当前位置:文档之家› 从一个数的约数谈起

从一个数的约数谈起

从一个数的约数谈起
从一个数的约数谈起

我们知道:

一个数ɑ,如果能被数b整除,b就是ɑ的约数。

自然数(除了1以外)按照约数的多少,可以分成质数与合数两类:质数只有1和它自己两个约数;合数除了1和它自己以外,还有其它的约数;

上面这些知识都是非常浅显的,连小学生都知道。殊不知,在这些人们耳熟能详的知识中,却隐藏着许多饶有兴味的问题。

一、约数的个数

一个数的约数的个数,与这个数由哪些质因数组成有关。

以12为例,分解质因数得到12=22×3。在构成12的约数时,质因数2,可以取2个(即22=4)、1个(即21=2)或者不取(即20=1),有3种方法,“3”比质因数2的幂指数“2”多1;对于质因数3,可以取1个(即31=3)或者不取(即30=1),有2种方法,“2”比质因数3的幂指数“1”多1。所以,总共可以组成3×2=6个约数,分别是22×31=4×3=12,21×31=2×3=6,20×31=1×3=3,22×30=4×1=4,21×30=2×1=2,20×30=1×1=1。

推广到一般:如果一个数N=ɑi b j…c k,其中,ɑ、b、…、c是N的质因数,i、j、…、k是这些质因数的幂指数。

N的约数的个数等于:(i+1)(j+1)…(k+1)

以360为例,360=23×32×5。质因数2、3、5的幂指数分别是3、2、1,所以360的约数有(3+1)(2+1)(1+1)=24个。

检验:360的约数有360、180、120、90、72、60、45、40、36、30、

24、20、18、15、12、10、9、8、6、5、4、3、2、1,共24个。

二、约数的总和

仍以12为例,12=22×3。根据上面所说的12的约数的构成,这些约数的总和等于:22×31+21×31+20×31+22×30+21×30+20×30,化简后得到:(22+21+20)(31+30)。

所以,12的约数总和等于:(4+2+1)(3+1)=28。

检验:12的约数有12、6、4、3、2、1,12+6+4+3+2+1=28。

推广到一般,如果一个数N=ɑi b j…c k,其中ɑ、b、…、c是N的质因

数,i 、j 、…、k 是这些质因数的幂指数。

N 的约数总和等于:

(ɑi +ɑi-1+ɑi-2+…+ɑ+1)(b j +b j-1+b j-2+…+b +1)…(c k +c k-1+c k-2+…+c +1)

这个结果可以化简:

由恒等式(x -1)(x n-1+x n-2+…+x +1)=x n -1推知,(x -1)(x n +x n-1+…+x +1)=x n +1-1,

于是,(x n +x n-1

+…+x +1)=1

11--+x x n 。所以, N 的约数总和等于:111--+a a i ×111--+b b j ×…×111--+c c k 仍以360为例。360=23×32×5,360的约数总和是:

121213--+×131312--+×1

51511--+=15×13×6=1170。 检验:

360的约数前面已经给出,360+180+120+90+72+60+45+40+36+30+24+20+18+15+12+10+9+8+6+5+4+3+2+1=1170。

三、完全数

一个数的所有约数中,也包括这个数自己,除此之外,其余的约数都小于这个数,称为这个数的真约数。

如果一个数的真约数之和正好等于这个数,这个数就叫做完全数。如,6的真约数有3、2、1,3+2+1=6,所以6就是一个完全数,而且是最小的完全数。更大的完全数有28、496、8128、……

早在两千多年以前,欧几里得就曾经给出了偶完全数的计算公式:

2n-1(2n -1)

式中,n 是大于1的自然数,并且2n -1必须是质数。这样就产生了另一个要求:式中的n 不能是合数。因为:

如果n 是偶合数,设n =2m ,2n -1=22m -1=(2m +1)(2m -1),2n -1等于两个数的积,2n -1就是合数,这是不允许的;

如果n 是奇合数,设n =pq ,(p 、q 为奇数),2n -1=2pq -1=(2p )q -1。

根据前面引用过的恒等式

x n-1=(x-1)(x n-1+x n-2+…+x+1)

可得

2pq-1=(2p)q-1=(2p-1)[(2p)q-1+(2p)q-2+…+(2p)+1)]

2n-1等于两个数的积,2n-1就是合数,同样是不允许的。

所以n只能是质数。

上面所说的4个完全数6、28、496、8128,就是当n分别取前4个质数2、3、5、7时得到的。

第1个质数是2,当n=2时,2n-1=22-1=4-1=3,3是质数,所以第1个完全数是2n-1(2n-1)=22-1(22-1)=2×(4-1)=6;

第2个质数是3,当n=3时,2n-1=23-1=8-1=7,7是质数,所以第2个完全数是2n-1(2n-1)=23-1(23-1)=4×(8-1)=28;

第3个质数是5,当n=5时,2n-1=25-1=32-1=31,31是质数,所以第3个完全数是2n-1(2n-1)=25-1(25-1)=16×(32-1)=496;

第4个质数是7,当n=7时,2n-1=27-1=128-1=127,127是质数,所以第4个完全数是2n-1(2n-1)=27-1(27-1)=64×(128-1)=8128;

第5个质数是11,当n=11时,2n-1=211-1=2048-1=2047=23×89,2047是合数,没有与11对应的完全数。

第6个质数是13,当n=13时,2n-1=213-1=8192-1=8191,8191是质数,所以第5个完全数是2n-1(2n-1)=213-1(213-1)=4096×8191=33550336。

用这种方法依次可以求出更大的完全数:

第6个完全数是8589869056,对应的质数n=17;

第7个完全数是137438691328,对应的质数n=19;

第8个完全数是2305843008139952128,对应的质数n=31。

可以想象,越往后计算越困难,特别是所对应的质数没有规律,而判断一个数位很多的数是不是质数,就更加困难。在尚未发明电脑的时代,找到一个新的完全数,往往需要成年累月的计算,稍有不慎就会导致判断错误。有了电脑以后,情况大为改观,不过,已经发现的完全数都是偶数,

