当前位置:文档之家› 离群点的判定汇编

离群点的判定汇编

离群点的判定汇编
离群点的判定汇编

离群点的判定

摘要

本文首先对离群点进行了定义,离群点(outlier)是指数值中,远离数值的一般水平的极端大值和极端小值。因此,也称之为歧异值,有时也称其为野值。深入了解了形成离群点的原因,并建立数学模型来找出一维、n维数据中的离群点,主要利用聚类的离群挖掘法。

针对问题一,考虑到数据的杂乱性,先对数据进行排序,由于在实际生活中我们需要处理的数据量往往比较多,离群点的个数也不确定,就考虑对数据进行分类处理,利用离群值跳跃度比较大的特点,采用斜率比较的方法进行分类,在分类的过程中我们就会很容易的发现离群点。最后再对完成分类的数据进行分析。完成分类的数据往往差距更小,可以近似的认为数据服从正态分布,利用正态分布的性质可以找出每类数据中的离群点,这样就找出了数据中所有的离群点。

针对问题二,我们主要采用具体的数据绘制具体的图形来分析存在的离群点,并说明离群点带来的影响。

针对问题三,我们主要利用基于聚类的离群挖掘方法,先利用一趟算法对数据集进行聚类;然后再计算每个簇的离群因子,并按离群因子对簇进行排序,最终确定离群簇,也即确定离群对象。确定算法以后再利用具体的数据进行检测,看该模型是否可行。

关键词:数据的分类处理聚类的离群挖掘方法(CBOD)

一、问题重述

A题:离群点的判定

离群点(outlier)是指数值中,远离数值的一般水平的极端大值和极端小值。因此,也称之为歧异值,有时也称其为野值。

形成离群点的主要原因有:首先可能是采样中的误差,如记录的偏误,工作人员出现笔误,计算错误等,都有可能产生极端大值或者极端小值。其次可能是被研究现象本身由于受各种偶然非正常的因素影响而引起的。例如:在人口死亡序列中,由于某年发生了地震,使该年度死亡人数剧增,形成离群点;在股票价格序列中,由于受某项政策出台或某种谣传的刺激,都会出现极增,极减现象,变现为离群点。

不论是何种原因引起的离群点对以后的分析都会造成一定的影响。从造成分析的困难来看,统计分析人员说不希望序列中出现离群点,离群点会直接影响模型的拟合精度,甚至会得到一些虚伪的信息。因此,离群点往往被分析人员看作是一个“坏值”。但是,从获得信息来看,离群点提供了很重要的信息,它不仅提示我们认真检查采样中是否存在差错,在进行分析前,认真确认,而且,当确认离群点是由于系统受外部突发因素刺激而引起的时候,他会提供相关的系统稳定性,灵敏性等重要信息。

问题一:针对一维数据,建立判别离群点的数学模型;并对模型的计算结果进行评价或检验。

问题二:如果数据中出现离群点应该如何处理?并举例说明该处理方法对后续建模分析的影响。

问题三:针对n维数据,建立判别离群点的数学模型;并对模型的计算结果进行评价或检验。

二、模型假设

假设一:一维数据为随机序列,排序后不会影响到离群点的判断。

假设二:一维数据中存在离群点,且离群数据差异不会很大。

假设三:n维数据中存在离群点,以二维为例进行检测。

三、符号说明

Ci——簇

OF4(Ci)——簇Ci离群因子

——标准差

__

x——均值

四、问题分析

问题一:要分离一维数据中的离群点,由于数据的随机性,首先要对杂乱无章的数据进行处理,将数据变成有序的、易于观察的序列。离群点,就是与其他数据差异较大的一个数据,找出差异,就可以找出离群点。

问题二:离群点有别于其他的数据,如果后续数据处理会用到该项数据,该项数据肯定是不能直接使用的,可以选择直接剔除数据或者取均值来减小该项数据对后续建模的影响。

问题三:我们主要利用基于聚类的离群挖掘方法,先利用一趟算法对数据集进行聚类;然后再计算每个簇的离群因子,并按离群因子对簇进行排序,最终确定离群簇,也即确定离群对象。确定算法以后再利用具体的数据进行检测,看该模型是否可行。

五、模型的建立与求解

问题一:

5、1模型建立

5、1、1数据整理:

原数组为:{x1,x2,… ,xn};

将数据进行重新排序,得新数组{T1,T2,…,Tn } 其中T1≤T2…≤Tn;

建立直角坐标系,x 轴为1,2,…,n,新数组数值作为y 轴数据,构建新的二维数组(1,T1),(2,T2),…,(N,Tn)。 5、1、2数据分类:

令 n

T1

-k Tn =;

如果 k ≤11

-Xt -Xt 则Xt ,Xt-1同类;

k X X >11

-t -t 则Xt ,Xt-1不同类 t=1,2,...,n ;

每两个分类点之间的数据为同一类

这样,数据分成L 组:A1,A2,…,AL 。每组为一类数据;

5、1、3查找离群点

(1)若某类中有m 个数值,且m 相对于n 很小,则此类中数值作为离群点

(2)同类中查找离群点:

在假设成立的情况下,一类中的数据可看做服从正态分布。 取出一类中的y 值,剔除x 值,将二维数组转换成一维数组。

X ~N(μ,δ

2

)

由拉依达准则:|x i -x __

| > 3δ;

当某个可疑数据x i 符合上式时, 则认为该数据是异常值, 应予剔除。即是说当可疑数据与测量数据的算术平均值的偏差的绝对值大于3倍(或两倍)的标准偏差时应将此可疑值舍去, 至于3s 或2s 与显著性水平a(随机变量落在置信区间以外的概率)有关, 3s 相当于a = 0.01, 2s 相当于a = 0.05。 (s 是标准差即δ) 举例论证:

原数组由visual c +

+整理后结果如下:

Y=[10.002,10.102 ,10.203,10.204,10.208,10.218,10.220,10.228,10.230,10.232,10.302,10.312,10.320,10.342,10.346]; 转变成二维数组: (1,10.002)(2,10.102)(3,10.203)(4,10.204)(5,10.208)(6,10.218)(7,10.220)(8,10.228)(9,10.230)(10,10.232)(11,10.302)(12,10.312)(13,10.320)(14,10.342)(15,10.346); 数据由visual c +

+分类后得到: A1={(1,10.002)}; A2={(2,10.102)};

A3={(3,10.203)(4,10.204)(5,10208)(6,10.218)(7,10.220)(8,10.228)(9,10.230)(10,10.232)}; A4={(11,10.302)(12,10.312)(13,10.320)(14,10.342)(15,10.346)}; 则A1,A2中的数据为离群点;

转变成一维数据后检验A3中的数值:

