ∞ ==→∞ =??; (C )1lim n k n n k n A A ∞ ∞ →∞ ===??; (D )1lim n k n k n n A A ∞ ∞ ==→∞ =??; 2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P =' (D) P P =ο 3、下列说法不正确的是( ) (A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测 (C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( ) (A )若()()n f x f x ?, 则()()n f x f x → (B) {}sup ()n n f x 是可测函数 (C ){}inf ()n n f x 是可测函数;(D )若()()n f x f x ?,则()f x 可测 5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( ) (A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数 (C ))(' x f 在],[b a 上L 可积 (D) ? -=b a a f b f dx x f )()()(' 二. 填空题(3分×5=15分) 1、()(())s s C A C B A A B ??--=_________ 2、设E 是[]0,1上有理点全体,则' E =______,o E =______,E =______. 3、设E 是n R 中点集,如果对任一点集T 都有

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

实变函数试题库(4)及参考答案

实变函数试题库及参考答案(4) 本科 一、填空题 1.设,A B 为两个集合,则__c A B A B - . 2.设n E R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是 3.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i) )(b a ,G (ii),a G b G ?? 4.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 5.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 6.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由______定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()() ()k a e n f x f x x E →∈. 7.设()f x 为可测集E (n R ?)上的可测函数,则()f x 在E 上的L 积分值存在且|()|f x 在E 上L 可积.(填“一定”“不一定”) 8.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有 二、选择题 1.设(){},001E x x =≤≤,则( ) A 1mE = B 0mE = C E 是2R 中闭集 D E 是2R 中完备集 2.设()f x ,()g x 是E 上的可测函数,则( ) A 、()()E x f x g x ??≥??不一定是可测集 B 、()()E x f x g x ??≠??是可测集 C 、()()E x f x g x ??≤??是不可测集 D 、()() E x f x g x ??=??不一定是可测集 3.下列集合关系成立的是() A 、(\)A B B A B = B 、(\)A B B A = C 、(\)B A A A ? D 、\B A A ? 4. 若() n E R ?是开集,则 ( ) A 、E 的导集E ? B 、E 的开核E =C 、E E =D 、E 的导集E =

实变函数论与泛函分析曹广福1到5章课后答案

第一章习题参考解答 3.等式)()(C B A C B A --=?-成立的的充要条件是什么? 解: 若)()(C B A C B A --=?-,则 A C B A C B A C ?--=?-?)()(. 即,A C ?. 反过来, 假设A C ?, 因为B C B ?-. 所以, )(C B A B A --?-. 故, C B A ?-)(?)(C B A --. 最后证,C B A C B A ?-?--)()( 事实上,)(C B A x --∈?, 则A x ∈且C B x -?。若C x ∈,则C B A x ?-∈)(;若C x ?,则B x ?,故C B A B A x ?-?-∈)(. 从而,C B A C B A ?-?--)()(. A A C B A C B A C =?-?--=?-?)()(. 即 A C ?. 反过来,若A C ?,则 因为B C B ?-所以)(C B A B A --?- 又因为A C ?,所以)(C B A C --?故 )()(C B A C B A --??- 另一方面,A x C B A x ∈?--∈?)(且C B x -?,如果C x ∈则 C B A x )(-∈;如果,C x ?因为C B x -?,所以B x ?故B A x -∈. 则 C B A x ?-∈)(. 从而 C B A C B A ?-?--)()( 于是,)()(C B A C B A --=?- 4.对于集合A ,定义A 的特征函数为????∈=A x A x x A ,0,1)(χ, 假设 n A A A ,,,21是 一集列 ,证明: (i ))(inf lim )(inf lim x x n n A n n A χχ= (ii ))(sup lim )(sup lim x x n n A n n A χχ= 证明:(i ))(inf lim n n m N n n n A A x ≥∈??=∈?,N ∈?0n ,0n m ≥?时,m A x ∈. 所以1)(=x m A χ,所以1)(inf =≥x m A n m χ故1)(inf sup )(inf lim ==≥∈x x m n A n m N b A n χχ