至于是否存在奇完全数,依然是一个未解之谜。

四、多重完全数

换一种视角,如果把一个数的约数(包括它自己)全部考虑在内,完全数所有约数的总和就等于它的2倍。那么,有没有这样的数,它的全部约数的总和等于它的3倍、4倍、5倍……呢?有。这样的数称为多重完全数。通常的完全数就是二重完全数。下面是一些多重完全数的例子:

120是一个3重完全数。120=23×3×5,120的约数的总和是: 121213--+×131311--+×1

51511--+=15×4×6=360,360等于120的3倍; 672也是一个3重完全数。672=25×3×7,672的约数的总和是: 121215--+×131311--+×1

71711--+=63×4×8=2016,2016等于667的3倍。

30240是一个4重完全数。30240=25×33×5×7,30240的约数的总和是: 121215--+×131313--+×151511--+×1

71711--+=63×40×6×8=120960,120960等于30240的4倍。

14182439040是一个5重完全数。14182439040=27×34×5×7×112×17×19,14182439040的约数的总和是:

121217--+×131314--+×151511--+×171711--+×11111112--+×11711711--+×11911911--+=255×121×6×8×133×18×20=70912195200,70912195200等于14182439040的5倍。

重数更多的完全数也有,但是由于数太大,约数太多,就不再举例了。

五、完全数的余波

有时,一个数的真约数之积,会等于这个数的某次幂,如:

12,它的真约数有1、2、3、4、6,1×2×3×4×6=144=122; 20,它的真约数有1、2、4、5、10,1×2×4×5×10=400=202; 45,它的真约数有1、3、5、9、15,1×3×5×9×15=2025=452;

24,它的真约数有1、2、3、4、6、8、12,1×2×3×4×6×8×12=13824=243;

40,它的真约数有1、2、4、5、8、10、20,1×2×4×5×8×10×20=64000=403;

48,它的真约数有1、2、3、4、6、8、12、16、24,1×2×3×4×6×8×12×16×24=5308416=484;

80,它的真约数有1、2、4、5、8、10、16、20、40,1×2×4×5×8×10×16×20×40=40960000=804;

405,它的真约数有1、3、5、9、15、27、45、81、135,1×3×5×9×15×27×45×81×135=26904200625=4054。

这样的数别具一格,就只能看作是完全数的余波了。

想不到,从一个数的约数谈起,竟然会引出这么多饶有兴味的问题,这再一次说明自然数的奇妙有趣。探究自然数的奥秘,无疑是数学家和数学爱好者永恒的追求。

一个整数的约数个数与约数和的计算方法

一个整数的约数个数与约数和的计算方法,两数的最大公约数与最小公倍数之间的关系,分数的最小公倍数.涉及一个整数的约数,以及若干整数最大公约数与最小公倍数的问题,其中质因数分解发挥着重要作用. 1.数360的约数有多少个这些约数的和是多少 【分析与解】360分解质因数:360=2×2×2×3×3×5=23×32×5; 360的约数可以且只能是2a×3b×5c,(其中a,b,c均是整数,且a为0~3,6为0~2,c为0~ 1). 因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24. 我们先只改动关于质因数3的约数,可以是l,3,32,它们的和为(1+3+32),所以所有360约数的和为(1+3+32)×2y×5w; 我们再来确定关于质因数2的约数,可以是l,2,22,23,它们的和为(1+2+22+23),所以所有360约数的和为(1+3+32)×(1+2+22+23)×5w; 最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5),所以所有360的约数的和为(1+3+32)×(1+2+22+23)×(1+5). 于是,我们计算出值:13×15×6=1170. 所以,360所有约数的和为1170. 评注:我们在本题中分析了约数个数、约数和的求法.下面我们给出一般结论: I.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后 所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身) Ⅱ.约数的和是在严格分解质因数后,将M的每个质因数最高次幂的所有约数的和相乘所得到的积.如:21000=23×3×53×7,所以21000所有约数的和为(1+2+22+23)×(1+3)×(1+5+52+53)×(1+7)=74880. 2.一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少 【分析与解】设这个数为A,有A=25×33×56×7,99=3×3×11,98=2×7×7,97均不是A的约数,而96=25×3为A的约数,所以96为其最大的两位数约数.

最大公约数与最小公倍数(正式)

最大公约数与最小公倍数 基本概念: 1、公约数和最大公约数 几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。 例如:12的约数有1,2,3,4,6,12;30的约数有1,2,3,5,6,10,15,30。12和30的公约数有1,2,3,6,其中6是12和30的最大公约数。 一般地我们用(a,b)表示a,b这两个自然数的最大公约数,如(12,30)=6。如果(a,b)=1,则a,b两个数是互质数。 2、公倍数和最小公倍数 几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。 例如:12的倍数有12,24,36,48,60,72,… 18的倍数有18,36,72,90,… 12和18的公倍数有:36,72…其中36是12和 18的最小公倍数。 一般地,我们用[a,b]表示自然数,a,b的最小公倍数,如[12,18]=36。 3、最大公约数与最小公倍数的求法 A.最大公约数 求两个数的最大公约数一般有以下几种方法 (1)分解质因数法 (2)短除法 (3)辗转相除法 (4)小数缩倍法 (5)公式法 前两种方法在数学课本中已经学过,在这里我们主要介绍辗转相除法。 当两个整数不容易看出公约数时(一般是数字比较大),我们可以合用辗转相除法。B.最小公倍数 求几个数的最小公倍数的方法也有以下几种方法: (1)分解质因数法 (2)短除法 (3)大数翻倍法 (4)a×b=(a,b)×[a,b] 上面的公式表示:两个数的乘积等于这两个数的最大公约数和最小公倍数的乘积。 例1、437与323的最大公约数是多少?