10.203,10.204,10.208,10.218,10.220,10.228,10.230,10.232; Matlab 计算可得:

均值__

x =10.2179,标准差s =0.0117;

在显著性水平0.05的情况下,[10.1945,10.2413]范围内为正常水平; 故A3中无离群点;

同理得A4中无离群点;

所以离群数据为:10.002 10.112;

5、1、4由拉依达准则检验: 剔除离群点后数据:

10.203,10.204,10.208,10.218,10.220,10.228,10.230,10.232,10.302,10.312,10.320,10.342,10.346; Matlab 计算可得:

均值__x =10.2588,标准差s =0.0558;

在显著性水平水平0.05的情况下,[10.1472,10.3704]范围内为正常水平; 结论:无离群点。

5、2问题二:

在数据中出现离群点时,应避免使用出现的离群点。

表2-1

原油价格

01000

200030004000

500060002002

2004

2006

2008

2010

2012

年份

元/吨

原油价格

年份 2003 2004 2005 2006 2007 2008 2009 2010 2011 国际原

油价格

(吨)

1861.47 2393.15 3197.83 3864.81 4127.76 5290.99 3062.19 4560.14 4694.

04

图2-1

例: 如上数据,在对国际原油价格进行预测的时候,2009年的数据明显是一个离群点,因为从走势来看,2009年的数据明显出现不正常的下降,所以无论用什么方法预测未来原油价格,如果用到2009年的数据,那么这项预测肯定是失败的,2009年的数据只能作为一个参考值来看待。那么,在预测未来值的时候,要剔除2009年的原油价格这个数据。

5、3问题三:

5、3、1

假设数据集D 被聚类算法划分为k 个簇C={C1,C2,...,Ck},簇Ci 离群因子(Outlier Factor )OF4(Ci )定义为簇Ci 其他所有簇间间距离的加权平均值: OF4(Ci )=

),(,j i d .|

||

j |k

i j 1j C C D C ∑≠= 如果一个簇离几个大簇的距离都比较远,则表明该簇偏离整体较远,其离群因子

也较大。OF4(Ci )度量了簇Ci 偏离整个数据集的程度,其值越大,说明Ci 偏离整体越远。

基于聚类的离群挖掘方法(CBOD )

5、3、2 CBOD 方法由两个阶段构成:

1.第一阶段是利用一趟算法对数据集进行聚类;

2.第二阶段是计算每个簇的离群因子,并按离群因子对簇进行排序,最终确定离群簇,也即确定离群对象。

5、3、3 CBOD 的算法描述如下:

1.第一阶段聚类:对数据集D 进行聚类,得到聚类结果C={C1,C2,...,Ck};

2.第二阶段确定离群簇:计算每个簇Ci,(1=

)(10|

||

|1

<<≥∑=εεD Ci b

i

的最小b,将簇C1,C2,...,Cn 标志为‘outlier ’类(即其中每个对象均看成离群),而将Ch+2,...,Ck,标志位为‘normal ’类(即其中每个对象均看成正常)。 基于聚类的动态数据离群点检测。 基本思想如下:

在对训练集聚类的基础上,按照簇的离群因子排序簇,并按簇的离群因子排序簇,并按照一定的比例将簇标志为‘normal ’或‘outlier ’,以标志的簇作为分

类模型,按照对象与分类模型中最直接的簇的距离判断它是否离群点。

5、3、4 模型建立

第一步,聚类:对训练集T1进行聚类,得到聚类结果T1={C1,C2...,Ck};

第二步,给簇作标记:计算每个簇Ci (k i 1≤≤)的离群因子 OF4(Ci ),按 OF4(Ci )递减的顺序重新排列Ci (k i 1≤≤),求满足:

ε≥∑=T 1

|

Ci |b

1

i

的最小b ,将C1,C2,...,Cb 标识为离群簇,而将Cb+1,...Ck 标志为正常簇。 将簇C1,C2,...,Cn 标志为‘outlier ’类(即其中每个对象均看成离群),而将Cb+2,...,Ck,标志位为‘normal ’类(即其中每个对象均看成正常)。

第三步,确定模型:以每个簇的摘要信息,聚类半径阈值r 作为模型。 对模型的计算结果进行检验: 以2维数据为例,数据集D : x 1 1 2 1 3 2 8 9 9 9 1.67 8.67 9 y

4

3

3

2

3

2

6

7

6

3

2.83

6.33

3

表3-1

0123456780

2

4

6

8

10

离群点散点图

1质心

图3-1

对于数据集D ,聚类后得到三个簇C={C1,C2,C3},簇心分别为C1(1.67,2.83),C2(8.67,6.33),C3(9,3),簇之间的距离分别为: d (C1,C2)=)33.683.2(67.8-67.12

2

-+)

(=7.83 d (C1,C3)=)()(3-83.29-67.12

2+=7.33

关于关联规则挖掘综述

关联规则挖掘综述 潮娇娇 摘要:关联规则挖掘是数据挖掘中的一个很重要的研究内容之一,近年来很多国内外研究人员对其进行了大量的研究。为了更进一步的了解关联规则挖掘技术,并掌握其发展方向和目前的研究现状。本文对关联规则挖掘技术进行了相关综述。首先介绍了关联规则的基本概念,其次分析了近年来一些经典关联规则算法的改进,并概述了相关算法在实际中的应用。最后对关联规则挖掘技术未来的发展趋势进行了讨论。 关键字:关联规则;算法;数据挖掘; Abstract: association rule mining is one of the important data mining research contents in this year, many domestic and foreign researchers have done a lot of research on it. In order to understand further the association rule mining technology, and grasp the development status and direction of research at present. This article of association rule mining technology related review. Firstly introduces the basic concepts of association rules, then analyzes the improvement of some classical algorithm of association rules in recent years, and summarizes the application of related algorithms in practice. At the end of the association rule mining technology development trend in the future are discussed. Key words: association rules; algorithms; data mining; 引言 随着计算机技术与数据库技术的飞速地发展,数据资源越来越多。但巨大的数据,依然没有解决我们的信息需求问题,针对这种情况,产生了数据库的数据挖掘。与传统技术相比,数据挖掘技术是一种新型的信息处理技术,能够自动和智能地把位置数据或者大量数据中潜在信息转换成人们需要的信息和知识的技术。它可以从数据库提取有用的知识、规律以及更高层次的信息,对这些进行分析,帮助人们更有效的利用海量数据中存在的价值。目前对数据挖掘的发展趋势及研究方向主要集中在数据挖掘的数据总结、分类、聚类、关联规则等方面。而关联规则挖掘作为数据挖掘的核心内容之一,进来得到了很快的发展。并已经成为当今数据挖掘的热点。为此,对关联挖掘技术的研究具有重要的意义。本文将重点介绍关联规则挖掘技术的相关研究。主要对近年来关联规则挖掘技术的算法改进进行综述以及未来的发展方向。 1、关联规则基本概念 1.1 相关介绍 关联规则作为数据挖掘的核心研究内容之一,它是大量数据中发现信息之间可能存在的某种关联或者相关联系。通过分析这些挖掘出的数据联系,可以在现实中帮助我们预测或决定某些事情将会发生。有效的提高了我们制定出准确的决策。目前,关联规则挖掘技术广泛应用于金融、互联网、医学等多个领域。最早的关联挖掘是未来发现交易数据库中不同商品之间的联系,通过分析这种联系获得有关购买者的一般的购买模式。从而有助于商家合理地安排进货、库存及货架设计,更好的制定发展计划和规避风险。

