当前位置:文档之家› 2.1.2指数函数及其性质知识点及例题解析

2.1.2指数函数及其性质知识点及例题解析

2.1.2指数函数及其性质知识点及例题解析
2.1.2指数函数及其性质知识点及例题解析

指数函数及其性质知识点及例题解析

要点一、指数函数的概念:

函数y=a x

(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点二、指数函数的图象及性质:

y=a x

0

a>1时图象

图象

性质 ①定义域R ,值域 (0,+∞)

②a 0

=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a

④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x

>1

x>0时,0

<1

⑤x<0时,0

<1

x>0时,a x

>1

⑥ 既不是奇函数,也不是偶函数

要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。

(3)指数函数x

y a =与1x

y a ??

= ???

的图象关于y 轴对称。

类型一、指数函数的概念

例1、函数2

(33)x

y a a a =-+是指数函数,求a 的值.

【解析】由2

(33)x

y a a a =-+是指数函数,可得2331,0,1,

a a a a ?-+=?>≠?且解得12,

01,a a a a ==??>≠?或且,所以2a =.

关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .

【变式1】指出下列函数哪些是指数函数?

(1)4x y =;(2)4y x =;(3)4x y =-;(4)(4)x

y =-;(5)1

(21)(1)2

x

y a a a =->

≠且; (6)4x

y -=.【答案】(1)(5)(6) 类型二、函数的定义域、值域

例2、求下列函数的定义域、值域.(1)313x x y =+;(2)y=4x -2x +1;(3)21

139

x --

; 【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x

≠-1).

∵ (13)1111313

x x x

y +-==-++,又∵ 3x >0, 1+3x

>1, ∴ 10113x <

<+, ∴ 11013x -<-<+,∴ 101113

x

<-<+, ∴值域为(0,1). (2) 定义域为R ,4

3)212(12)2(22+-=+-=x

x x y ,∵ 2x >0,

∴ 212=x

即 x=-1时,y 取最小值43,同时y 可以取一切大于4

3的实数,∴ 值域为[+∞,43).

(3) 要使函数有意义可得到不等式21

13

09

x --≥,即21233x --≥,又函数3x y =是增函数, 所以212x -≥-,即12x ≥-

,即1,2??

-+∞????

,值域是[)0,+∞. 【变式1】求下列函数的定义域: (1)2

-1

2x

y = (2)3-3

x

y = (3)2-1x y =

(4)1-(0,1)x y a a a =>≠

【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0

类型三、指数函数的单调性及其应用 例3、讨论函数221()3x x

f x -??

= ?

??

的单调性,并求其值域.

【思路点拨】对于x ∈R ,22103x x

-??> ?

??

恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数是

由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.

解:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3u

f u ??

= ???

∵u=x 2

―2x=(x ―1)2

―1,在(―∞,1]上是减函数,1()3u

f u ??

= ???

在其定义域内是减函数,∴函数()f x 在

(-∞,1]内为增函数.

又1()3u

f u ??

= ???

在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在

[1,+∞)上是减函数. 【总结升华】研究()

f x y a

=型的复合函数的单调性用复合法,比用定义法要简便些,

一般地有:即当a >1时,()

f x y a =的单调性与()y f x =的单调性相同;

当0<a <1时,()

f x y a

=的单调与()y f x =的单调性相反.

【变式1】求函数2

32

3x

x y -+-=的单调区间及值域.

【答案】3(,]2x ∈-∞上单增,在3

[,)2

x ∈+∞上单减. 1

4(0,3]

类型四、指数函数的图象问题

例4、如图的曲线C 1、C 2、C 3、C 4是指数函数x

y a =的图象,而12,

,3,22a π????

∈??????

,则图象C 1、C 2、C 3、C 4对应的函数的底数依次是________、________、________、________. 【答案】

22

1

2 π 3

【总结升华】利用底数与指数函数图象之间的关系可以快速地解答像本题这样的有关问

题,同时还可以解决有关不同底的幂的大小比较的问题,因此我们必须熟练掌握这一性质,这一性质可简单地记作:在y 轴的右边“底大图高”,在y 轴的左边“底大图低”. 【变式1】为了得到函数935x y =?+的图象,可以把函数3x y =的图象( )

A .向左平移9个单位长度,再向上平移5个单位长度

B .向右平移9个单位长度,再向下平移5个单位长度

C .向左平移2个单位长度,再向上平移5个单位长度

D .向右平移2个单位长度,再向下平移5个单位长度

【解析】注意先将函数935x y =?+转化为235x y +=+,再利用图象的平移规律进行判断.