LX1、24871和3468的最小公倍数是多少? 例2、把一块长90厘米,宽42厘米的长方形铁板剪成边长都是整厘米,面积都相等的小正方形铁板,恰无剩余。至少能剪块。 【分析】根据题意,剪得的小正形的边长必须是90和42的最大公约6。所以原长方形的长要分90÷6=15段,宽要分42÷6=7段,至少能剪17×7=105(块) 解:(1)求90和42的最大公约数 2 90 42

求一个自然数的约数的个数,和所有约数的和

求一个自然数的约数的个数,和所有约数的和6=2·3=(2^1)·(3^1), 所以6的约数的个数:1,2,3,6共4个, 也可如此算:(1+1)(1+1)=4 所有约数的和1+3+2+6 ,也可如此算:(2^0+2^1)(3^0+3^1) 因为(2^0+2^1)(3^0+3^1)=(1+2)(1+3)=1×1+1×3+2×1+2×3=1+3+2+6 12=2×2×3=(2^2) ×(3^1), 所以12的约数的个数:1,2,3,4,6,12共6个,也可如此算:(1+2)(1+1)=6 所有约数的和1+3+2+6+4+12 ,也可如此算:(2^0+2^1+2^2)(3^0+3^1) 因为(2^0+2^1+2^2)(3^0+3^1)= (1+2+4)(1+3)=1×1+1×3+2×1+2×3+4×1+4×3=1+3+2+6+4+12………… 72=2×2×2×3×3=(2^3)·(3^2) 所以72约数的个数:(1+3)(1+2)=12 所有约数的和: (2^0+2^1+2^2+2^3)(3^0+3^1+3^2)=(1+2+4+8)(1+3+9)=195 240=2·2·2·2·3·5=(2^4 )·3·5

所以240约数的个数:(1+4)(1+1)(1+1)=20 所有约数的和: (2^0+2^1+2^2+2^3+2^4)(3^0+3^1)(5^0+5^1)=(1+2+4+8+16)(1+3)(1+ 5)=744 【这里解释一下:240的质因数有2,3和5 ,即240的约数由质因数2,3,5构成,其中因数2可能出现0个,1个,2个,3个,4个,共5 种情况;因数3可能出现0个,1个,共2种情况;因数5可能出现0个,1个,共2种情况。所以,240的约数个数为5×2×2=20个】 练习 1、1998的所有约数的和是多少? 解:1998=2×3×3×3×37 =2^1×3^3×37 约数有:(1+1)×(3+1)×(1+1)=16个 约数和:(2^0+2^1)(3^0+3^1+3^2+3^3)(37^0+37^1)=4560 2、720的所有约数的倒数之和是多少? 解:因为720=2×2×2×2×3×3×5=2^4×3^2×5^1 所以720的约数之和为(2^0+2^1+2^2+2^3+2^4)×(3^0+3^1+3^2)×(5^0+5^1)=31×13×6 所以720的所有约数的倒数之和是31×13×6/720=403/120

五年级数学约数和倍数意义说课稿

五年级数学约数和倍数意义说课稿五年级数学约数和倍数意义说课稿 一、说教材 1、教学内容:人教版六年制数学第十册p50 3、教学目标: ⑴知识与技能:能结合具体情景探索掌握整除的意义,理解约数和倍数的含义,学会正确判断一个数是不是另一个数的约数和倍数。 ⑵过程与方法:通过直观分析,让学生充分经历知识的形成过程,体验成功的乐趣。 ⑶情感、态度与价值观:培养学生分析、比较、抽象、概括和判断的能力。渗透事物之间相互联系、相互依存的辩证关系。 4、重点:理解整除、约数和倍数的意义。 难点:理解整除的意义。 关键:通过分析、讨论,得出整除的特征。相互依存的理解。 二、说教法 1、通过直观分析让学生充分感知,然后经过比较归纳,最后概 括整除的意义,从而使学生从形象思维逐步过渡到抽象思维,进而 达到感知新知、概括新知、应用新知、巩固和深化新知的目的。 2、采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言,参与学习过程和敢于质疑,引导学生自己动口、动脑,以及采用判断、游戏等多种形式的巩固练习,使学生的学习不成为一种负担, 而是一种快乐,把数学课上得有趣、有益、有效。 三、说学法:

通过本节教学使学生学会运用观察、分析、讨论的教学手段理解掌握新知识,学会有目的地观察、思考、对比分析问题、概括知识的方法。 四、说教学程序 (一)揭示课题与学习目标 今天这一堂课我们学习的内容是“约数和倍数的意义”,通过学习要求大家做到:①掌握整除的意义,在此基础上理解约数和倍数的意义。②学会正确判断一个数是不是另一个数的约数或倍数。 [开门见山将具体清晰的学习目标,呈现给学生,发挥目标的导向和激励功能,使学生明确学习任务,产生积极的学习心向,从而主动地参与学习过程。] [数的整除的生长点是在整数的基础上,所以学生必须理清数的概念。] (三)学习新知 A、初步感知整除 1、口算(小黑板出示)15÷5=1.5÷5=24÷4=3.6÷0.9= 16÷3=80÷20=6÷5=23÷7= [将课本中的题组适作改变,为紧接着的概括整除概念提供更丰富的感性材料。] 2、学习整除的意义 ①学生分组自由讨论,汇报各组的分组依据,引导得出:按商的情况:除尽、除不尽可以分成两组。 15÷5=31.5÷5=0.316÷3=5……180÷20=4 24÷4=63.6÷0.9=423÷7=3……26÷5=1.2