线性相关和线性无关的结论

§3.2性质定理总结: 一、线性相关的判别: 1、m ααα ,,21线性相关?存在不全为零的数m k k k ,,,21 ,使得 1122m m k k k .ααα++= 0 2、1α线性相关? 1α=0. 3、12,αα线性相关? 1α与2α的对应分量成比例. 4、m ααα ,,21线性相关?其中至少有一个向量能用其余向量线性表示. 5、n 个n 维向量线性相关?它们构成的行列式等于零. 6、m ααα ,,21线性相关 ?m ααα ,,21的秩小于m . 7、对调坐标不改变向量组的线性相关性. 8、部分相关?整体相关. 9、m 个n 维 (m >n ) 向量线性相关. 二、线性无关的判别: 1、m ααα ,,21线性无关?如果1122,m m k k k ααα++= 0则有 .021====m k k k 2、整体无关?部分无关. 3、无关则加长无关 三、线性相关的性质: m ααα ,,21线性无关,12m ,,,αααβ 线性相关?β可由m ααα ,,21线性表 示,且表示法唯一. 四、线性无关的性质: 1、若向量组Ⅰ能由向量组Ⅱ线性表示,且向量组Ⅰ线性无关,则Ⅰ的元素个数≤Ⅱ的元素个数. 2、等价线性无关向量组的向量个数相同.

五、向量组的秩的性质: 1、矩阵A的秩等于A的行(列)向量组的秩. A的不等于零的子式对应于A的行(列)向量组的线性无关组; A的行(列)向量组的线性无关组对应于A的不等于零的子式. 2、若向量组Ⅰ能由向量组Ⅱ线性表示,则Ⅰ的秩≤Ⅱ的秩. 3、等价向量组的秩相同. 六、矩阵的初等行(列)变换不改变列(行)向量组的线性关系.

离群值判别方法比较

离群值判别方法比较 文章介绍了离群值定义及分类,对几种常用的离群值判别方法进行比较,给出了不同情况下应采用的判别方法。希望通过文章的论述,可以为相关工作人员提供帮助,仅供参考。 标签:计量;离群值;判别方法对比 1 概述 离群值是样本中的一个或几个观测值,它们离开其他观测值较远,暗示它们可能来自不同的总体。离群值有两类来源,第一类离群值是总体固有变异性的极端表现,这类离群值与样本中其余观测值属于同一总体。第二类离群值是由于试验条件和试验方法的偶然偏离所产生的结果,或产生于观测、记录、计算中的失误,这类离群值与样本中其余观测值不属于同一总体[1]。 在计量领域,对在规定测量条件下测量的量值,测量条件下测得的量值用统计分析的方法进行的测量不确定度分量的评定,是测量不确定度的A类评定。测量中的失误或突发因素不属于测量不确定度的来源。在测量不确定度评定中,应剔除测得值中的离群值(异常值)。离群值的剔除应通过对数据的适当检验后进行[2]。 离群值分为单侧情形和双侧情形,单侧情形分为上侧情形与下侧情形。若无法认定单侧情形,按双侧情形处理。 2 抽样检验理论 文章介绍的离群值判别方法,均是建立在样本服从正态分布的假设上。抽样检验理论主要是建立均值与方差的估计。 2.1 符号及定义 文章符号及定义如表1所示。 2.2 均值及标准差 当不知道总体标准差时,用样本标准差估计作为总体标准差。样本标准差的计算有两种估计方法:贝塞尔公式、极差法。其中,贝塞尔公式法是方差的无偏估计,用于测量次数较多情况;极差法在测量次数较少时(2≤n≤9)应用。公式(1)-(3)分别为样本均值、贝塞尔公式,极差法。 3 离群值的判别

数据挖掘算法综述

数据挖掘方法综述 [摘要]数据挖掘(DM,DataMining)又被称为数据库知识发现(KDD,Knowledge Discovery in Databases),它的主要挖掘方法有分类、聚类、关联规则挖掘和序列模式挖掘等。 [关键词]数据挖掘分类聚类关联规则序列模式 1、数据挖掘的基本概念 数据挖掘从技术上说是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程。这个定义包括好几层含义: 数据源必须是真实的、大量的、含噪声的、发现的是用户感兴趣的知识, 发现的知识要可接受、可理解、可运用, 并不要求发现放之四海皆准的知识, 仅支持特定的发现问题, 数据挖掘技术能从中自动分析数据进行归纳性推理从中发掘出潜在的数据模式或进行预测, 建立新的业务模型帮助决策者调整策略做出正确的决策。数据挖掘是是运用统计学、人工智能、机器学习、数据库技术等方法发现数据的模型和结构、发现有价值的关系或知识的一门交叉学科。数据挖掘的主要方法有分类、聚类和关联规则挖掘等 2、分类 分类(Classification)又称监督学习(Supervised Learning)。监

督学习的定义是:给出一个数据集D,监督学习的目标是产生一个联系属性值集合A和类标(一个类属性值称为一个类标)集合C的分类/预测函数,这个函数可以用于预测新的属性集合(数据实例)的类标。这个函数就被称为分类模型(Classification Model),或者是分类器(Classifier)。分类的主要算法有:决策树算法、规则推理、朴素贝叶斯分类、支持向量机等算法。 决策树算法的核心是Divide-and-Conquer的策略,即采用自顶向下的递归方式构造决策树。在每一步中,决策树评估所有的属性然后选择一个属性把数据分为m个不相交的子集,其中m是被选中的属性的不同值的数目。一棵决策树可以被转化成一个规则集,规则集用来分类。 规则推理算法则直接产生规则集合,规则推理算法的核心是Separate-and-Conquer的策略,它评估所有的属性-值对(条件),然后选择一个。因此,在一步中,Divide-and-Conquer策略产生m条规则,而Separate-and-Conquer策略只产生1条规则,效率比决策树要高得多,但就基本的思想而言,两者是相同的。 朴素贝叶斯分类的基本思想是:分类的任务可以被看作是给定一个测试样例d后估计它的后验概率,即Pr(C=c j︱d),然后我们考察哪个类c j对应概率最大,便将那个类别赋予样例d。构造朴素贝叶斯分类器所需要的概率值可以经过一次扫描数据得到,所以算法相对训练样本的数量是线性的,效率很高,就分类的准确性而言,尽管算法做出了很强的条件独立假设,但经过实际检验证明,分类的效果还是