实变函数试题库及参考答案

实变函数试题库及参考答案(1) 本科 一、填空题 1.设,A B 为集合,则()\A B B U A B U (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E U 12mE mE +(用描述集合间关系的符号填写) 6.设n E ??是可数集,则*m E 0 7.设()f x 是定义在可测集E 上的实函数,如果1a ?∈?,()E x f x a ??≥??是 ,则称()f x 在E 上可测 8.可测函数列的上极限也是 函数 9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +? 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题 1.下列集合关系成立的是( ) 2.若n R E ?是开集,则( ) 3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ) A E 是不可数集 B E 是闭集 C E 中没有内点 D 1m E = 2.设n E ??是无限集,则( ) A E 可以和自身的某个真子集对等 B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( ) A 函数()f x 在E 上可测 B ()f x 在E 的可测子集上可测 C ()f x 是有界的 D ()f x 是简单函数的极限

4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( ) A ()f x 在[],a b 上可测 B ()f x 在[],a b 上L 可积 C ()f x 在[],a b 上几乎处处连续 D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题 1. 可数个闭集的并是闭集. ( ) 2. 可数个可测集的并是可测集. ( ) 3. 相等的集合是对等的. ( ) 4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题 1. 简述无限集中有基数最小的集合,但没有最大的集合. 2. 简述点集的边界点,聚点和内点的关系. 3. 简单函数、可测函数与连续函数有什么关系? 4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题 1. 设()[]23 0,1\x x E f x x x E ?∈?=?∈??,其中E 为[]0,1中有理数集,求 ()[] 0,1f x dx ?. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121 ,,00,1\,,n n n x r r r f x x r r r ∈??=?∈??L L ,求()[] 0,1lim n n f x dx →∞?. 七、证明题 1.证明集合等式:(\)A B B A B =U U 2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1 [|()|]|()|E mE x f x a f x dx a ≥≤ ? 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞ =,则 实变函数试题库及参考答案(1) 本科 一、填空题

第三版实变函数论课后答案

1. 证明:()B A A B -=U 的充要条件就是A B ?、 证明:若()B A A B -=U ,则()A B A A B ?-?U ,故A B ?成立、 反之,若A B ?,则()()B A A B A B B -?-?U U ,又x B ?∈,若x A ∈,则 ()x B A A ∈-U ,若x A ?,则()x B A B A A ∈-?-U 、总有()x B A A ∈-U 、故 ()B B A A ?-U ,从而有()B A A B -=U 。 证毕 2. 证明c A B A B -=I 、 证明:x A B ?∈-,从而,x A x B ∈?,故,c x A x B ∈∈,从而x A B ?∈-, 所以c A B A B -?I 、 另一方面,c x A B ?∈I ,必有,c x A x B ∈∈,故,x A x B ∈?,从而x A B ∈-, 所以 c A B A B ?-I 、 综合上两个包含式得c A B A B -=I 、 证毕 3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式与定理9、 证明:定理4中的(3):若A B λλ?(λ∈∧),则A B λλλλ∈∧ ∈∧ ?I I 、 证:若x A λλ∈∧ ∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ?(? λ∈∧)成立 知x A B λλ∈?,故x B λλ∈∧ ∈I ,这说明A B λλλλ∈∧∈∧ ?I I 、 定理4中的(4):()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 证:若()x A B λλλ∈∧ ∈U U ,则有' λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧ ∈?U U U U 、 反过来,若()()x A B λλλλ∈∧ ∈∧ ∈U U U 则x A λλ∈∧ ∈U 或者x B λλ∈∧ ∈U 、 不妨设x A λλ∈∧ ∈U ,则有' λ∈∧使'''()x A A B A B λλλλλλ∈∧ ∈??U U U 、 故()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ ?U U U U U 、 综上所述有()()()A B A B λλλλλλλ∈∧ ∈∧ ∈∧ =U U U U U 、 定理6中第二式()c c A A λλλλ∈∧∈∧ =I U 、 证:() c x A λλ∈∧ ?∈I ,则x A λλ∈∧ ?I ,故存在' λ∈∧ ,'x A λ?所以 'c c x A A λλλ∈∧ ??U 从而有()c c A A λλλλ∈∧∈∧ ?I U 、 反过来,若c x A λλ∈∧ ∈U ,则' λ?∈∧使'c x A λ?,故'x A λ?, x A λλ∈∧ ∴?I ,从而()c x A λλ∈∧ ∈I ()c c A A λλλλ∈∧ ∈∧ ∴?I U 、 证毕 定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +?(相应地1n n A A +?)对一切n 都成立,则 1 lim n n n A ∞ →∞ ==U (相应地)1 lim n n n A ∞ →∞ ==I 、 证明:若1n n A A +?对n N ?∈成立,则i m i m A A ∞ ==I 、故从定理8知