2020小学奥数训练题库约数与最大公约数

名思小学奥数训练题库约数与最大公约数13712345678987654321的除本身之外的最大约数是多少? 138将一个两位数的十位数字减去或加上它的个位数字,所得到的两个数都是78的大于1的约数。求这个两位数。 139有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数。 140有一个自然数,它的最大的两个约数之和是123,求这个自然数。 141求只有 8个约数但不大于30的所有自然数。 142给出一个自然数n,n的所有约数的个数用T(n)表示。(1)求 T(42);(2)求满足 T(n)=8的最小自然数n;(3)如果T(n)=2,那么n是怎样的数? 143在1~100中,所有的只有3个约数的自然数的和是多少? 144如果自然数a和b各自恰好都有5个不同的约数,那么a×b能否恰好有10个不同的约数? 145☆少年宫游乐厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。这200个灯泡按1~200编号,它们的亮暗规则是: 第一秒,全部灯泡变亮; 第二秒,凡编号为2的倍数的灯泡由亮变暗; 第三秒,凡编号为3的倍数的灯泡改变原来的亮暗状态,即亮的变暗,暗的变亮; 一般地,第n秒凡编号为n的倍数的灯泡改变原来的亮暗状态。 这样继续下去,每4分钟一个周期。问:第200秒时,明亮的灯泡有多少个? 146100以内约数个数最多的自然数有五个,它们分别是几? 147一个学生做两个两位数乘法时,把其中的一个乘数的个位数字9误看成7,得出的乘积是756。问:正确的乘积是多少? 148给出一个自然数n,n的所有约数的和用S(n)表示,求S(24)和S(36)。 149☆对于任意的大于2的自然数n,所有小于n且与n互质的自然数的个数是奇数还是偶数,还是不能肯定?

约数与倍数

约数与倍数 基础知识: 1. 如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数. 如果一个自然数同时是若干个自然数的约数,那么称这个自然数是这若干个自然数的公约数。在所有公约数中最大的一个公约数,称为这若干个自然数的最大公约数. 自然数a、b、c的最大公约数通常用符号(a,b,c)表示. 例如:(8,12)=4,(6,9,15)=3. 2. 互质定义:如果两个或几个数的最大公约数为1,则称这两个或几个数互质. 3.如果一个自然数同时是若干个自然数的倍数,那么称这个自然数是这若干个自然数的公倍数. 在所有公倍数中最小的一个公倍数,称为这若干个自然数的最小公倍数. 自然数a、b、c的最小公倍数通常用符号[a,b,c]表示. 例如:[8,12]=24,[6,9,15]=90. 4.约数个数公式、约数和公式. 例1.360有多少个约数? [答疑编号5721260101] 1

【答案】24 【解答】,所以360共有24个约数. 例2. 一个数是6的倍数,但它的约数之和与6互质,这个数最小是. [答疑编号5721260102] 【答案】36 【解答】这个数可以表示成,与6互质, 所以x≥2,y≥2, 故最小数为 . 基础知识 5.求最大公约数和最小公倍数的基本方法: (1)分解质因数法:将每个数分解质因数,观察这些数中包含哪些质因数, ①找公共部分,并将这些数的公共部分相乘,所得乘积即为这组数的最大公约数;②观察这些质因数的最高次方,并相乘,所得乘积即为这组数的最小公倍数. (2)辗转相除法: 两数为a、b的最大公约数(a,b)的步骤如下:用b除a,得a=bm......x(0≤x). 若x=0,则(a,b)=b;若x≠0,则再用x除b,得b=xn......y (0≤y).若y=0,则(a,b)=x,若y≠0,则继续用y除x,则继如此下去,直到能整除为止.其最后一个非零除数即为(a,b). 2

求一个自然数的约数的个数和所有约数的和

求一个自然数的约数的个数和所有约数的和 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

求一个自然数的约数的个数,和所有约数的和6=2·3=(2^1)·(3^1), 所以6的约数的个数:1,2,3,6共4个, 也可如此算:(1+1)(1+1)=4 所有约数的和1+3+2+6 ,也可如此算:(2^0+2^1)(3^0+3^1) 因为(2^0+2^1)(3^0+3^1)=(1+2)(1+3)=1×1+1×3+2×1+2×3=1+3+2+6 12=2×2×3=(2^2) ×(3^1), 所以12的约数的个数:1,2,3,4,6,12共6个,也可如此算: (1+2)(1+1)=6 所有约数的和1+3+2+6+4+12 ,也可如此算:(2^0+2^1+2^2)(3^0+3^1) 因为(2^0+2^1+2^2)(3^0+3^1)= (1+2+4)(1+3)=1×1+1×3+2×1+2×3+4×1+4×3=1+3+2+6+4+12………… 72=2×2×2×3×3=(2^3)·(3^2) 所以72约数的个数:(1+3)(1+2)=12 所有约数的和: (2^0+2^1+2^2+2^3)(3^0+3^1+3^2)=(1+2+4+8)(1+3+9)=195

240=2·2·2·2·3·5=(2^4 )·3·5 所以240约数的个数:(1+4)(1+1)(1+1)=20 所有约数的和: (2^0+2^1+2^2+2^3+2^4)(3^0+3^1)(5^0+5^1)=(1+2+4+8+16)(1+3)(1+5) =744 【这里解释一下:240的质因数有2,3和5 ,即240的约数由质因数2,3,5构成,其中因数2可能出现0个,1个,2个,3个,4个,共5种情况;因数3可能出现0个,1个,共2种情况;因数5可能出现0个,1个,共2种情况。所以,240的约数个数为5×2×2=20个】 练习 1、1998的所有约数的和是多少? 解:1998=2×3×3×3×37 =2^1×3^3×37 约数有:(1+1)×(3+1)×(1+1)=16个 约数和:(2^0+2^1)(3^0+3^1+3^2+3^3)(37^0+37^1)=4560 2、720的所有约数的倒数之和是多少? 解:因为720=2×2×2×2×3×3×5=2^4×3^2×5^1 所以720的约数之和为(2^0+2^1+2^2+2^3+2^4)×(3^0+3^1+3^2)×(5^0+5^1)=31×13×6

《约数和倍数的意义》教案-约数和倍数教案

《约数和倍数的意义》教案|约数和倍数教案 教学目的1、知识与能力:使学生进一步理解整除的意义。使学生知道约数、倍数的含义,以及它们之间的相互依存关系。使学生知道研究约数和倍数时所说的数,一般指自然数2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。 3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。 教学重点: 理解整数、约数和倍数的概念。 教学难点: 整数、约数和倍数的联系。 教学过程: 一、复习 1、师:谁能说说整数的含义? 出示:23÷7=3...26÷5=1.15÷3=524÷2=1 2 教师:这4个算式中,哪个算式中第一个数能被第二个数整除?为什么前两个算式中的第一个数不能被第二个数整除?让学生观察算式,说说式中被除数、除数和商各有什么特点?