大数据时代的空间数据挖掘综述

第37卷第7期测绘与空间地理信息 GEOMATICS &SPATIAL INFORMATION TECHNOLOGY Vol.37,No.7收稿日期:2014-01-22 作者简介:马宏斌(1982-),男,甘肃天水人,作战环境学专业博士研究生,主要研究方向为地理空间信息服务。 大数据时代的空间数据挖掘综述 马宏斌1 ,王 柯1,马团学 2(1.信息工程大学地理空间信息学院,河南郑州450000;2.空降兵研究所,湖北孝感432000) 摘 要:随着大数据时代的到来,数据挖掘技术再度受到人们关注。本文回顾了传统空间数据挖掘面临的问题, 介绍了国内外研究中利用大数据处理工具和云计算技术,在空间数据的存储、管理和挖掘算法等方面的做法,并指出了该类研究存在的不足。最后,探讨了空间数据挖掘的发展趋势。关键词:大数据;空间数据挖掘;云计算中图分类号:P208 文献标识码:B 文章编号:1672-5867(2014)07-0019-04 Spatial Data Mining Big Data Era Review MA Hong -bin 1,WANG Ke 1,MA Tuan -xue 2 (1.Geospatial Information Institute ,Information Engineering University ,Zhengzhou 450000,China ; 2.Airborne Institute ,Xiaogan 432000,China ) Abstract :In the era of Big Data ,more and more researchers begin to show interest in data mining techniques again.The paper review most unresolved problems left by traditional spatial data mining at first.And ,some progress made by researches using Big Data and Cloud Computing technology is introduced.Also ,their drawbacks are mentioned.Finally ,future trend of spatial data mining is dis-cussed. Key words :big data ;spatial data mining ;cloud computing 0引言 随着地理空间信息技术的飞速发展,获取数据的手 段和途径都得到极大丰富,传感器的精度得到提高和时空覆盖范围得以扩大,数据量也随之激增。用于采集空间数据的可能是雷达、红外、光电、卫星、多光谱仪、数码相机、成像光谱仪、全站仪、天文望远镜、电视摄像、电子 显微镜、CT 成像等各种宏观与微观传感器或设备,也可能是常规的野外测量、人口普查、土地资源调查、地图扫描、 地图数字化、统计图表等空间数据获取手段,还可能是来自计算机、 网络、GPS ,RS 和GIS 等技术应用和分析空间数据。特别是近些年来,个人使用的、携带的各种传感器(重力感应器、电子罗盘、三轴陀螺仪、光线距离感应器、温度传感器、红外线传感器等),具备定位功能电子设备的普及,如智能手机、平板电脑、可穿戴设备(GOOGLE GLASS 和智能手表等),使人们在日常生活中产生了大量具有位置信息的数据。随着志愿者地理信息(Volunteer Geographic Information )的出现,使这些普通民众也加入到了提供数据者的行列。 以上各种获取手段和途径的汇集,就使每天获取的 数据增长量达到GB 级、 TB 级乃至PB 级。如中国遥感卫星地面站现在保存的对地观测卫星数据资料达260TB ,并以每年15TB 的数据量增长。比如2011年退役的Landsat5卫星在其29年的在轨工作期间,平均每年获取8.6万景影像,每天获取67GB 的观测数据。而2012年发射的资源三号(ZY3)卫星,每天的观测数据获取量可以达到10TB 以上。类似的传感器现在已经大量部署在卫 星、 飞机等飞行平台上,未来10年,全球天空、地空间部署的百万计传感器每天获取的观测数据将超过10PB 。这预示着一个时代的到来,那就是大数据时代。大数据具有 “4V ”特性,即数据体量大(Volume )、数据来源和类型繁多(Variety )、数据的真实性难以保证(Veracity )、数据增加和变化的速度快(Velocity )。对地观测的系统如图1所示。 在这些数据中,与空间位置相关的数据占了绝大多数。传统的空间知识发现的科研模式在大数据情境下已经不再适用,原因是传统的科研模型不具有普适性且支持的数据量受限, 受到数据传输、存储及时效性需求的制约等。为了从存储在分布方式、虚拟化的数据中心获取信息或知识,这就需要利用强有力的数据分析工具来将

数据挖掘中关联规则挖掘的应用研究

数据挖掘中关联规则挖掘的应用研究 吴海玲,王志坚,许峰 河海大学计算机及信息工程学院,江苏南京(210098) 摘 要:本文首先介绍关联规则的基本原理,并简单概括其挖掘任务,然后说明关联规则的经典挖掘算法Apriori 算法,通过一个实例分析进一步明确关联规则在CRM 中的应用,最后展望了关联规则挖掘的研究方向。 关键词:数据挖掘,关联规则,Apriori 算法,CRM 引言 关联规则是表示数据库中一组对象之间的某种关联关系的规则,关联规则挖掘的主要对象是交易(Transaction)数据库。这种数据库的一个主要应用是零售业,比如超级市场的销售管理。条形码技术的发展使得数据的收集变得更容易、更完整,从而可以存储大量的交易资料。关联规则就是辨别这些交易项目之间是否存在某种关系。例如:关联规则可以表示“购买了商品A 和B 的顾客中有80%的人又购买了商品C 和D”。这种关联规则提供的信息可以用作商品目录设计、商场货架的布置、生产安排、具有针对性的市场营销等。 [1] 1 关联规则的基本原理 设I={i 1,i 2,……,i m }是项的集合,设任务相关的数据D 是数据库事务的集合,其中每个事务T 是项的集合,使得T I 。每一个事务有一个标识符,称作T ID 。设X 是一个项集,事务T 包含X 当且仅当X T 。关联规则是形如X Y 的蕴涵式,其中X I ,Y ?I ,并且X ∩Y =?。规则X Y 在事务集D 中成立,具有支持度s ,其中s 是D 中事务包含X ∪Y (即X 和Y 二者)的百分比,它是概率P (X ∪Y )。规则X Y 在事务集中具有可信度c ,如果D 中包含X 的事务同时也包含Y 的百分比c 。这是条件概率P (X Y ∣)。即是 ??????support(X ?Y)= P (X Y ∪) confidence(X ?Y)= P (X Y ∣) 同时满足最小支持度(minsup)和最小可信度阈值(minconf )的规则称作强规则[1]。 项的集合称为项集(itemset )。包含k 个项的项集成为k -项集,例如集合{computer, software }是一个2—项集。项集的出现频率是包含项集的事务数,简称为项集的频率。项集满足最小支持度minsup ,如果项集的出现频率大于或者等于minsup 与D 中事务总数的乘积。如果项集满足最小支持度,则称它为频繁项集(frequent itemset) [2]。 2 关联规则的发现任务 关联规则挖掘的问题就是要找出这样的一些规则,它们的支持度或可信度分别大于指定的最小支持度minsup 和最小可信度minconf 。因此,该问题可以分解成如下两个子问题[3]: 1.产生所有支持度大于或等于指定最小支持度的项集,这些项目集称为频繁项目集(frequent itemsets ),而其他的项目集则成为非频繁项目集(non-frequent itemsets ) 2.由频繁项集产生强关联规则。根据定义,这些规则必须满足最小支持度和最小可信度。 关联规则挖掘的问题的主要特征是数据量巨大,因此算法的效率很关键。目前研究的重点在第一步,即发现频繁项目集,因此第二步相对来说是很容易的。