【总结升华】用函数图象解决问题是中学数学的重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数的图象,并掌握图象的变化规律,比如:平移、伸缩、对称等. 类型五、判断下列各数的大小关系

(1)1.8a

与1.8a+1

; (2)2

4

-231(),3,()33

1; (3)22.5,(2.5)0, 2.51()2 ; (4)23(0,1)a a a a >≠与

【解析】(1)因为底数1.8>1,所以函数y=1.8x 为单调增函数,又因为a

.

(2)因为44

133-??= ???,又13x y ??= ???是减函数,所以-4

2-2

3111()<()<333?? ???

,即2

-24311()<()<333.

(3)因为 2.5

2

1>, 2.5

112??

< ?

??

所以 2.50 2.5

1()<(2.5)<22

(4)当a>1时,2

3a a <,当0

3a

a >.

【总结升华】

(1)注意利用单调性解题的规范书写;

(2)不是同底的尽量化为同底数幂进行比较(因为同底才能用单调性);

(3)不能化为同底的,借助一个中间量来比较大小(常用的中间量是“0”和“1”). 【变式1】比较大小:(1)3.53

与3.23;

(2)0.9

-0.3

与1.1

-0.1

;(3)0.90.3与0.7

0.4

(4)11

0.2

33241.5

,(),()33

-. 【答案】(1)3.53

>3.23

.(2)0.9-0.3

>1.1-0.1

;(3)0.90.3

>0.70.4

.(4)1

1

3342

()1()33

>>

【变式2】利用函数的性质比较1

22,133,166【答案】133>122>16

6

【变式3】 比较1.5-0.2, 1.30.7, 132()3的大小【答案】7.02

.031

3.15

.1)3

2(<<-

类型六、求解有关指数不等式

例6已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________.

解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,

∞∞上是增函数, ∴31x x >-,解得14x >

.∴x 的取值范围是14??

+ ???

∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大

小,对于含有参数的要注意对参数进行讨论. 【变式1】如果21

5x x a

a +-≤(0a >,且1a ≠),求x 的取值范围.

【解析】x 的取值范围是:当01a <<时,6x ≥-;当1a >时,6x ≤-. 类型七、换元法求最值问题、求解指数式方程

例7、已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x

的最大值和最小值 解:设t=3x

,因为-1≤x ≤2,所以

93

1

≤≤t ,且f(x)=g(t)=-(t-3)2+12, 故当t=3即x=1时,f(x)取最大值12;当t=9即x=2时f(x)取最小值-24。

例8、函数221(01)x x y a a a a =+->≠且在区间[11]

-,上有最大值14,则a 的值是_______. 分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围. 解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.

当1a >时,∵[]11x ∈-,,∴

1x a a a ≤≤,即1

t a a

≤≤. ∴当t a =时,2max (1)214y a =+-=, 解得3a =或5a =-(舍去);

当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a

≤≤,

∴ 1t a =时,2

max 11214y a ??

=+-= ???

,解得13a =或15a =-(舍去);

∴a 的值是3或1

3

评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.

例9、解方程223380x x +--=.

解:原方程可化为29(3)80390x x ?-?-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或

1

9

t =-(舍去)

,∴39x =,∴2x =,经检验原方程的解是2x =. 评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根.

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

(完整word版)指数函数题型归纳

指数函数及其性质应用 1.指数函数概念 叫做指数函数,其中是自变量,函数的定义域为. 一般地,函数 2. 函数 名称 指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数 函数值的 变化情况 变化对图 象的影响 在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针 方向看图象,逐渐减小.

指数函数题型训练 题型一 比较两个值的大小 1、“同底不同指”型 (1)21 51- ? ?? ?? 3 251?? ? ?? (2) 2.51.7 3 1.7 (3)0.8 14?? ? ?? 1.8 12?? ??? (4) 0.5 a ()0.6 0,1a a a >≠ 归纳: 2、“同指不同底”型 (1)5 6 311?? ? ?? 5 6 833?? ? ?? (2)9 2 4 归纳: 3、“不同底不同指”型 (1)0.3 1.7 3.1 0.9 (2) 2.5 1.7 30.7 (3)0.1 0.8 - 0.2 9 - (4)b a (01)a b a b <<< (5) 1 23-?? ? ?? 13 3 归纳: 综合类:(1)已知232()3 a =,132()3 b =,232 ()5c =则a 、b 、c 的大小关系为 (2)如果0m <,则2m a =,1 ()2 m b =,0.2m c =则a 、b 、c 的大小关系为 题型二 过定点问题 1、函数33x y a -=+恒过定点 2、函数()150,1x y a a a +=->≠图像必过定点,这个定点是 3、已知对不同的a 值,函数()()120,1x f x a a a -=+>≠的图像恒过定点P ,则P 点的坐标 是 归纳: 题型三 解指数函数不等式 1、2212 2≤?? ? ??-x 2、 8 21()33 x x --< 3、0.225x < 4、221(2)(2)x x a a a a -++>++