教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”? 教师:a的约数还可以叫做什么? 让学生用两种说法说说:15÷3=5和24÷2=1 2 教师:我们在说一个数能被另一个数整除时,必须具备哪几个条? (1)被除数和除数必须是整数,而且除数不等于0。 (2)商必须是整数。 (3)商的后面没有余数。 师:以上三个条,缺一不可。 2、区别“除尽”与“整除” 师:像6÷5=1.2这样的除法,一般说6能被5除尽。 被除数和除数 商 整除 都是整数,除数不等于0 商是整数,而且没有余数 除尽 不一定是整数,除数不等于0 商是有限小数,没有余数 二、新课 1、教学约数和倍数的意义。

在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数) 让学生看50页关于约数和倍数。 教师:两个数在什么情况下才能说有约数和倍数关系?(整除) 能单独说一个数是约数或一个数是倍数吗? “倍数和约数是相互依存的”是什么意思? 小结:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。 2、教学例 1 (1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。 教师:15能被3整除吗? 15是3的什么数? 3是15的什么数? 教师指出:这里所说的数一般是指自然数,不包括0。 (2)“倍数”与“倍”的区别 1、基本练习P51做一做 三、巩固练习 1、独立完成练习十一的1、 2、3题。 2、第四题

最大公约数与最小公倍数练习题

最大公约数和最小公倍数练习题 一. 填空题。 3. 所有自然数的公约数为()。 4. 如果m和n是互质数,那么它们的最大公约数是(),最小公倍数是()。 5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。 6. 用一个数去除15和30,正好都能整除,这个数最大是()。 7. 两个连续自然数的和是21,这两个数的最大公约数是(),最小公倍数是()。 8. 两个相邻奇数的和是16,它们的最大公约数是(),最小公倍数是()。 9. 某数除以3、5、7时都余1,这个数最小是()。 10. 根据下面的要求写出互质的两个数。 (1)两个质数()和()。 (2)连续两个自然数()和()。 (3)1和任何自然数()和()。 (4)两个合数()和()。 (5)奇数和奇数()和()。 (6)奇数和偶数()和()。 二. 判断题。 1. 互质的两个数必定都是质数。() 2. 两个不同的奇数一定是互质数。() 3. 最小的质数是所有偶数的最大公约数。() 4. 有公约数1的两个数,一定是互质数。() 三. 直接说出每组数的最大公约数和最小公倍数。 26和13()13和6()4和6() 5和9()29和87()30和15() 13、26和52 ()2、3和7() 四. 求下面每组数的最大公约数和最小公倍数。(三个数的只求最小公倍数) 45和60 36和60 27和72 76和80 42、105和56 24、36和48 五. 动脑筋,想一想: 学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品?

青岛版-数学-五年级上册-《因数与倍数的意义》备课教案

因数与倍数的意义 教学目标: 知识与技能:使学生结合具体情境初步理解因数和倍数的含义,初步理解因数和倍数相互依存的关系。 过程与方法:使学生依据因数和倍数的含义以及已有乘除法知识,通过尝试、交流等活动,探索并掌握找一个数的因数和倍数的方法。 情感与态度:使学生在认识因数和倍数以及找一个数的因数和倍数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。 教学重点: 理解因数和倍数的含义。 教学难点: 探索并掌握找一个数的因数和倍数的方法。 教学过程: 认识因数、倍数 观察情景图,提出问题。 操作:可以怎样排队?每排摆几个,摆了几排,摆完后在练习本上写出乘法算式。 汇报:你是怎么摆?算式是什么? 指名说,师板书:1×12=12 2×6=12 3×4=12 学习“因数、倍数”的概念 师:刚才通过摆不同的队形,我们得到了3个不同的乘法算式,别小看这3个算式,其实在这里面有许多数学奥秘。今天我们就来研究数学的新奥秘。 师指3×4=12 说:因为3×4=12,所以我们就说3是12的因数(板书:因数),4是12的因数;12是3的倍数(板书:倍数);12是4的倍数。 学生说一说。 问:根据2×6=12,说说谁是谁的因数,谁是谁的倍数?(指名说) 问:根据1×12=12呢? 指名,师:12既是12的因数,又是12的倍数。 问:根据48÷6=8(板书:48÷6=8)说说谁是谁的因数,谁是谁的倍数?你是怎么想的?指名说

师:看来,根据乘法算式和除法算式,都能判断出谁是谁的因数,谁是谁的倍数。 师:你也像老师这样说一道乘法算式或除法算式,让你的同桌说一说它们之间的因数和倍数的关系。同位互相说。 师:有同学说8÷2=4时,说8是倍数,4是因数。这样行吗?为什么? 小结:是呀,我们不能直接说谁是因数,谁是倍数,而要清楚地表达出来谁是谁的因数,谁是谁的倍数。看来,因数和倍数是相互依存的(板书:和)。为了方便,在研究因数和倍数时,一般不讨论0。 二、探索找一个数的因数的方法 师:看黑板上的3个算式,你能找到12的所有的因数吗?(学生齐说。) 问:如果没有算式,你能找出24所有的因数吗?先想想怎样找?然后写在练习本上。 学生写一写,师巡视。 汇报展示:(2人) 问:你是怎么找的?(学生说方法) 评价:他找的怎么样?(学生评一评) 师讲解:想知道老师是怎么找的吗?(师边讲解边一对一对的板书24的因数)24的因数有:1,2,3,4,6,8,12,24 小结:其实老师就是按从小到大的顺序一对一对找的,这样就能做到既不重复又不遗漏了。看来,有序的思考问题对我们的帮助确实很大。 练习 师:用这种方法写出18的因数。 汇报:你找的18的因数都有哪些?(指名说,师板书) 发现规律 问:仔细观察这几个数的因数,你能发现什么规律? 小结:一个数的因数最小的是1,最大的是它本身。 三、探索找一个数的倍数的方法 方法 学生找4的倍数,写在练习本上。 汇报:指名说,师写在黑板上。(4的倍数有:4,8,12,16,20……) 问:你能说的完吗?写不完怎么办?(用省略号)