实验离群数据的判断和处理

实验离群数据的判断和处理 离群数据来源与判断: 1、离群值按产生原因分为两类: a)第一类离群值是总体固有变异性的极端表现,这类离群值与样本中其余观测值属于同一总体; b)第二类离群值是由于试验条件和试验方法的偶然偏离所产生的结果,或产生于观测、记录、计算中的失误,这类离群值与样本中其余观测值不属于同一总体。对离群值的判定通常可根据技术上或物理上的理由直接进行,例如当试验者已经知道试验偏离了规定的试验方法,或测试仪器发生问题等。当上述理由不明确时,可用本标准规定的方法。 2、离群值的三种情形: 本标准在下述不同情形下判断样本中的离群值: a)上侧情形:根据实际情况或以往经验,离群值都为高端值 ;b)下侧情形:根据实际情况或以往经验,离群值都为低端值; c)双侧情形:根据实际情况或以往经验,离群值可为高端值,也可为低端值。 3、检出离群值个数的上限 应规定在样本中检出离群值个数的上限(与样本量相比应较小),当检出离群值个数超过了这个上限时,对此样本应作慎重的研究和处理。 4、单个离群值情形 a)依实际情况或以往经验选定,选定适宜的离群值检验规则(格拉布斯检验、狄克逊检验等); b)确定适当的显著性水平, c)根据显著性水平及样本量,确定检验的临界值;d)由观测值计算相应统计量的值,根据所得值与临界值的比较结果作出判断。 5、判定多个离群值的检验规则 在允许检出离群值的个数大于1的情况下,重复使用检验规则进行检验。若没有检出离群值,则整个检验停止;若检出离群值,当检出的离群值总数超过上限时,检验停止,对此样本应慎重处理,否则,采用相同的检出水平和相同的规则,对除去已检出的离群值后余下的观测值继续检验。 离群值处理 1、处理方式 处理离群值的方式有: a)保留离群值并用于后续数据处理; b)在找到实际原因时修正离群值,否则予以保留; c)剔除离群值,不追加观测值; d)剔除离群值,并追加新的观测值或用适宜的插补值代替。

数据挖掘中的文本挖掘的分类算法综述

数据挖掘中的文本挖掘的分类算法综述 摘要 随着Internet上文档信息的迅猛发展,文本分类成为处理和组织大量文档数据的关键技术。本文首先对数据挖掘进行了概述包括数据挖掘的常用方法、功能以及存在的主要问题;其次对数据挖掘领域较为活跃的文本挖掘的历史演化、研究现状、主要内容、相关技术以及热点难点问题进行了探讨;在第三章先分析了文本分类的现状和相关问题,随后详细介绍了常用的文本分类算法,包括KNN 文本分类算法、特征选择方法、支持向量机文本分类算法和朴素贝叶斯文本分类算法;;第四章对KNN文本分类算法进行深入的研究,包括基于统计和LSA降维的KNN文本分类算法;第五章对数据挖掘、文本挖掘和文本分类的在信息领域以及商业领域的应用做了详细的预测分析;最后对全文工作进行了总结和展望。 关键词:数据挖掘,文本挖掘,文本分类算法 ABSTRACT With the development of Web 2.0, the number of documents on the Internet increases exponentially. One important research focus on how to deal with these great capacity of online documents. Text classification is one crucial part of information management. In this paper we first introduce the basic information of data mining, including the methods, contents and the main existing problems in data mining fields; then we discussed the text mining, one active field of data mining, to provide a basic foundation for text classification. And several common algorithms are analyzed in Chapter 3. In chapter 4 thorough research of KNN text classification algorithms are illustrated including the statistical and dimension reduction based on LSA and in chapter 5 we make some predictions for data mining, text mining and text classification and finally we conclude our work. KEYWORDS: data mining, text mining, text classification algorithms,KNN 目录 摘要 (1) ABSTRACT (1) 目录 (1)