实变函数期末复习指导

实变函数期末复习指导(文本) 实变函数题型比例 单选题:5题,每题4分,共20分。 填空题:5题,每题4分,共20分。 计算与证明题:4题,每题15分,共60分。 第1章主要内容 本章所讨论的集合的基本知识是集合论的基础,包括集合的运算和集合的基数两部分. 主要内容有: 一、集合的包含关系和并、交、差、补等概念,以及集合的运算律. 关于概念的学习,应该注意概念中的条件是充分必要的,比如,B A ?当且仅当A x ∈时必有B x ∈.有时也利用它的等价形式:B A ?当且仅当B x ∈时必有A x ∈.在证明两个集合包含关系时,这两种证明方式可视具体问题而选择其一. 还要注意对一列集合并与交的概念的理解和掌握.n n A x ∞ =∈1 当且仅当x 属于这一列集 合中的“某一个”(即存在某个n A ,使n A x ∈),而n n A x ∞ =∈1 当且仅当x 属于这一列集合中 的“每一个”(即对每个n A ,都有n A x ∈).要熟练地进行集合间的各种运算,这是学习本章必备的基本技能. 读者要多做些这方面的练习. 二、映射是数学中一个基本概念,要弄清单射、满射和双射之间的区别与联系. 对集合基数部分的学习,应注意论证两个集合对等技能的训练,其方法主要有下面三种:一是依对等的定义直接构造两集间的双射;二是利用对等的传递性,如欲证C A ~,已知B A ~,此时只须证C B ~;三是应用有关定理,特别是伯恩斯坦定理,它是判断两个集合对等的常用的有效方法. 三、可列集是无限集中最重要的一类集合,它是无限集中基数最小者. 要掌握可列集的定义和运算性质,有理数集是可列的并且在直线上处处稠密,这是有理数集在应用中的两条重要性质. 四、连续集及其运算性质.要掌握长见的连续集的例子,知道基数无最大者. 第2章主要内容 本章讨论的点集理论,不仅是以后学习测度理论和新积分理论的基础,也为一般的抽象空间的研究提供了具体的模型.

实变函数论课后答案第四章

实变函数论课后答案第四章4第四章第四节习题 1.设于,于,证明:于 证明:, (否则,若,而, 矛盾),则 () 从而 2.设于,,且于,证明于 证明:由本节定理2(定理)从知的子列使 于 设,,于,从条件于,设 ,,于上 令,则,且 故 ,则 令, 故有,从而命题得证

3.举例说明时定理不成立 解:取,作函数列 显然于上,但当时 ,不 故时定理不成立,即于不能推出于 周民强《实变函数》P108 若是非奇异线性变换,,则 () 表示矩阵的行列式的绝对值. 证明:记 显然是个的平移集()的并集,是个()的并集,且有, 现在假定()式对于成立() 则 因为,所以得到 这说明()式对于以及的平移集成立,从而可知()式对可数个互不相交的二进方体的并集是成立的(对任意方体, ) 对一般开集,,为二进方体,互补相交 则

1-1 ,连续,连续开,则开,从而可测 于是应用等测包的推理方法立即可知,对一般点集()式成立 设为有界集,开,,则开,且不妨设有界,否则令有界,令即可. 连续,则开,开,可测(),, 故 (开) 若为无界集,令,则,为有界集 ,线性,则若,则(后面证) ,则由注释书P69定理3,存在集,,若有界, 则,故(1-1) 则,故 若无界,则, 线性,若,则 证明:为的基,, ,,,令,则 则(即是连续的) 一边平行于坐标平面的开超矩体 于

,开,连续,则是中开集从而可测,从而是中可测集,由归纳法知是可测集 若()式成立,则矩体, ,为正方体,则对开集也有,特别对开区间 这一开集有 则可知,若,则 事实上,,开区间,, 令知 若()成立,则将可测集映为可测集,还要看()证明过程是否用到将可测集映为可测集或推出这一性质! 下面证()成立.任一线性变换至多可分解为有限个初等变换的乘积 (i)坐标之间的交换 (ii) (iii) 在(i)的情形显然()成立 在(ii)的情形下,矩阵可由恒等矩阵在第一行乘以而得到从而可知()式成立 在(iii)的情形,此时()