“最大公约数”练习题(基础教学)

“最大公约数”练习题姓名 基础题 一、在下圈内填上适当的数二、70=2×5×7 30=2×3×5×11 70和330相同的质因数是(), 70和330的最大公约数是() 三、(1)24的约数有(),(2)36的约数有()(3)24和36的公约数有(),(4)24和36的最大公约数有()四、先把下面两个数分别分解质因数,再求它们的最大公约数。 165=()×()×()195=()×()×()165和195的最大公约数是()×()=() 五、在3、10、18、19、35五个数中: (1)两合数()和()是互质数,它们的最大公约数是()。 (2)两合数()和()有公约数5,所以它们不是互质数。 (3)()和()是两个不同的质数,一定是()。 (4)质数()和合数()成倍数关系,因此它们的最大公约数是()。拓展题 一、判断题(对的在括号内打V,错的打X) (1)因为数a和数b是互质数,所以数a和数b没有公约数。()(2)因为b是a和b的公约数,所以b也是a和b的最大公约数。()(3)互质的两个数不一定都是质数();(4)两个质数的和一定还是质数。()二、求下面每一组数的最大公约数(用短除法) (1)48和60 (2)55和66 (3)52和39 (4)242和66 (5)14、28和84 (6)18、24、和42 (7)3、7和5 三、直接写出下面每组数的最大公约数 1和9 15和5 6和7 105和315 28和27 11和33 13和17 100和101 四、把长102厘米,宽78 厘米的硬纸,剪成同样大的正方形,并且不能剩余,

剪得正方形边长最长是多少?可以剪成几块? 五、某班有男生24人,女生16人,在参加植树活动中将全班同学分成若干小组, 要求每组中男生人数相等,女生人数也相等,最多可以分成多少组?每组男女生共有几人? 六、已知两数积是1734,它们的最大公约数是17,求这两个数。 七、有三根铁丝,一根长7米,一根长20米,一根长30米,要把它们截成同样 长的小段,已知第一根余下1米,第二根余下2米,第三根没有剩余,每段最长多少米? 综合题 一、填空题 1.有四个(可以相同)小于10的自然数,它们的积是360,已知四个数中只有一个是合数,那么这四个数是()。 2.最小的自然数,最小的质数,最小的合数之和的2倍是()。 3.一个数,千位上是最小的质数,百位上是最小的自然数,个位上是最小合数,百分位上是最大数字,其余数位上的数字都是零,这个数应写作()。4.直接写出下面各组数的最大公约数在括号内。 4和9()18和9()2和14()3和70()22和33()21和35() 5.已知两个数的和是256,它们的最大公约数是16,这两数是()和();()和();()和();()和()。 二、判断题 1.任何一个自然数减1,还是个自然数---------------------------------------()2.12和18的公约数只有3个()3.同任何非零自然数互质的数是1()4.奇数不一定是质数,偶数都是合数()5.互质的两个数没有最大公约数()6.如果一个非零自然数a小于某个质数b,那么a与b一定互质--------------()三、选择。 1.a=2×2×5,b=2×3×5,a、b最大公约数是()。 A 2 B 5 C 10 D 15 E 6 2.甲数是乙数的15倍,这两个数的最大公约数是()。 A 15 B 甲数 C 乙数 D 甲数×乙数 3.两个自然数的最大公约数是12这两个数的全部公约数是()。 A 1、2、3、12 B 2、3、4、6 C 2、3、4、6、12 D 1、2、3、4、6、12 4.下面哪句话是错的()。 A 4是16的约数 B 2是质数 C 9是合数 D 两个互质数没有公约数

找一个数的因数的方法

找一个数的因数的方法答案 例1.现有草莓40个,可以平均分给多少个小朋友? 考点:找一个数的因数的方法. 分析:根据因数与倍数的意义,和找一个数的因数的个数的方法,求出40的因数有哪些,根据题意可以平均分给多少个小朋友,那就不是1个.由此解答. 解答:解:40的因数有:1,2,4,5,8,10,20,40. 根据题意不可能分给1个小朋友,因此可以平均分给2个,4个,5个,8个,10个,20个,或40个. 答:可以分给2个,4个,5个,8个,10个,20个,或40个小朋友. 点评:此题主要考查求一个数的因数的方法,根据求一个数的因数的方法解决问题. 例2.只有一个因数的数是1 只有两个因数的数是质数 有三个因数以上的数是合数. 考点:找一个数的因数的方法. 专题:数的整除. 分析:在自然数中,只有一个因数的数是1;除了1和它本身外,没有别的因数的数为质数; 除了1和它本身外还有别的因数的数为合数;据此解答即可. 解答:解:只有一个因数的数是1; 只有两个因数的数是质数; 有三个因数以上的数是合数. 故答案为:1;质数;合数. 点评:此题考查了质数与合数的含义以及找一个数的因数的方法.属于识记内容. 例3.有144块糖平均分成若干份,要求每份不得少于10颗,也不能多于50颗,那么一共有6种分法. 考点:找一个数的因数的方法. 专题:约数倍数应用题. 分析:找到144的约数中大于10且小于50的即可求解. 解答:解:因为144=2×2×2×2×3×3,所以144在10到50之间的约数有:12、16、18、24、 36、48,所以有6种; 答:一共有6种分法. 故答案为:6. 点评:解答此题的关键是先把144进行分解质因数,然后找出符合条件的数解答即可. 例4.a、b、c是三个互不相等的自然数,而且a÷b=c,a至少有4个约数. 考点:找一个数的因数的方法. 专题:压轴题. 分析:首先a.b.c肯定是a的因数,而且互不相等,所以算三个;然后考查1,1肯定是a 的因数,问题是会不会与上面的三个重复