数据挖掘中的软计算方法及应用综述

摘要文章对数据挖掘中软计算方法及应用作了综述。对模糊逻辑、遗传算法、神经网络、粗集等软计算方法,以及它们的混合算法的特点进行了分析,并对它们在数据挖掘中的应用进行了分类。 关键词数据挖掘;软计算;模糊逻辑;遗传算法;神经网络;粗集 1 引言 在过去的数十年中,随着计算机软件和硬件的发展,我们产生和收集数据的能力已经迅速提高。许多领域的大量数据集中或分布的存储在数据库中[1][2],这些领域包括商业、金融投资业、生产制造业、医疗卫生、科学研究,以及全球信息系统的万维网。数据存储量的增长速度是惊人的。大量的、未加工的数据很难直接产生效益。这些数据的真正价值在于从中找出有用的信息以供决策支持。在许多领域,数据分析都采用传统的手工处理方法。一些分析软件在统计技术的帮助下可将数据汇总,并生成报表。随着数据量和多维数据的进一步增加,高达109的数据库和103的多维数据库已越来越普遍。没有强有力的工具,理解它们已经远远超出了人的能力。所有这些显示我们需要智能的数据分析工具,从大量的数据中发现有用的知识。数据挖掘技术应运而生。 数据挖掘就是指从数据库中发现知识的过程。包括存储和处理数据,选择处理大量数据集的算法、解释结果、使结果可视化。整个过程中支持人机交互的模式[3]。数据挖掘从许多交叉学科中得到发展,并有很好的前景。这些学科包括数据库技术、机器学习、人工智能、模式识别、统计学、模糊推理、专家系统、数据可视化、空间数据分析和高性能计算等。数据挖掘综合以上领域的理论、算法和方法,已成功应用在超市、金融、银行[4]、生产企业 [5]和电信,并有很好的表现。 软计算是能够处理现实环境中一种或多种复杂信息的方法集合。软计算的指导原则是开发利用那些不精确性、不确定性和部分真实数据的容忍技术,以获得易处理、鲁棒性好、低求解成本和更好地与实际融合的性能。通常,软计算试图寻找对精确的或不精确表述问题的近似解[6]。它是创建计算智能系统的有效工具。软计算包括模糊集、神经网络、遗传算法和粗集理论。 2 数据挖掘中的软计算方法 目前,已有多种软计算方法被应用于数据挖掘系统中,来处理一些具有挑战性的问题。软计算方法主要包括模糊逻辑、神经网络、遗传算法和粗糙集等。这些方法各具优势,它们是互补的而非竞争的,与传统的数据分析技术相比,它能使系统更加智能化,有更好的可理解性,且成本更低。下面主要对各种软计算方法及其混合算法做系统性的阐述,并着重强调它们在数据挖掘中的应用情况。 2.1 模糊逻辑 模糊逻辑是1965年由泽德引入的,它为处理不确定和不精确的问题提供了一种数学工具。模糊逻辑是最早、应用最广泛的软计算方法,模糊集技术在数据挖掘领域也占有重要地位。从数据库中挖掘知识主要考虑的是发现有兴趣的模式并以简洁、可理解的方式描述出来。模糊集可以对系统中的数据进行约简和过滤,提供了在高抽象层处理的便利。同时,数据挖掘中的数据分析经常面对多种类型的数据,即符号数据和数字数据。nauck[7]研究了新的算法,可以从同时包含符号数据和数字数据中生成混合模糊规则。数据挖掘中模糊逻辑主要应用于以下几个方面: (1)聚类。将物理或抽象对象的集合分组成为由类似的对象组成的多个类的过程被称为聚类。聚类分析是一种重要的人类行为,通过聚类,人能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间有趣的关系。模糊集有很强的搜索能力,它对发现的结构感兴趣,这会帮助发现定性或半定性数据的依赖度。在数据挖掘中,这种能力可以帮助

关联规则挖掘综述

关联规则挖掘综述 摘要:近年来国内外学者对关联规则进行了大量的研究。为了更好地了解关联规则的挖掘技术,对研究现状有更深入的了解,首先本文对数据挖掘技术进行了介绍,接着介绍了关联数据挖掘的基本原理,最后对经典的挖掘算法进行分类介绍。 关键词:数据挖掘;关联规则;算法;综述 1.引言 数据挖掘是从海量的数据里寻找有价值的信息和数据。数据挖掘中常用的算法[1]有:关联规则分析法(解决事件之间的关联问题)、决策树分类法(对数据和信息进行归纳和分类)、遗传算法(基于生物进化论及分子遗传学理论提出的)、神经网络算法(模拟人的神经元功能)等。 数据挖掘最早使用的方法是关联分析,主要应用于零售业。其中最有名的是售货篮分析,帮助售货商制定销售策略。随着信息时代的到来,数据挖掘在金融[2]、医疗[3]、通信[4]等方面得到了广泛的应用。 2.关联规则基本原理 设项的集合I = { I1 ,I2 ,...,Im },数据库事务的集合为D,我们用|D|表示事务数据库所有事务的个数,其中用T

表示每个事务,使得T I。我们用TID作为每个事务的唯一标识符。用X表示一个项集,满足X T,那么交易T包含X。根据上述相关描述,给出关联规则的相关定义。 2.1项集支持度 用X表示数据库事务D中的项集,项集X的支持度表示项集X在D中事务数所占的比例,用概率P(X)表示,那么Support(X)=P(X)=COUNT(X)/|D| (1) 2.2关联规则置信度 X Y关联规则的置信度是数据库事务D中包含X Y的事务数与包含X的事务数之比,表示方法如下: confidence(X Y)= support(X Y)/support(X)= P(Y|X)(2) 3.关联规则算法 3.1经典的Apriori挖掘算法 大多数关联规则的算法是将关联规则挖掘任务分为两个子任务完成。一是频繁项集的产生,频繁项集的目的是找到大于等于给定的最小支持度阈值的所有项集,这些项集我们称之为频繁项集。二是规则的产生,即从频繁项集中找到置信度比较高的规则,我们称之为强规则。Apriori挖掘算法是众多挖掘关联规则中比较经典的算法,它采用布尔关联规则,是一种宽度优先算法。 3.2Apriori算法优化

离群点的判定汇编

离群点的判定 摘要 本文首先对离群点进行了定义,离群点(outlier)是指数值中,远离数值的一般水平的极端大值和极端小值。因此,也称之为歧异值,有时也称其为野值。深入了解了形成离群点的原因,并建立数学模型来找出一维、n维数据中的离群点,主要利用聚类的离群挖掘法。 针对问题一,考虑到数据的杂乱性,先对数据进行排序,由于在实际生活中我们需要处理的数据量往往比较多,离群点的个数也不确定,就考虑对数据进行分类处理,利用离群值跳跃度比较大的特点,采用斜率比较的方法进行分类,在分类的过程中我们就会很容易的发现离群点。最后再对完成分类的数据进行分析。完成分类的数据往往差距更小,可以近似的认为数据服从正态分布,利用正态分布的性质可以找出每类数据中的离群点,这样就找出了数据中所有的离群点。 针对问题二,我们主要采用具体的数据绘制具体的图形来分析存在的离群点,并说明离群点带来的影响。 针对问题三,我们主要利用基于聚类的离群挖掘方法,先利用一趟算法对数据集进行聚类;然后再计算每个簇的离群因子,并按离群因子对簇进行排序,最终确定离群簇,也即确定离群对象。确定算法以后再利用具体的数据进行检测,看该模型是否可行。 关键词:数据的分类处理聚类的离群挖掘方法(CBOD)