实变函数论习题选解

《实变函数论》习题选解 一、集合与基数 1.证明集合关系式: (1))()()()(B D C A D C B A --?---Y ; (2))()()()(D B C A D C B A Y I I -=--; (3)C B A C B A Y )()(-?--; (4)问)()(C B A C B A --=-Y 成立的充要条件是什么? 证 (1)∵c B A B A I =-,c c c B A B A Y I =)((对偶律), )()()(C A B A C B A I Y I Y I =(交对并的分配律) , ∴)()( )()()()(D C B A D C B A D C B A c c c c c Y I I I I I ==---第二个用 对偶律 )()()()()()(B D C A D B C A D B A C B A c c c c c --=?=Y I Y I I I Y I I 交对并 分配律 . (2))()() ()()()(c c c c D B C A D C B A D C B A I I I I I I I ==--交换律 结合律 )()()()(D B C A D B C A c Y I Y I I -== 第二个用对偶律 . (3))()() ()()(C A B A C B A C B A C B A c c c c I Y I Y I I I = ==--分配律 C B A C B A c Y Y I )()(-=?. (4)A C C B A C B A ??--=-)()(Y . 证 必要性(左推右,用反证法): 若A C ?,则C x ∈? 但A x ?,从而D ?,)(D A x -?,于是)(C B A x --?; 但C B A x Y )(-∈,从而左边不等式不成立,矛盾! 充分性(右推左,显然):事实上, ∵A C ?,∴C C A =I ,如图所示: 故)()(C B A C B A --=-Y . 2.设}1 ,0{=A ,试证一切排列 A a a a a n n ∈ ),,,,,(21ΛΛ 所成之集的势(基数)为c . 证 记}}1 ,0{),,,,,({21=∈==A a a a a a E n n ΛΛ为所有排列所成之集,对任一排列}1 ,0{ ),,,,,(21=∈=A a a a a a n n ΛΛ,令ΛΛn a a a a f 21.0)(=,特别, ]1 ,0[0000.0)0(∈==ΛΛf ,]1 ,0[1111.0)1(∈==ΛΛf , 即对每一排列对应于区间]1 ,0[上的一个2进小数]1 ,0[.021∈ΛΛn a a a ,则f 是一一对

级实变函数期末试题B卷及答案

α α q α 2005 级 实 变 函数期末试题 B 卷 答案 一. 判断题(对的在括号内打√,错的打×)(每小题 3 分,共 18 分。) 1. 如果 R n 中可测集 E 的基数为 c ,则 mE > 0 。( × ) 2.任意个开集的并集还是开集。( √ ) 3. E ? R n ,则一定存在可测集G ,使 E ? G 并且 m * E = mG 。( √ ) 4.狄利克雷函数 D ( x ) 在[0,1]上是几乎处处连续的。( × ) 5. R n 上的非负函数总是积分确定的。( × ) 6.每个可测函数都可以表示成一列简单函数的极限。( √ ) 二.填空题(每题 3 分,共 15 分。) 1.如果 M = μ ,则 M 的幂集的基数是( 2μ )。 2.若集合 E 可以表示为可数个闭集的并集,则 E 称为( F σ 型 )集。 3.若 A , B 是 R n 中的可测集,且 A ∩ B = ? ,T 是 R n 中任一集合,则 m * (T ∩ A ) + m * (T ∩ B ) = ( m *T )。 4.如果 mE < +∞ ,f ( x ) 在 E 上有界,则 f ( x ) 在 E 上可积的充分必要条件是( f ( x ) 在 E 上可测 )。 ? + ? n ? 5.设 A 1 1 ( 1) = ?1 + , 3 + ? , (n = 1, 2, ) ,则 lim A = ( (1, 3) )。 n ? n 2 ? n n →∞ 三.(10 分)证明: E ? ∩ A α = ∪ (E ? A α ) 。 α∈I α∈I 证明:若 x ∈ E ? ∩ A α ,则 x ∈ E ,且存在α0 ∈ I ,使 x ∈/ α∈I 以 x ∈ ∪ (E ? A α ) 。 α∈I A ,故 x ∈ E ? A ,所 0 0 反之,若 x ∈ ∪ (E ? A α ) ,则存在α0 ∈ I ,使 x ∈ E ? A α0 ,从而 x ∈ E ,且 α∈I x ∈/ A 0 ,于是 x ∈ E 但 x ∈/ ∩ A α ,所以 x ∈ E ? ∩ A α 。 α∈I 综上可知 E ? ∩ A α = ∪ (E ? A α ) 。 α∈I α∈I α∈I 四.(第一小题 5 分,第二小题 8 分,共 13 分。) 设{E n } 是 R 中的可测集列,证明:

相关主题
文本预览
相关文档 最新文档