最大公约数和最小公倍数的比较_教案教学设计

最大公约数和最小公倍数的比较 教学目标 (一)进一步理解并掌握最大公约数和最小公倍数的概念,分清求最大公约数和最小公倍数的相同点和不同点。 (二)培养学生仔细、认真的做题习惯和比较的思维方法。 (三)培养学生观察、分析、比较的能力。 教学重点和难点 最大公约数和最小公倍数异同点的比较。 教学用具 教具:小黑板,投影片。 学具:判断卡,选择卡。 教学过程设计 (一)复习准备 教师: ①什么叫最大公约数和最小公倍数? ②怎样求最大公约数和最小公倍数? ③求下面各题的最大公约数和最小公倍数?(口答) 8和1613和262和97和15 教师:对上面几道题你是怎么想的?各有什么特点?你能发现什么规律? 明确:

①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。 ②两个数互质,最大公约数是1,最小公倍数是两个数乘积。 (二)学习新课 1.出示例5。 求28和42的最大公约数和最小公倍数。(要求学生独立完成。) 学生口述教师板书。 28和42的最大公约数是: 2×7=14 28和42的最小公倍数是 2×7×2×3=84 教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论) 在讨论的基础上,总结出下面的结论。 教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢? 明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。 教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例5怎样做简便?(由学生

08约数个数和完全平方数

基础知识 四、求约数个数与所有约数的和 1.求任一整数约数的个数 一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。 如:1400严格分解质因数之后为32257??,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个。(包括1和1400本身) 约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握。难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造”出来,或者是“构造出可能的最值”。 2.求任一整数的所有约数的和 一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。 如:33210002357=???,所以21000所有约数的和为 2323(1222)(13)(1555)(17)74880 ++++++++=此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可。 3.约数的积:设M 的约数个数为x 个,那么M 所有约数的积为2x M 。(如果是完全平方数, 先开方求得值为A,再计算 x A 的值,即为所求)。 如:21分解质约数为3×7,所以有(1+1)×(1+1)=4个,所以21的所有约数的积为2421=441。又如:9分解质约数为23,所以有(1+2)=3个约数,为完全平方数,9开方为3,所以9的所有约数的乘积为33=27。 1.平方数的概念:一个数能写成两个相同数相乘的形式的数是平方数。 偶指性,奇约性。(根据概念得到)平方数的因数个数是奇数个。 2.20以内的平方数要求记忆。1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289.324,361,400平方数的判断:看个位:只能是0,1,4,5,6,9不能是2,3,7,8 3.平方数的末两位只有(00)(01,21,41,61,81)(04,24,44,64,84,)(25)(09,29,49,69,89,)(16,36,56,76,96),因个位是0,1,4,5,6,9得到。 思维数学第08讲 约数个数和平方数(一)

约数和倍数的意义

约数和倍数的意义 教学目标 1、掌握整除、约数、倍数的概念. 2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.教学重点 1、建立整除、约数、倍数的概念. 2、理解约数、倍数相互依存的关系. 3、应用概念正确作出判断. 教学难点 理解约数、倍数相互依存的关系. 教学步骤 一、铺垫孕伏(课件演示:数的整除下载) 1、口算 6÷515÷323÷7 1.2÷0.324÷231÷3

2、观察算式和结果并将算式分类. 除尽除不尽 3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除. 4、寻找具有整除关系的算式. 板书:15÷3=5 15能被3整除 5、分类 除尽除不尽不能整除整除 二、探究新知 (一)进一步理解“整除”的意义. 1、整除所需的条件. (1)分析:24能被2整除,15能被3整除; 23不能被7整除,31不能被3整除;(商有余数) 6不能被5整除;(商是小数) 1.2不能被0.3整除;(被除数和除数都是小数) (2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数; b、商是整数; c、商后没有余数. 板书:整数整数整数(没有余数) 15÷3=5 2、用字母表示相除的两个数,理解整除的意义. (1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除? (板书:a÷b) 学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除. (板书:a能被b整除) (2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0) 3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下) (4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数). 2、进一步理解约数、倍数的意义. (1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,

最大公约数和最小公倍数怎么求

最大公约数和最小公倍数怎么求? 首先把两个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。 比如:求45和30的最小公倍数。 45=3*3*5 30=2*3*5 不同的质因数是2,3,5。3是他们两者都有的质因数,由于45有两个3,30只有一个3,所以计算最小公倍数的时候乘两个3. 最小公倍数等于2*3*3*5=90 又如:计算36和270的最小公倍数。 36=2*2*3*3 270=2*3*3*3*5 不同的质因数是5。2这个质因数在36中比较多,为两个,所以乘两次;3这个质因数在270个比较多,为三个,所以乘三次。 最小公倍数等于2*2*3*3*3*5=540 最大公约数和最小公倍数<练习题> 1.有一级茶叶96克,二级茶叶156克,三级茶叶240克,价值相等.现将这三种茶叶分别等分装袋(均为整数克),每袋价值相等,要使每袋价值最低应如何装袋? 2.a、b两数的最大公约数是12,已知a有8个约数,b有9个约数,求a与b. 3.两个数的积是6912,最大公约数是24,求:(1)它们的最小公倍数;(2)满足已知条件的自然数是哪几组? 4.甲、乙、丙三个学生定期向某老师求教,甲每4天去一次,乙每6天去一次,丙每9天去一次,如果这一次他们三人是3月23日都在这个老师家见面,那么下一次三人都在这个老师家见面的时间是几月几日? 5.求被5除余2,被6除余3,被7除4的大于1000、小于1500的所有自然数. 6.某个数与36的最大公约数是12,与36的最小公倍数是180,求这个数. 7.有三个自然数a、b、c,a与b的最大公约数是2;b和c的最大公约数是4;a和c的最大公约数是6;a、b、c三个数的最小公倍数是60,求这三个数的最小的和是多少? 答案仅供参考: 1.三种数量不等的茶叶价值相等,等分装袋后,每袋价值仍相等,由于每种茶叶的总价值相等,每袋价值也要相等,所以这三种茶叶分装的袋数也一定相同.为了使每袋价值最低,就应使袋数尽可能多,