一、问题重述 A题:离群点的判定 离群点(outlier)是指数值中,远离数值的一般水平的极端大值和极端小值。因此,也称之为歧异值,有时也称其为野值。 形成离群点的主要原因有:首先可能是采样中的误差,如记录的偏误,工作人员出现笔误,计算错误等,都有可能产生极端大值或者极端小值。其次可能是被研究现象本身由于受各种偶然非正常的因素影响而引起的。例如:在人口死亡序列中,由于某年发生了地震,使该年度死亡人数剧增,形成离群点;在股票价格序列中,由于受某项政策出台或某种谣传的刺激,都会出现极增,极减现象,变现为离群点。 不论是何种原因引起的离群点对以后的分析都会造成一定的影响。从造成分析的困难来看,统计分析人员说不希望序列中出现离群点,离群点会直接影响模型的拟合精度,甚至会得到一些虚伪的信息。因此,离群点往往被分析人员看作是一个“坏值”。但是,从获得信息来看,离群点提供了很重要的信息,它不仅提示我们认真检查采样中是否存在差错,在进行分析前,认真确认,而且,当确认离群点是由于系统受外部突发因素刺激而引起的时候,他会提供相关的系统稳定性,灵敏性等重要信息。 问题一:针对一维数据,建立判别离群点的数学模型;并对模型的计算结果进行评价或检验。 问题二:如果数据中出现离群点应该如何处理?并举例说明该处理方法对后续建模分析的影响。 问题三:针对n维数据,建立判别离群点的数学模型;并对模型的计算结果进行评价或检验。

数据挖掘分类算法研究综述终板

数据挖掘分类算法研究综述 程建华 (九江学院信息科学学院软件教研室九江332005 ) 摘要:随着数据库应用的不断深化,数据库的规模急剧膨胀,数据挖掘已成为当今研究的热点。特别是其中的分类问题,由于其使用的广泛性,现已引起了越来越多的关注。对数据挖掘中的核心技术分类算法的内容及其研究现状进行综述。认为分类算法大体可分为传统分类算法和基于软计算的分类法两类。通过论述以上算法优缺点和应用范围,研究者对已有算法的改进有所了解,以便在应用中选择相应的分类算法。 关键词:数据挖掘;分类;软计算;算法 1引言 1989年8月,在第11届国际人工智能联合会议的专题研讨会上,首次提出基于数据库的知识发现(KDD,Knowledge DiscoveryDatabase)技术[1]。该技术涉及机器学习、模式识别、统计学、智能数据库、知识获取、专家系统、数据可视化和高性能计算等领域,技术难度较大,一时难以应付信息爆炸的实际需求。到了1995年,在美国计算机年会(ACM)上,提出了数据挖掘[2](DM,Data Mining)的概念,由于数据挖掘是KDD过程中最为关键的步骤,在实践应用中对数据挖掘和KDD这2个术语往往不加以区分。 基于人工智能和信息系统,抽象层次上的分类是推理、学习、决策的关键,是一种基础知识。因而数据分类技术可视为数据挖掘中的基础和核心技术。其实,该技术在很多数据挖掘中被广泛使用,比如关联规则挖掘和时间序列挖掘等。因此,在数据挖掘技术的研究中,分类技术的研究应当处在首要和优先的地位。目前,数据分类技术主要分为基于传统技术和基于软计算技术两种。 2传统的数据挖掘分类方法 分类技术针对数据集构造分类器,从而对未知类别样本赋予类别标签。在其学习过程中和无监督的聚类相比,一般而言,分类技术假定存在具备环境知识和输入输出样本集知识的老师,但环境及其特性、模型参数等却是未知的。 2.1判定树的归纳分类 判定树是一个类似流程图的树结构,其中每个内部节点表示在一个属性上的测试,每个分支代表一个测试输出,而每个树叶节点代表类或类分布。树的最顶层节点是根节点。由判定树可以很容易得到“IFTHEN”形式的分类规则。方法是沿着由根节点到树叶节点的路径,路径上的每个属性-值对形成“IF”部分的一个合取项,树叶节点包含类预测,形成“THEN”部分。一条路径创建一个规则。 判定树归纳的基本算法是贪心算法,它是自顶向下递归的各个击破方式构造判定树。其中一种著名的判定树归纳算法是建立在推理系统和概念学习系统基础上的ID3算法。 2.2贝叶斯分类 贝叶斯分类是统计学的分类方法,基于贝叶斯公式即后验概率公式。朴素贝叶斯分类的分类过程是首先令每个数据样本用一个N维特征向量X={X1,X2,?X n}表示,其中X k是属性A k的值。所有的样本分为m类:C1,C2,?,C n。对于一个类别的标记未知的数据记录而言,若P(C i/X)>P(C j/X),1≤ j≤m,j≠i,也就是说,如果条件X下,数据记录属于C i类的概率大于属于其他类的概率的话,贝叶斯分类将把这条记录归类为C i类。 建立贝叶斯信念网络可以被分为两个阶段。第一阶段网络拓扑学习,即有向非循环图的——————————————————— 作者简介:程建华(1982-),女,汉族,江西九江,研究生,主要研究方向为数据挖掘、信息安全。

ESD—检验离群值

Generalized ESD Test for Outliers 一、广义ESD 检验是做什么的 广义ESD 检验是一个检测离群值的方法。它检验服从近似正态 分布的一个单变量数据集中的一个或多个离群值。 二、为什么要使用这个算法 许多统计技术对离群值的存在是敏感的。例如,计算一个数据集 的均值或标准差时,离群值的影响是很大的。因此,检验离群值应该 是任何数据分析的常规部分。我们对潜在的异常值进行检查,以查看 它们是否可能是错误的。如果数据点是错误的,但如果可能,应当校 正,如果不可能则删除。如果没有理由相信边远点是错误的,它不应 该在没有仔细考虑的情况下被删除。 三、对广义ESD 检验的定义 给定数据集X=(x1,x2,...,xn ),设),(~2 σμN X ,x1, x2,...,xn 相互独立且与X 有相同的概率分布。首先画出数据 集的正态概率图(运行序列图,箱线图,或直方图),观察是否存在 潜在离群值(若事先不知道数据是否服从近似正态分布,还可评估数 据是否遵循一个近似正态分布),以确定是否有必要进行离群值检验。 若存在离群值,则给定的离群值数目的上限,令为r ,则广义ESD 检 验实质上是执行r 次单独的检验:首先检验第一个可能的离群值,计

算相应的统计量,在给定的显著水品α下做出判断;再检验第二个离群值,...,检验第r个离群值。这r次检验相互独立,互不影响。具体地说,我们假设: H0 :没有离群值 H1 :最多有r个离群值 计算检验统计量Ri : s x x Ri i | | max- = x:表示样本均值s:表示样本标准差 公式中 | |x x i-的值越大,说明i x与x相差越大,该数距点是 离群值的可能性也越大。我们首先删除使 | |x x i-最大的i x,然 后重新计算余下的n-1个数据的Ri,再移除相应的i x,重复这个过程,一直到移除了r个满足条件的数据(此时,该数据集中,可能是离群值的r个数据被删除),形成r检验统计量R1,R2,...,Rr。 在显著性水平为α(置信度为1-α)的条件下,计算检验的临界值i λ