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

指数函数及其性质(一)练习题

2.2.1指数函数及其性质(一) 一、选择题 1.函数f (x )=)1(log 2 1-x 的定义域是( ) A .(1,+∞) B .(2,+∞) C .(-∞,2) D .]21(, 解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0, 所以??? ??≥0)1(log 0 12 1 ->-x x 解得1<x ≤2. 答案:D 2.函数y =2 1log (x 2-3x +2)的单调递减区间是( ) A .(-∞,1) B .(2,+∞) C .(-∞, 23 ) D .( 2 3 ,+∞) 解析:先求函数定义域为(-o ,1)∪(2,+∞),令t (x )=x 2+3x +2,函数t (x )在(-∞,1)上单调递减,在(2,+∞)上单调递增,根据复合函数同增异减的原则,函数y =2 1log (x 2-3x +2)在(2,+∞)上单调递减. 答案:B 3.若2lg (x -2y )=lg x +lg y ,则x y 的值为( ) A .4 B .1或41 C .1或4 D .4 1 错解:由2lg (x -2y )=lg x +lg y ,得(x -2y )2=xy ,解得x =4y 或x =y ,则有 x y = 4 1 或y x =1. 答案:选B 正解:上述解法忽略了真数大于0这个条件,即x -2y >0,所以x >2y .所以x =y 舍掉.只有x =4y .

答案:D 4.若定义在区间(-1,0)内的函数f (x )=a 2log (x +1)满足f (x )>0,则a 的取值范围为( ) A .(0,2 1 ) B .(0, 2 1 ) C .( 2 1 ,+∞) D .(0,+∞) 解析:因为x ∈(-1,0),所以x +1∈(0,1).当f (x )>0时,根据图象只有0<2a <l ,解得0<a <2 1 (根据本节思维过程中第四条提到的性质). 答案:A 5.函数y =lg (x -12 -1)的图象关于( ) A .y 轴对称 B .x 轴对称 C .原点对称 D .直线y =x 对称 解析:y =lg ( x -12-1)=x x -+11lg ,所以为奇函数.形如y =x x -+11lg 或y =x x -+11lg 的函数都为奇函数. 答案:C 二、填空题 已知y =a log (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是__________. 解析:a >0且a ≠1?μ(x )=2-ax 是减函数,要使y =a log (2-ax )是减函数,则a >1,又2-ax >0?a <3 2 (0<x <1)?a <2,所以a ∈(1,2). 答案:a ∈(1,2) 7.函数f (x )的图象与g (x )=(3 1)x 的图象关于直线y =x 对称,则f (2x -x 2)的单调递减区间为______. 解析:因为f (x )与g (x )互为反函数,所以f (x )=3 1log x 则f (2x -x 2)=3 1log (2x -x 2),令μ(x )=2x -x 2>0,解得0<x <2. μ(x )=2x -x 2在(0,1)上单调递增,则f [μ(x ) ]在(0,1)上单调递减; μ(x )=2x -x 2在(1,2)上单调递减,则f [μ(x ) ]在[1,2)上单调递增.

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

指数函数及其性质练习题[1]

2.1.2 指数函数及其性质 练习一 一、选择题 1、 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<≠()01且,与函数y a x =-()1的图象只能是( ) y y y y O x O x O x O x A B C D 1 1 1 1 5、函数f x x ()=-2 1,使f x ()≤0成立的的值的集合是( ) A 、 {}x x <0 B 、 {}x x <1 C 、 {}x x =0 D 、 {}x x =1 6、函数f x g x x x ()()==+22,,使f x g x ()()=成立的的值的集合( ) A 、 是φ B 、 有且只有一个元素 C 、 有两个元素 D 、 有无数个元素 7、若函数(1)x y a b =+-(0a >且1a ≠)的图象不经过第二象限,则有 ( ) A 、1a >且1b < B 、01a <<且1b ≤ C 、01a <<且0b > D 、1a >且0b ≤ 8、F(x)=(1+ )0)(()1 22≠?-x x f x 是偶函数,且f(x)不恒等于零,则f(x)( ) A 、是奇函数 B 、可能是奇函数,也可能是偶函数 C 、是偶函数 D 、不是奇函数,也不是偶函数 二、填空题 9、 函数y x =-322的定义域是_________。 10、 指数函数f x a x ()=的图象经过点()2116 , ,则底数的值是_________。