(完整版)最大公约数与最小公倍数练习题

?最大公约数和最小公倍数练习题 一. 填空题。 3. 所有自然数的公约数为()。 4. 如果m和n是互质数,那么它们的最大公约数是(),最小公倍数是()。 5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。 6. 用一个数去除15和30,正好都能整除,这个数最大是()。 7. 两个连续自然数的和是21,这两个数的最大公约数是(),最小公倍数是()。 8. 两个相邻奇数的和是16,它们的最大公约数是(),最小公倍数是()。 9. 某数除以3、5、7时都余1,这个数最小是()。 10. 根据下面的要求写出互质的两个数。 (1)两个质数()和()。 (2)连续两个自然数()和()。 (3)1和任何自然数()和()。 (4)两个合数()和()。 (5)奇数和奇数()和()。 (6)奇数和偶数()和()。 二. 判断题。 1. 互质的两个数必定都是质数。() 2. 两个不同的奇数一定是互质数。() 3. 最小的质数是所有偶数的最大公约数。() 4. 有公约数1的两个数,一定是互质数。() 三. 直接说出每组数的最大公约数和最小公倍数。 26和13()13和6()4和6() 5和9()29和87()30和15() 13、26和52 ()2、3和7() 四. 求下面每组数的最大公约数和最小公倍数。(三个数的只求最小公倍数) 45和60 36和60 27和72 76和80 42、105和56 24、36和48 五. 动脑筋,想一想: 学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品?

阶乘的因数的个数

给定两个数m,n 求m!分解质因数后因子n的个数。 这道题涉及到了大数问题,如果相乘直接求的话会超出数据类型的范围。 下面给出一种效率比较高的算法,我们一步一步来。 m!=1*2*3*……*(m-2)*(m-1)*m 可以表示成所有和n倍数有关的乘积再乘以其他和n没有关系的 =(n*2n*3n*......*kn)*ohter other是不含n因子的数的乘积因为kn<=m 而k肯定是最大值所以k=m/n =n^k*(1*2*......*k)*other =n^k*k!*other 从这个表达式中可以提取出k个n,然后按照相同的方法循环下去可以求出k!中因子n的个数。 每次求出n的个数的和就是m!中因子n的总个数 先说一个定理: 若正整数n可分解为p1^a1*p1^a2*...*pk^ak 其中pi为两两不同的素数,ai为对应指数 n的约数个数为(1+a1)*(1+a2)*....*(1+ak) 如180=2*2*3*3*5=2^2*3^2*5 180的约数个数为(1+2)*(1+2)*(1+1)=18个。 若求A/B的约数个数,A可分解为p1^a1*p2^a2*...*pk^ak,B可分解为q1^b1*q1^b2*...*qk^bk,则A/B 的约数个数为(a1-b1+1)*(a2-b2+1)*(a3-b3+1)...*(ak-bk+1). 然后说N的阶乘: 例如:20! 1.先求出20以内的素数,(2,3,5,7,11,13,17,19) 2.再求各个素数的阶数 e(2)=[20/2]+[20/4]+[20/8]+[20/16]=18; e(3)=[20/3]+[20/9]=8; e(5)=[20/5]=4; ... e(19)=[20/19]=1; 所以 20!=2^18*3^8*5^4*...*19^1

最新五年级数学下册《约数和倍数的意义》教案

最新五年级数学下册《约数和倍数的意义》教案 约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求公约数、求最小公倍数等知识必须具备的基础知识,下面就是小编给大家带来的五年级数学下册《约数和倍数的意义》教案,希望能帮助到大家! 五年级数学教案1 教学目标 1、掌握整除、约数、倍数的概念. 2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系. 教学重点 1、建立整除、约数、倍数的概念. 2、理解约数、倍数相互依存的关系. 3、应用概念正确作出判断. 教学难点 理解约数、倍数相互依存的关系. 教学步骤 一、铺垫孕伏(课件演示:数的整除下载) 1、口算 6 515 323 7 1.2 0.324 231 3 2、观察算式和结果并将算式分类. 除尽 除不尽 6 5=1.215 3=15 1.2 0.3=424 2=12 23 7=3 (2) 31 3=10 (1) 3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式. 板书:15 3=515能被3整除 5、分类除尽 除不尽 不能整除 整除 6 5=1.2 1.2 0.3=4 15 3=15 24 2=12 23 7=3 (2) 31 3=10 (1) 二、探究新知 (一)进一步理解整除的意义. 1、整除所需的条件. (1)分析:24能被2整除,15能被3整除; 23不能被7整除,31不能被3整除;(商有余数) 6不能被5整除;(商是小数) 1.2不能被0.3整除;(被除数和除数都是小数) (2)引导学生明确:第一个数能被第二个数整除必须满足三个条件: a、被除数和除数(0除外)都是整数; b、商是整数; c、商后没有余数. 板书:整数整数整数(没有余数) 15 3=5 2、用字母表示相除的两个数,理解整除的意义. (1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a 能被b整除? (板书:a b)

相关主题
相关文档 最新文档