数据挖掘中的聚类算法综述

收稿日期:2006201204;修返日期:2006203219基金项目:国家自然科学基金资助项目(60473117) 数据挖掘中的聚类算法综述 3 贺 玲,吴玲达,蔡益朝 (国防科学技术大学信息系统与管理学院,湖南长沙410073) 摘 要:聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。全面总结了数据挖掘中聚类算法的研究现状,分析比较了它们的性能差异和各自存在的优点及问题,并结合多媒体领域的应用需求指出了其今后的发展趋势。 关键词:数据挖掘;聚类;聚类算法 中图法分类号:TP391 文献标识码:A 文章编号:100123695(2007)0120010204 Survey of Clustering A lgorith m s in Data M ining HE L ing,WU L ing 2da,CA I Yi 2chao (College of Infor m ation Syste m &M anage m ent,N ational U niversity of D efense Technology,Changsha Hunan 410073,China ) Abstract:Clustering is an i m portant technique in Data M ining (DM )f or the discovery of data distributi on and latent data pattern .This paper p r ovides a detailed survey of current clustering algorith m s in DM at first,then it makes a comparis on a mong the m,illustrates the merits existing in the m,and identifies the p r oblem s t o be s olved and the ne w directi ons in the fu 2ture according t o the app licati on require ments in multi m edia domain .Key works:Data M ining;Clustering;Clustering A lgorith m 1 引言 随着信息技术和计算机技术的迅猛发展,人们面临着越来越多的文本、图像、视频以及音频数据,为帮助用户从这些大量数据中分析出其间所蕴涵的有价值的知识,数据挖掘(Data M ining,DM )技术应运而生。所谓数据挖掘,就是从大量无序 的数据中发现隐含的、有效的、有价值的、可理解的模式,进而发现有用的知识,并得出时间的趋向和关联,为用户提供问题求解层次的决策支持能力。与此同时,聚类作为数据挖掘的主要方法之一,也越来越引起人们的关注。 本文比较了数据挖掘中现有聚类算法的性能,分析了它们各自的优缺点并指出了其今后的发展趋势。 2 DM 中现有的聚类算法 聚类是一种常见的数据分析工具,其目的是把大量数据点的集合分成若干类,使得每个类中的数据之间最大程度地相似,而不同类中的数据最大程度地不同。在多媒体信息检索及数据挖掘的过程中,聚类处理对于建立高效的数据库索引、实现快速准确的信息检索具有重要的理论和现实意义。 本文以聚类算法所采用的基本思想为依据将它们分为五类,即层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法以及用于高维数据的聚类算法,如图1所示。 聚类 层次聚类算法 聚合聚类:Single 2L ink,Comp lete 2L ink,Average 2L ink 分解聚类 分割聚类算法基于密度的聚类基于网格的聚类 基于图论的聚类 基于平方误差的迭代重分配聚类:概率聚类、最近邻 聚类、K 2medoids 、K 2means 基于约束的聚类算法 机器学习中的聚类算法 人工神经网络方法 基于进化理论的方法:模拟退火、遗传算法用于高维数据的聚类算法 子空间聚类 联合聚类 图1 聚类算法分类示意图 211 层次聚类算法 层次聚类算法通过将数据组织成若干组并形成一个相应的树状图来进行聚类,它又可以分为两类,即自底向上的聚合层次聚类和自顶向下的分解层次聚类。聚合聚类的策略是先将每个对象各自作为一个原子聚类,然后对这些原子聚类逐层进行聚合,直至满足一定的终止条件;后者则与前者相反,它先将所有的对象都看成一个聚类,然后将其不断分解直至满足终止条件。 对于聚合聚类算法来讲,根据度量两个子类的相似度时所依据的距离不同,又可将其分为基于Single 2L ink,Comp lete 2L ink 和Average 2L ink 的聚合聚类。Single 2L ink 在这三者中应用最为广泛,它根据两个聚类中相隔最近的两个点之间的距离来评价这两个类之间的相似程度,而后两者则分别依据两类中数据点之间的最远距离和平均距离来进行相似度评价。 CURE,ROCK 和CHAME LE ON 算法是聚合聚类中最具代 表性的三个方法。 Guha 等人在1998年提出了C URE 算法 [1] 。该方法不用 单个中心或对象来代表一个聚类,而是选择数据空间中固定数目的、具有代表性的一些点共同来代表相应的类,这样就可以

数据挖掘综述

数据挖掘综述 1、产生背景 随着计算机的产生和大量数字化的存储方法的出现,我们借助计算机来收集和分类各种数据资料,但是不同存储结构存放的大量数据集合很快被淹没,便导致了结构化数据库以及DBMS的产生。 但是随着信息时代的到来,信息量远远超过了我们所能处理的范围,从商业交易数据、科学资料到卫星图片、文本报告和军事情报,以及生活中各种信息,这也就是“数据爆炸但知识贫乏”的网络时代,面对巨大的数据资料,出现了新的需求,希望能够更好的利用这些数据,进行更高层次的分析,从这些巨大的数据中提取出对我们有意义的数据,这就是知识发现(KDD,Knowledge Discovery in Databases),数据挖掘应运而生。 2、数据库系统技术的演变 1)20世纪60年代和更早 这个时期是数据收集和数据库创建的过程,原始文件的处理2)20世纪70年代---80年代初期 有层次性数据库、网状数据库、关系数据库系统 3)20世纪80年代中期—现在 高级数据库系统,可以应用在空间、时间的、多媒体的、主动的、流的和传感器的、科学的和工程的。 4)20世纪80年代后期—现在

高级数据分析:数据仓库和数据挖掘 5)20世纪90年代—现在 基于web的数据库,与信息检索和数据信息的集成6)现在---将来 新一代的集成数据域信息系统 3、数据挖掘概念 数据挖掘(Data Mining),就是从大量数据中获取有效的、新颖的、潜在的有用的,最终可以理解的模式的非平凡过程。数据挖掘,又称为数据库中知识发现(KDD,Knowledge Discovery in Databases),也有人把数据挖掘作为数据库中知识发现过程的一个基本步骤。 数据挖掘基于的数据库类型主要有:关系型数据库、面向对象数据库、事务数据库、演绎数据库、时态数据库、多媒体数据库、主动数据库、空间数据库、遗留数据库、异质数据库、文本型、Internet信息库以及新兴的数据仓库等。 4、数据挖掘特点和任务 4.1数据挖掘具有以下几个特点: 1)处理的数据规模十分庞大,达到GB,TB数量级,甚至更大2)查询一般是决策制定者(用户)提出的即时随机查询,往往不能形成精确的查询要求,需要靠系统本身寻找其可能感兴 趣的东西。 3)在一些应用(如商业投资等)中,由于数据变化迅速,因此

相关主题
文本预览
相关文档 最新文档