高中数学必修基本初等函数常考题型指数函数及其性质

指数函数及其性质 【知识梳理】 1.指数函数的定义 函数x y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 【常考题型】 题型一、指数函数的概念 【例1】 (1)下列函数: ①23x y =?;②1 3x y +=;③3x y =;④3 y x =. 其中,指数函数的个数是( ) A .0 B .1 C .2 D .3 (2)函数()2 2x y a a =-是指数函数,则( ) A .1a =或3a = B .1a = C .3a = D .0a >且1a ≠ [解析] (1)①中,3x 的系数是2,故①不是指数函数; ②中,1 3 x y +=的指数是1x +,不是自变量x ,故②不是指数函数; ③中,3x y =的系数是1,幂的指数是自变量x ,且只有3x 一项,故③是指数函数; ④中,3 y x =中底数为自变量,指数为常数,故④不是指数函数.所以只有③是指数函数.

(2)由指数函数定义知()2 21 01 a a a ?-=??>≠??且,所以解得3a =. [答案] (1)B (2)C 【类题通法】 判断一个函数是否为指数函数的方法 判断一个函数是否是指数函数,其关键是分析该函数是否具备指数函数三大特征: (1)底数0a >,且1a ≠. (2)x a 的系数为1. (3)x y a =中“a 是常数”,x 为自变量,自变量在指数位置上. 【对点训练】 下列函数中是指数函数的是________(填序号). ①2x y =? ;②12x y -=;③2x y π?? = ??? ;④x y x =; ⑤1 3y x =-;⑥1 3y x =. 解析: ①中指数式 x 的系数不为1,故不是指数函数;②中1 12 22 x x y -==?,指数式2x 的系数不为1,故不是指数函数;④中底数为x ,不满足底数是唯一确定的值,故不是指数函数;⑤中指数不是x ,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填③. 答案:③ 题型二、指数函数的图象问题 【例2】 (1)如图是指数函数①x y a =,②x y b =,③x y c =,④x y d =的图象,则a , b , c , d 与1的大小关系为( ) A .1a b c d <<<< B .1b a d c <<<< C .1a b c d <<<< D .1a b d c <<<< (2)函数3 3x y a -=+(0a >,且1a ≠)的图象过定点________. [解析] (1)由图象可知③④的底数必大于1,①②的底数必小于1.

指数函数经典例题和课后习题

百度文库 - 让每个人平等地提升自我 指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2.∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

[高一数学]指数函数综合练习

指数函数典型例题 1根式的性质 例1 已知112 2 a a - +=3,求下列各式的值: (1)1a a -+; (2)22a a -+; (3)332 2112 2 a a a a - - --. 补充:立方和差公式3 3 2 2()()a b a b a ab b ±=±+. 小结:① 平方法;② 乘法公式; ③ 根式的基本性质(a ≥0)等. 注意, a ≥0十分重要,无此条件则公式不成立. . 变式:已知1 12 2 3a a - -=,求: (1)112 2a a - +; (2)332 2 a a - -. 练1. 化简:11112244 ()()x y x y -÷-. 练2. 已知x +x -1=3,求下列各式的值. (1)112 2x x - +; (2)332 2 x x - +. 2指数函数的图象和性质 比较指数函数的大小 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. ①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 求解有关指数不等式 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并

判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 求定义域及值域问题 求下列函数的定义域与值域. (1)y =23 1-x ; (2)y =4x +2x+1+1. 求函数216x y -=-的定义域和值域. 利用指数函数的单调性求值域时,要注意定义域对它的影响. 指数函数的最值问题 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等. 已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x 的最大值和最小值 已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值. 已知函数 ( 且 ) (1)求 的最小值; (2)若 ,求 的取值范围. 解指数方程 解方程223380x x +--=. 解指数方程通常是通过换元转化成二次方程求解,要注意验根. 单调性问题

相关主题
相关文档 最新文档